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A remote sensing assessment index for urban ecological livability and its 
application
Junbo Yua, Xinghua Li b, Xiaobin Guan a and Huanfeng Shen a

aSchool of Resource and Environmental Sciences, Wuhan University, Wuhan, China; bSchool of Remote Sensing and Information 
Engineering, Wuhan University, Wuhan, China

ABSTRACT
Remote sensing provides us with an approach for the rapid identification and monitoring of 
spatiotemporal changes in the urban ecological environment at different scales. This study 
aimed to construct a remote sensing assessment index for urban ecological livability with 
continuous fine spatiotemporal resolution data from Landsat and MODIS to overcome the 
dilemma of single image-based, single-factor analysis, due to the limitations of atmospheric 
conditions or the revisit period of satellite platforms. The proposed Ecological Livability Index 
(ELI) covers five primary ecological indicators – greenness, temperature, dryness, water- 
wetness, and atmospheric turbidity – which are geometrically aggregated by non-equal 
weights based on an entropy method. Considering multisource time-series data of each 
indicator, the ELI can quickly and comprehensively reflect the characteristics of the 
Ecological Livability Quality (ELQ) and is also comparable at different time scales. Based on 
the proposed ELI, the urban ecological livability in the central urban area of Wuhan, China, from 
2002 to 2017, in the different seasons was analyzed every 5 years. The ELQ of Wuhan was found 
to be generally at the medium level (ELI ≈0.6) and showed an initial trend of degradation but 
then improved. Moreover, the ecological livability in spring and autumn and near rivers and 
lakes was found to be better, whereas urban expansion has led to the outward ecological 
degradation of Wuhan, but urban afforestation has enhanced the environment. In general, this 
paper demonstrates that the ELI has an exemplary embodiment in urban ecological research, 
which will support urban ecological protection planning and construction.
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1. Introduction

In recent years, rapid economic growth has enabled 
a significant improvement in people’s quality of life 
(Tang et al. 2017). However, the accompanying 
urbanization has also caused problems, such as 
social pressure (Graafland and Smid 2017), envir-
onmental degradation (Adams and Klobodu 2017), 
and declining health (Liu et al. 2017b). As a global 
phenomenon, urban sustainability also seeks 
a balance between local socioeconomic benefits 
and eco-environmental benefits (Yan et al. 2018). 
From this perspective, urban livability could be 
regarded as a local subset of sustainability (Alijani 
et al. 2020). Moreover, some environmental, eco-
nomic, and social aspects are usually contained in 
urban livability (Kashef 2016). In this case, some 
sustainability concepts, such as living quality and 
living environment, have also emerged. 
Nevertheless, urban livability differs from the well- 
being of residents. The concept of well-being often 
refers to many quantitative indicators, such as 
income, health, public service, and environmental 
quality, as well as qualitative indicators, such as 
pleasure and joy (Cummins 1995; Wei and Gao 
2017).

The concept of urban ecological livability focuses 
more on the surrounding environmental quality of 
local residents, which is related to the characteristics 
of places, environmental comfort, and the ecology of 
communities (Aulia 2016; Liu et al. 2017a). It is 
obvious that local dwellers may embrace a wonderful 
life with a healthy natural environment. In summary, 
one pivotal emphasis of urban ecological livability is 
the livable urban ecological environment (Fu, Yu, and 
Zhang 2019; Valcárcel-Aguiar and Murias 2019). 
Timely and comprehensive evaluation of the livable 
urban ecological environment and its change trends is 
the basis of urban planning and human habitation, 
and the key to sustainable urban development. To 
better understand the status and change trend of the 
urban ecologically livable environment, various urban 
ecological evaluation systems and monitoring technol-
ogies have been applied to evaluate the quality and 
function of the ecological system to formulate ecolo-
gical protection countermeasures (Chang et al. 2017; 
Cobbinah, Poku-Boansi, and Peprah 2017; Grubert 
2018).

Due to a lack of flexibility in traditional monitoring 
systems, which also have a very high cost in human, 
material, and financial resources, the data provided by 
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traditional environmental monitoring systems insuffi-
ciently reflect the change trends of the urban ecologi-
cally livable environment. Remote sensing not only 
helps regulators promote the monitoring of environ-
mental changes (Patino and Duque 2013; Bhardwaj 
et al. 2016; Fassnacht et al. 2016; Mushore et al. 2017) 
but also facilitates urban environmental research. 
Furthermore, remote sensing can help us formulate 
feasible plans to provide ecological baseline maps for 
the early development of cities (Willis 2015; Chen 
et al. 2018c; Dlamini et al. 2019). Remote sensing 
data are now widely utilized in the field of ecology, 
due to the advantages of large-area, real-time, rapid, 
and periodic repeated observations (de Araujo 
Barbosa, Atkinson, and Dearing 2015; Rocchini et al. 
2017).

Researchers have applied different types of remote- 
sensing data to analyze various aspects of the urban 
ecologically livable environment (Vogt et al. 2015; 
Wang and Zhao 2016; Li et al. 2017). However, 
researchers have tended to focus on a single aspect of 
the urban ecological environment. Vegetation indices 
and impermeable surface coverage have been 
employed to evaluate urban ecology (Jiang et al. 
2006; Gupta et al. 2012; Yu et al. 2016; Zhang, Zhu, 
and Fan 2016), land surface temperature (LST) has 
been utilized to evaluate the urban thermal environ-
ment (Buyantuyev and Wu 2010; Shen et al. 2016), 
and air quality indices have been applied to represent 
urban air pollution (Zhan et al. 2018; Zhou et al. 2018). 
These studies have tended to analyze environmental 
changes from the following perspectives: regional- 
scale range from global to national, to watersheds, 
and even to metropolitan areas; data scale from statis-
tical data to remote sensing data (Gu et al. 2015; Li, 
Fang, and Wang 2016; Huang et al. 2017; Nguyen and 
Liou 2019; Shao et al. 2021a).

Although the effectiveness of remote sensing data 
for multi-scale environmental monitoring is con-
stantly improving, current studies are still limited by 
the inconsistency of the imaging period and the spatial 
resolution of the remote sensing images (Shen et al. 
2015; Shao, Wu, and Li 2021b). For example, some 
urban indices based on remote sensing data are usually 
extracted with only a single scene from each year, due 
to the imaging time, clouds, missing pixels, and other 
degradation factors, disregarding the differences of 
each remote sensing index in the different seasons 
(Castrence et al. 2014; Li, Gong, and Liang 2015; 
Alqurashi and Kumar 2016).

Each indicator reflects the urban ecosystem in dif-
ferent ways, and they cannot be viewed separately (Xu 
et al. 2018). Therefore, different scholars have begun 
to extract a variety of complex urban environmental 
factors and have developed different comprehensive 
indices for efficient and real-time evaluation of the 
urban ecologically livable environment. These indices 

or frameworks include the Ecological Footprint (EF) 
(Lin et al. 2018), the Environmental Performance 
Index (EPI) (Hsu, Lloyd, and Emerson 2013), the 
Ecological Index (EI) (Rsei 2013), the Remote 
Sensing based Ecological Index (RSEI) (Hu and Xu 
2018), the Comprehensive Evaluation Index (CEI) (He 
et al. 2017), the Urban Environmental Quality Index 
(UEQI) (Musse, Barona, and Santana Rodriguez 
2018), the theme-based sustainability framework 
developed by the United Nations Commission on 
Sustainable Development (UNCSD) (Huang, Wu, 
and Yan 2015), the Procedure for Ecological Tiered 
Assessment of Risk (PETAR) (Xu et al. 2016), and 
multi-dimensional indicators within a Drivers, 
Pressures, States, Impacts, and Responses (DPSIR) 
framework (Liu, Song, and Deng 2019). These studies 
are mainly based on natural resources, environmental 
performance, or ecological factors. Although the com-
prehensive indices and frameworks of these studies are 
relatively mature, they still face some problems. For 
example, the indicators and standards are diverse, and 
different types of data are combined in various evalua-
tion studies, resulting in relatively complex data acqui-
sition, processing, and calculation standards. On the 
other hand, due to the difficulty of selecting indicators 
for calculating urban remote sensing ecology, some 
studies have either set up indices with less coverage 
or set up complex indices that are not suitable for 
small areas, such as inner cities. For the RSEI index, 
the effects of the atmosphere are not taken into 
account; factors such as urban dryness and humidity 
are not covered by the CEI; and the data employed in 
the evaluation frameworks are difficult to obtain, 
resulting in a real-time decline in the acquisition of 
urban ecological conditions. Thus, the construction of 
a comprehensive, remote sensing-based, ecological 
index could become popular because of its advantages 
of being a rapid and comprehensive reflection of the 
urban ecologically livable environment.

In addition to the establishment of an ecological 
index system, another crucial issue for the evaluation 
of urban ecological livability is to weigh each factor 
according to its relative effects on ecological livability. 
Various methods have previously been utilized and 
developed for urban eco-environmental assessment. 
Equal weighting, a simple assigning method, tends to 
disregard the validity and transparency of the indica-
tors (Rowley et al. 2012). The Analytic Hierarchy 
Process (AHP) is a quantitative evaluation method 
for a multi-index system that can decompose 
a complex problem into several layers or factors 
(Song et al. 2010). However, the weight results are 
easily influenced by the cognition level of experts, as 
well as the subjective consciousness. Although the 
Principal Components Analysis (PCA) takes into 
account both qualitative and quantitative analysis, it 
is also affected by ambiguous principal components or 
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target quantity (Mikulić, Kožić, and Krešić 2015). 
There are other patterns, such as gray or fuzzy evalua-
tion (Phillis, Kouikoglou, and Verdugo 2017), artificial 
neural-network evaluation method (Park et al. 2004), 
and the benefit of the doubt approach (Van 
Puyenbroeck and Rogge 2017). Nevertheless, the com-
plex parameters in these models are not always easy to 
obtain and calculate. The objective weighting method 
which is widely practiced in many research fields, 
often produces satisfactory results in decision analy-
sis(Lan, Wu, and Lee 2012; Alemi-Ardakani et al. 
2016; Sahoo et al. 2016), while the entropy method is 
an important allocation method (Zhao et al. 2018).

Hence, to better evaluate the regional, ecologically 
livable environment, it is necessary to develop an 
objective and comprehensive urban ecological livabil-
ity quality index, which is referred to as the Ecological 
Livability Index (ELI). In addition, a spatiotemporal 
continuous basic dataset framework to monitor the 
urban regional environment is presented. 
Furthermore, the status of obtaining evaluation results 
derived from only one snapshot from remote sensing 
images of in situ reality may be broken via ELI. To 
address these issues, the main objectives of this paper 
are: 1) to establish a regional evaluation index of 
Ecological Livability Quality (ELQ) from five ecologi-
cal aspects, i.e. greenness (Normalized Difference 
Vegetation Index, NDVI), temperature (Land Surface 
Temperature, LST), dryness (Normalized Difference 
Built-up and bare Soil Index, NDBSI), water-wetness 
(Near-Water Distance, NWD), and atmospheric tur-
bidity (Aerosol Optical Depth, AOD), integrating 
multi-source, temporally continuous, and spatially 
fine remote sensing data and 2) to verify the univers-
ality of the ELI and explore the spatial and temporal 
changes in different seasons and years in Wuhan, 
China.

The rest of the paper is organized as follows: In 
Section 2, the study area and data are described. In 
Section 3, the generation of the basic data sets for 
remote sensing ecological evaluation based on spatio-
temporal fusion are introduced, and the evaluation 
method for urban ecological livability quality and the 

construction of the ELI are presented. Section 4 
describes the spatiotemporal results of the ELI in 
Wuhan. Some trend reasons, feasibility, and directions 
for the ELI are discussed in Section 5, while conclu-
sions are shown in Section 6.

2. Study area and data

2.1. Study area

Wuhan, the capital of Hubei Province in central 
China, is the only subprovincial city and megacity in 
the six central provinces and is the core city of the 
Yangtze River Economic Belt. The city is located 
between 11341’−11505’ E and 2958’−3122’ N. By the 
end of 2018, the total area of Wuhan was 8569.15 km2, 
accounting for approximately 4.6% of Hubei Province 
(the seven central urban areas covered approximately 
955.15 km2, and the built-up areas covered approxi-
mately 812.39 km2).

In this paper, the study area covers the seven central 
urban areas of the city of Wuhan (abbreviated as 
WHC), including Wuchang (Wuchang District, 
Qingshan District, and Hongshan District), Hankou 
(Jianghan District, Jiang’an District, and Qiaokou 
District), and Hanyang (Hanyang District). The three 
areas in the Yangtze River and Hanjiang River inter-
change form the “three towns of Wuhan” (Figure 1).

2.2. Data

In this study, two kinds of remote sensing datasets 
were used to evaluate the ecological livability quality 
of the WHC area. Landsat surface reflectance products 
in 2003, 2006, 2007, 2008, and 2011 (Landsat 5 TM) 
and in 2013, 2016, 2017, 2018 (Landsat 8 OLI/TIRS) 
were downloaded from the United States Geological 
Survey (USGS, https://earthexplorer.usgs.gov/). The 
NDVI, LST, NDBSI, Normalized Difference Water 
Index (NDWI), and Modified Normalized Difference 
Water Index (MNDWI) were calculated from the 
Landsat images. The standard MODIS land product 
(MOD09A1, MOD11A2, MOD13A3, and MAIAC 

Figure 1. Location of the study area: (a) Wuhan in Hubei Province; (b) WHC.
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AOD) provided by the National Aeronautics and 
Space Administration (NASA) was adopted, and all 
MODIS data corresponding to the time of Landsat 
data, as well as data for a five-year interval from 2002 
to 2017, can be downloaded from the NASA website 
(https://ladsweb.modaps.eosdis.nasa.gov/search/). 
The specific date of Landsat and MODIS data pairs are 
listed in Table 1. 

3. Methods

The study followed the steps shown in Figure 2. To 
better understand the changes in the urban ecologi-
cally livable environment in different years and sea-
sons, first, it was necessary to construct a temporally 
continuous and spatially fine basic dataset. Thus, the 
processing of the MODIS images involved the con-
struction of a Terra-Aqua satellite data composite, 
harmonic analysis, missing information reconstruc-
tion, and quarterly data synthesis. The NDVI, LST, 

NDBSI, NDWI, and MNDWI were obtained through 
Landsat images. The corresponding bands and para-
meters of the MODIS and Landsat data were then 
taken as references for spatiotemporal fusion and 
band calculation to obtain the basic remote sensing 
evaluation dataset, i.e. NDVI, LST, NDBSI, NWD, and 
AOD. Furthermore, five remote sensing ecological 
indicators were selected to reflect the quality of the 
local ecological environment, which roughly cover the 
greenness, temperature, dryness, water-wetness, and 
atmospheric turbidity of urban ecology. Second, in 
importance, we constructed an appropriate evaluation 
index – the ELI – which was geometrically aggregated 
with the abovementioned indicators by non-equal 
weights based on an entropy method, to reflect the 
urban ecological livability quality. More details are 
provided in the following sections.

3.1. Remote sensing dataset generation for 
ecological assessment

In this study, we processed remote sensing images of 
the WHC area with an interval of every 5 years from 
2002 to 2017 and generated remote sensing ecological 
evaluation data for each year with a quarterly time-
scale and spatial resolution of 30 m.

3.1.1. Reconstruction and fusion of missing 
information
Due to the missing information caused by cloud cover 
(Li et al. 2019), sensor faults, and the discontinuity of 
the spatial and temporal distribution of single-site 
data, we mainly addressed the surface reflectance and 
meteorological data of the MODIS and Landsat 
images. For the meteorological data, seamless AOD 
daily data were obtained by mean synthesis and two- 
satellite fusion of Terra and Aqua, and then mean data 
of each year and season were generated by averaging 
the AOD data.

Table 1. Spatiotemporal fusion reference data applied in this 
study.

Data Landsat 1 MODIS 1 Landsat 2 MODIS 2

2002 Spring / / 2003/05/01 2003/121
Summer / / 2003/05/01 2003/121
Autumn / / 2003/10/24 2003/297
Winter / / 2003/12/27 2003/361

2007 Spring 2006/04/07 2006/097 2008/04/28 2008/119
Summer 2006/08/29 2006/241 2007/07/31 2007/212
Autumn 2006/11/01 2006/305 / /
Winter / / 2008/12/08 2008/343

2012 Spring / / 2013/05/12 2013/132
Summer 2011/06/08 2011/159 2013/07/31 2013/212
Autumn / / 2013/10/03 2013/276
Winter 2011/01/15 2011/015 2013/11/20 2013/324

2017 Spring 2016/03/01 2016/061 2018/04/08 2018/098
Summer 2016/07/23 2016/205 / /
Autumn 2017/10/30 2017/303 / /
Winter 2017/12/17 2017/351 / /

Note: March, April, and May represent spring; June, July, and August 
represent summer; September, October, and November represent 
autumn; and December, January, and February represent winter. For 
Landsat, 2003/05/01 represents 1 May 2003; for MODIS, 2003/121 
represents the 121st day in 2003.

Figure 2. The Flow chart for establishing the ELI.
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In addition, the harmonic analysis method was 
utilized to remove cloud interference and fill the data 
gaps (Yang et al. 2015) of the MODIS data. It repre-
sents the time-series data of the reflectance or LST as 
a combination of multiple sines and cosines in 
Equation (1), and uses several important harmonics 
smoothing data to obtain the continuous results. 

Y Tð Þ ¼ A0

þ
Xn

i¼1
Ai cos 2πFiTð Þ þ Bi sin 2πFiTð Þf g;T

¼ 1; 2; . . . ;N
(1) 

where Y Tð Þ represents the result after reconstruc-
tion; A0 is the average of time-series data; Ai and Bi are 
parameters of sines and cosines, respectively;Fi repre-
sents the frequency;T is the number of points in time 
series while N is the length of time series.

Moreover, according to the reconstructed data, the 
quarterly mean values of each year were obtained for 
the subsequent spatiotemporal fusion. All the satellite- 
derived mean data results were considered and utilized 
for cloud-free conditions. Contrary to each index from 
only one snapshot or a single period of the in-situ 
reality, the average value avoids instantaneity during 
the evaluation and reduces randomness in the short 
term.

3.1.2. Spatiotemporal fusion of Landsat and MODIS
The remote sensing spatiotemporal fusion method 
based on nonlocal filtering (Cheng et al. 2017) was 
used to fuse the Landsat, MODIS surface reflectance, 
LST, NDVI, and NDBSI for the basic remote sensing 
ecological evaluation dataset.

Considering the nonlocal characteristics of similar 
pixels, this fusion method optimizes the selection of 
similar pixels and the construction of a weight func-
tion. For high- and low-resolution images, it is 
assumed that the change in reflectance from these 
two data during the same period (tk to tP) is linear, 
disregarding the difference in atmospheric correction 
and anthropogenic factors. During the spatiotemporal 
fusion, it is necessary to ensure that the coordinate 
system and spatial scope of the two resolution images 
are consistent. Thus, all the regression coefficients are 
assumed to be unchanged. The details are from 
Equation (2) to (3) . 

L xi; yj; tP
� �

¼ A� L xi; yj; tk
� �

þ B (2) 

M xi; yj; tP
� �

¼ A�M xi; yj; tk
� �

þ B (3) 

where L xi; yj; tP
� �

and L xi; yj; tk
� �

are the surface 
reflectance of Landsat image pixels whose coordinates 
are (xi,yj) at time tP and tk, respectively; M xi; yj; tP

� �

and M xi; yj; tk
� �

are the surface reflectance of MODIS 
image pixels whose coordinates are (xi,yj) at time tP 

and tk, respectively; A and B represent the linear 
regression coefficients of the pixel from time tP to tk, 
respectively.

In the real experiment, the categories of urban 
objects and each pixel of its remote sensing images 
may change significantly over time. Therefore, auxili-
ary information needs to be introduced to meet the 
accuracy requirements of fusion. Here, similar pixels 
in each fusion reference image are obtained in a local 
window range, and the weight function is calculated 
for the weighted average in Equation (4). 

L xw=2; yw=2; tP
� �

¼
X

i;j2Ω

XN

k¼1
wijk

� A� L xi; yj; tk
� �

þ B
� �

(4) 

where w is the window size; L xw=2; yw=2; tP
� �

is the 
surface reflectance of the high-resolution Landsat data 
obtained from the center of the window at the pre-
dicted time and wijk represents the weight of each 
similar pixel, consisting of individual and whole 
weights.

To ensure the possibility of ecological environmen-
tal change in the different years and seasons and the 
accuracy of the fusion, we attempted to choose images 
that were close to the year and consistent with the 
quarter (Table 1). The corresponding remote sensing 
parameters for the urban ecologically livable environ-
ment were selected for each ecological aspect. The 
calculation and normalization methods for each 
index are expressed as follows.

3.2. Calculation of the urban ecologically livable 
environment indicators

3.2.1. Greenness
Green vegetation interacts with urban ecology in 
many aspects and is a necessary condition for promot-
ing the urban environment and maintaining ecological 
balance. The most direct manifestation of greenness in 
remote sensing data is a vegetation index. The NDVI, 
which can reflect the background influence of the 
plant canopy, is the most common vegetation index 
for the analysis of plant growth state and spatial dis-
tribution density. For the monitoring of vegetation 
growth, the NDVI is commonly used to reflect the 
growth pattern of vegetation. When the value of the 
NDVI is positive, the larger the value of the NDVI, the 
greater the vegetation coverage. Moreover, the NDVI 
has been successfully applied to examine the temporal 
and spatial variation trends and dynamic distribution 
of vegetation (Xu and Zhang 2013). The NDVI calcu-
lation method and normalization method are defined 
in Equations (5) and (6) : 

NDVI ¼
ρNIR � ρRed
ρNIR þ ρRed

(5) 
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NDVIi ¼
NDVIi � NDVImin

NDVImax � NDVImin
(6) 

where ρNIR and ρRed are the surface reflectance 
values of the near-infrared and red bands, respectively; 
NDVIi is the value of the NDVI in pixel i; NDVImax 
and NDVImin are the maximum value and minimum 
value, respectively, of the NDVI in the study year; and 
NDVIi represents the normalized value of the NDVI 
in pixel i.

3.2.2. Temperature
Air temperature and LST, two strongly correlated 
variables, are usually used as complementary para-
meters to measure urban thermal environment (Jin 
and Dickinson 2010; Gallo et al. 2011; Mildrexler, 
Zhao, and Running 2011; Benali et al. 2012; 
Marzban, Sodoudi, and Preusker 2018). 
Meteorological stations can provide fine air tempera-
ture data with a height of 2 m, but it is difficult to 
completely reveal the spatial heterogeneity of urban 
thermal environment (Lin et al. 2012). Meanwhile, 
LST, a parameter that is now often used to estimate 
air temperature, may complement that (Yuan et al. 
2020). In view of the characteristics of spatial conti-
nuity, surface physical processes at regional or global 
scales and lower boundary conditions to ecological 
livability assessment, LST is a better factor for the 
surface energy balance and greenhouse effect than air 
temperature, especially in urban areas (Mutiibwa, 
Strachan, and Albright 2015; Shen et al. 2020; Venter 
Zander, Chakraborty, and Lee 2021). However, there 
are many LST retrieval algorithms. In this study, the 
radiative transfer equation algorithm was selected to 
obtain the LST from the Landsat images (Sobrino, 
Jiménez-Muñoz, and Paolini 2004).

The LST shows obvious differences in different 
seasons. Considering the living environment, tem-
perature is particularly important for urban dwellers. 
When the temperature of a certain area is similar to 
the appropriate temperature, it is determined to be 
more livable. Therefore, we set a comfort temperature 
as the reference temperature (LSTR) and calculated the 
difference between LST and LSTR so that we could 
obtain the positive or negative effect of this index by 
judging the deviation degree between LST and LSTR. 
We utilized the following temperature normalization 
method in Equation (7): 

LSTi ¼
LSTmax � LSTi � LSTRj j

LSTmax � LSTmin
(7) 

where LSTi represents the normalized LST in pixel i; 
LSTi is the LST in pixel i; and LSTmax and LSTmin are 
the maximum LST and minimum LST, respectively, in 
the study year after comparison with the reference 
temperature. LSTR is the reference temperature, 
which may vary from city to city. Some studies have 

suggested that the “human thermal sensation” is com-
fortable and without thermal pressure between 23 and 
27°C (Omonijo 2017). Generally, LST is slightly higher 
than the local temperature, and 25°C was selected as the 
appropriate temperature basis for Wuhan in this study.

3.2.3. Dryness
The boom in urban infrastructure, such as buildings, 
squares, roads, and parking lots, is a typical character-
istic of urbanization. Population growth, impervious 
surface increase have been demonstrated to affect 
urban landscapes and ecological livable in a certain 
extent in previous work (Ellis et al. 2006). The original 
natural landscapes dominated by vegetation are gra-
dually substituted for numerous artificial impervious 
surfaces. Moreover, a considerable part of bare soil, 
which causes a “dry” surface. The negative effects of 
human interventions, project construction, and 
impervious surface reflect in those poor eco- 
environment quality areas (Zhang, Zhao, and Gu 
2014; Zhang, Zhu, and Fan 2016; Shan et al. 2019). 
Therefore, understanding impervious surfaces and 
bare soil is also very important for urban ecological 
planning. The NDBSI integrates the Index-based 
Built-up Index (IBI) and Soil Index (SI) in Equations 
(8) and (9) to better combine their respective advan-
tages and produce a more complete urban ecological 
dryness index (Xu 2008). The NDBSI calculation 
method and normalization method are expressed in 
Equations (10) and (11) (Hu and Xu 2018): 

IBI ¼
2ρSWIR1

ρSWIR1þρNIR
�

ρNIR
ρNIRþρRed

þ
ρGreen

ρGreenþρSWIR1

� �

2ρSWIR1
ρSWIR1þρNIR

þ ð
ρNIR

ρNIRþρRed
þ

ρGreen
ρGreenþρSWIR1

(8) 

SI ¼
ρSWIR1 þ ρRed
� �

� ρNIR þ ρBlue
� �

ρSWIR1 þ ρRed
� �

þ ρNIR þ ρBlue
� � (9) 

NDBSI ¼
IBIþ SI

2
(10) 

NDBSIi ¼
NDBSImax � NDBSIi

NDBSImax � NDBSImin
(11) 

where ρRed, ρGreen,ρBlue,ρNIR, andρSWIR1 represent the 
surface reflectance values of the red, green, blue, near- 
infrared, and short-wave infrared bands, respectively, 
from the MODIS and Landsat satellites;NDBSIi is the 
NDBSI in pixel i; NDBSImax and NDBSImin are the 
maximum NDBSI and minimum NDBSI, respectively 
in the study period; and NDBSIi represents the nor-
malized NDBSI in pixel i.

3.2.4. Water-Wetness
For urban ecological planning, the protection of wet-
lands, lakes, and other water resources can not only 
meet the needs of public and social development but 
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also help to regulate the ecological balance of urban 
areas while improving the quality of the ecological 
environment and promoting sustainable urban devel-
opment (Liu et al. 2013; Feyisa et al. 2014). In addition, 
people may have some real and substantial psycholo-
gical ripple effects from viewing or touching sur-
rounding environment (Yu et al. 2016). Therefore, it 
is indeed important to understand and measure open 
surface water accessibility because of its entertainment 
or other function after urban dwellers’ visual and 
physical experience. Thus, a water-wetness index is 
utilized to represent water-wetness in the living 
environment.

Before calculating the water-wetness, it is necessary 
to extract the water range of the urban area through 
a waterbody index, such as the NDWI or MNDWI in 
Equation (12) and (13). After the segmentation and 
extraction of the waterbody range by these two meth-
ods whose thresholds are both greater than zero (Xu 
2006), the Euclidean distance from each pixel of 
a non-water body area to the boundary of the water-
body range in the urban area is obtained (Salonen et al. 
2012). 

NDWI ¼
ρGreen � ρNIR
ρGreen þ ρNIR

(12) 

MNDWI ¼
ρGreen � ρMIR
ρGreen þ ρMIR

(13) 

whereρGreen, ρNIR and ρMIR are the surface reflec-
tance values of the green, near-infrared, and mid- 
infrared bands, respectively.

For brevity, the shortest distance from any pixel 
of a non-water body area to the boundary of the 
waterbody vector is referred to as the NWD 
(Figure 3). The WHC region is rich in water 
resources and has a wide range of waterbodies. 

The areas closer to the water appear light blue, 
while the areas further from the water appear 
orange. In the WHC area, these areas further from 
open water, namely, orange areas, are usually built- 
up areas or have large amounts of bare soil. The low 
ecological quality in these areas is mainly due to the 
human high-stress intensity activities and large-scale 
urban expansion (Zhu et al. 2021). Regions with 
water relatively nearby, such as lakes and rivers, 
may be considered more livable and have 
a relatively high ecological livability quality 
(Soranno et al. 2015; Zachariasz and Porada 2019). 
Hence, we select a Reference Water Distance 
(NWDR) and calculate the Difference Distance 
between the NWD and the NWDR (DNWD) so 
that we can obtain the positive or negative effects 
of this index by judging the deviation degree 
between the two distances. As the distance between 
the urban area and the water reaches a certain 
range, the impact on it will not substantially change 
in different cities, so we select one threshold dis-
tance (NWDT). When the DNWD exceeds this 
threshold, we can set it as a constant distance 
(NWDC). NWDi is calculated in Equation (14).

NWDi ¼ f
DNWDmax � NWDi� NWDRj j

DNWDmax � DNWDmin
;NWDi <NWDT

NWDC;NWDi � NWDT

(14) 

where NWDi is the NWD in pixel i; DNWDmax and 
DNWDmin are the maximum DNWD and minimum 
DNWD, respectively; NWDi represents the normal-
ized NWD in pixel i; and NWDR is the reference 
distance, which may vary from city to city. In this 
study, we selected 100 m as the NWDR basis for 
Wuhan and set 1000 m as the NWDT to reasonably 
show the influence of NWD on the ELI.

Figure 3. NWD results for the WHC area.
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3.2.5. Atmospheric turbidity
As an important part of the environment, the atmo-
sphere plays a key role in environmental health. The 
relation of the AOD with regional air quality and 
public health is widely discussed as one of the main 
stressors of global climate change (Chin et al. 2014; 
Huang et al. 2014; Wang et al. 2017; Setti et al. 2020; 
Madadi et al. 2021). Moreover, the AOD is a reference 
parameter of aerosol with related to other air pollu-
tants for the comprehensive characterization of atmo-
spheric turbidity in urban ecological livability, and one 
of the most influential parameters for satellite-based 
PM modeling (Gupta et al. 2013; Chen et al. 2018a, 
2018b). Air pollutants from large areas and long time 
series remote sensing inversion methods have been 
estimated or obtained in many studies, including 
AOD inversion (Ghotbi, Sotoudeheian, and Arhami 
2016; Zang et al. 2017; Soni, Payra, and Verma 2018). 
In terms of the data applicability for intra-urban 
(Hammer et al. 2022), the correlation and modeling 
with other pollutants (Gupta et al. 2006; Lu, Zhang, 
and Streets 2011; Zang et al. 2018), the AOD is utilized 
as a reference parameter for air pollution in urban 
ecological livability. Generally, the higher the value 
of the AOD, the greater the altitudinal accumulation 
of aerosols, and the corresponding reduced visibility of 
the atmosphere. This finding reflects the turbidity of 
the atmosphere and usually has a negative impact on 
urban ecological livability. The following normaliza-
tion method in Equation (15) is employed to 
obtain AODi: 

AODi ¼
AODmax � AODi

AODmax � AODmin
(15) 

where AODmax and AODmin are the maximum 
AOD and minimum AOD in the study period, respec-
tively; and AODi represents the normalized AOD in 
pixel i.

3.3. ELI construction

From the perspective of the five main environmental 
themes (freshwater; land; atmosphere; biodiversity; 
and oceans, seas and coasts) in the UNCSD framework 
(Huang, Wu, and Yan 2015), the ELI can also be 
composed of five indicators derived from remote sen-
sing datasets at the pixel level. Unfortunately, the last 
two elements of the UNCSD framework are not easy 
to apply in urban areas. With regard to a more com-
prehensive and reasonable index, another benchmark, 
referred to as the RSEI based on the Pressure-State- 
Response (PSR) framework for the ELI, was employed 
(Hu and Xu 2018). First, the main pressures on land-
scape ecological security during urbanization are pri-
marily derived from urban expansion and population 
growth. Therefore, some remote sensing building 
indices can be employed to explain the intensity of 

pressure on the landscape from external social activ-
ities. Second, vegetation coverage and its growth activ-
ity calculated by vegetation indices inversely reveal the 
status quo and trend of ecosystems. Last, temperature, 
air quality, and open surface water indicate responses 
to urban changes in the thermal, atmospheric, and 
water environments.

Based on this index evaluation framework, the 
NDVI, LST, NDBSI, NWD, and AOD were selected 
to generate the spatiotemporally continuous evalua-
tion data of ELQ with a spatial scale of 30 m and 
a seasonal timescale. These indicators represent five 
ecological aspects of urban areas: greenness, tempera-
ture, dryness, water-wetness, and atmospheric turbid-
ity. Ecological problems such as noise and other waste 
pollution were not considered in this study as it is 
difficult to obtain effective indicators from remote 
sensing data at the urban scale. The ELI is regarded 
as being affected by changes in these five ecological 
aspects. Therefore, we established the following 
method to calculate the ELI in Equation (16): 

ELI ¼ f NDVI; LST;NDBSI;NWD;AODð Þ (16) 

where NDVI; LST;NDBSI;NWD; andAOD are the 
values of the five ecological indicators after 
normalization.

The change in ELQ in urban areas can be evaluated 
by the ELI. When constructing a remote sensing eva-
luation index for the urban ecologically livable envir-
onment, normalization of each index can ensure that 
the ELI is an increasing function, that is, the higher the 
ELI value is, the better the ecological livability quality. 
In addition, this approach can ensure that the weight 
imbalance of regions with no water affects the univer-
sal applicability of the ELI. The methods used to 
determine the weights of this comprehensive evalua-
tion index system include both subjective and objec-
tive weighting methods. The entropy method is an 
objective weighting method with high reliability and 
accuracy, which can reflect the utility value of the 
information entropy of each index. Thus, in this 
study, the entropy method was selected to determine 
the index weights to eliminate subjective preference 
(Chen, Lu, and Zha 2010). We calculated the ELI 
according to the normalization principle and the geo-
metric mean with the weights of these five indicators 
(Gan et al. 2017). Therefore, the calculation of the ELI 
was conducted by Equation (17): 

ELIi ¼ NDVIi þ 1ð Þ
w1 � LSTi þ 1ð Þ

w2

� NDBSIi þ 1ð Þ
w3 � NWDi þ 1ð Þ

w4

� AODi þ 1ð Þ
w5 (17) 

where ELIi is the value of ecological livability qual-
ity at pixel i. The larger the value of ELIi is, the better 
the ecological livability quality and the higher the 
ecological livability. NDVIi, LSTi, NDBSIi, NWDi, 
and AODi represent the normalized values in pixel i; 
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w1;w2;w3;w4;w5 are the corresponding weights of 
each index, and the sum of their values is one. The 
weight is calculated by the pixel number of each indi-
cator. The main steps are listed from Equations (18) 
to (21):

Calculate the proportion of the ith pixel under the 
jth indicator: 

pij ¼
xij

Pn
i¼1 xij

i ¼ 1; . . . ; n; j ¼ 1:;mð Þ (18) 

Calculate the information entropy of the indicator: 

ej ¼ � k�
Xn

i¼1
pijln pij

� �
; k ¼

1
ln nð Þ

> 0 (19) 

Calculate the redundancy of the information 
entropy: 

dj ¼ 1 � ej (20) 

Calculate the weight of each indicator: 

wj ¼
dj

Pm
j¼1 dj

(21) 

where xij is the result of the homogenization of the 
heterogeneous indicators, and the normalization 
method is calculated with reference to each previous 
indicator. In addition, m is the number of indicators, 
and its value is five. n is the number of pixels for each 
indicator.

According to Equation (17), we can determine that 
the ELQ result calculated by the five indices will fall 
between one and two. To better measure and compare 
the changes in ELQ during the different study periods, 
the results should be further normalized. The maxi-
mum value of normalization is two, and the minimum 
value is one. The calculation is conducted in 
Equation (22): 

ELIn
i ¼

ELIi � 1
2 � 1

(22) 

where ELIn
i is the final remote sensing assessment 

index of ecological livability quality, ranging from zero 
to one. When the resulting ELI values in a certain 
region are nearly one, the ELQ of this area is superior 
and the ecological livability is high and vice versa.

3.4. Spatiotemporal characteristics analysis of 
the ELI

Studying the distribution characteristics and changing 
trends of urban ecological livability is a key prerequi-
site for urban construction or planning, and compre-
hensive and coordinated development. In this study, 
we quantitatively illustrated the characteristics of the 
ELI in urban areas from the spatiotemporal perspec-
tive with statistical and spatial heterogeneity analyses. 
The results were applied to investigate whether the ELI 

is practical for areas, such as the WHC area. The 
analyses paid more attention to the two aspects of 
temporal variation trend and spatial clustering, i.e. 
the overall distribution and variation trend of the 
ELI at annual and seasonal scales and the local pattern 
of the regional urban ecological livability quality.

Most trends over time can be intuitively obtained 
from the statistics of each grade of the ELI or its visual 
results. Moreover, spatial autocorrelation analysis can 
be performed to study the spatial correlation of 
a certain attribute at an adjacent location from the 
ELI, including global autocorrelation and local auto-
correlation. To explore the spatial pattern or distribu-
tion characteristics of the ELQ in the WHC area, 
a spatial autocorrelation index was applied to measure 
its spatial correlation degree. Simultaneously, this 
paper gives more consideration to the local character-
istic differences in the distribution of the ELI. The 
Local Indicators of Spatial Association (LISA) index 
(Anselin 1995) was utilized to further measure the 
degree of spatial association between one region and 
its adjacent spatial units of the ELQ in the WHC area, 
that is, the local Moran’s I index in Equation (23), 
rather than Moran’s I, was employed to determine 
whether the phenomenon of variable agglomeration 
existed and to indicate the hot and cold spots of the 
WHC area in this study. All the results were calculated 
using the GeoDa program (Anselin, Syabri, and Kho 
2006). 

I ¼
xi � �x

S2

X

j
wij xj � �x
� �

(23) 

where I is the local Moran’s I index; i and j are any 
one of the pixels in the region; xi and xj are the ELI of 
pixels i and j, respectively; �x is the average ELI of a type 

of pixel; S2 ¼

Pn

i¼1
xi� �xð Þ

2

n� 1 , which represents the ELI 
variance of pixel I; n is the total number of pixels; 
and wij is the element of row i, column j in the spatial 
weight matrix.

In addition, the Standard Deviation Ellipse 
(SDE), which is a common tool for the geoscience 
analysis of directional characteristics (Ghasemi, 
Hamzenejad, and Meshkini 2018), was also 
employed to measure the centrality, spreading, 
direction, and spatial shape of the ELI. The center 
of the ellipse is the average center of the spatial 
distribution, and the standard deviation in the 
X and Y directions represents its long axis and 
short axis, representing the dispersion degree of 
the main direction and the secondary direction of 
the spatial element distribution, respectively, that 
is, the larger the length is, the more discrete it is. 
The azimuth of the ellipse reflects the main trend 
of its distribution. The area of the ellipse indicates 
the degree of concentration or dispersion of the 
spatial distribution of the geographical elements. 
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The larger the area, the more dispersed the spatial 
distribution of the good ecological livability quality. 
In contrast, the more concentrated the ecological 
livability quality is, the better its ecological envir-
onment is. The calculation formula for the SDE 
average center is presented from Equations (24) 
to (25): 

Xw ¼

Pn
i¼1 wixi
Pn

i¼1 wi
(24) 

Yw ¼

Pn
i¼1 wiyi
Pn

i¼1 wi
(25) 

where (xi,yi) represents the spatial location of the 
research object, wi represents the weight, and (Xw,Yw) 
represents the weighted average center.

4. Results

4.1. Basic dataset generation for the urban 
ecologically livable environment

First, a spatiotemporal information fusion method 
based on a nonlocal means filter (Cheng et al. 2017) 
was utilized to provide basic data for the evaluation of 
the urban ecologically livable environment. Figure 4 
shows the real and fused Landsat 8 surface reflectance 
results for the near-infrared band in the WHC area. 
The fused Landsat images have a highly similar spatial 
distribution to the real Landsat images, as shown in 
the water information and features of the Yangtze 
River and East Lake, indicating that this fusion 
method can be applied to the generation of regional 
ecological environment evaluation datasets. 
According to the quantitative results (Table 2.), the 
Root-Mean-Square Error (RMSE) of the green, red, 
and near-infrared bands are all below 0.05, while the 
correlation coefficient (R2) of the green band reaches 
0.7246 and that of the red and near-infrared bands 
exceeds 0.79.

Furthermore, given the complexity and uncer-
tainty of the various indicators for ELI, we con-
ducted a preliminary comparison and verification 
of the fusion results of the three indices, namely, 
NDVI, LST, and NDBSI. The results of their com-
parison with real data are presented as follows: 
Figure 5 shows the real and fused difference 
results for these three indicators in the WHC 
area. Figure 5 (a1), Figure 5 (b1), and Figure 5 
(c1) show the numerical differences of the three 
indicators, which are within the tolerable fluctua-
tion range. The results in the right column of 
Figure 9 are the spatial distribution differences of 
the three indicators. As shown in Figure 5 (a2), 
Figure 5 (b2), and Figure 5 (c2), the three fused 
indicators have a relatively high similar spatial 
distribution to the real distribution. Based on the 
quantitative results (Table 3.), the RMSEs of the 
NDVI and NDBSI are 0.1147 and 0.0690, respec-
tively, while that of the LST exceeds three. The 
correlation coefficient (R2) of the NDBSI was 
approximately 0.6938, and the R2 of the NDVI 
and LST exceed 0.7.

Figure 4. Real and fusion surface reflectance results for the near-infrared band of Landsat 8 for 15 September 2018.

Table 2. Spatiotemporal fusion accuracy for Landsat 8.
Band RMSE R2

Green 0.0261 0.7246
Red 0.0278 0.7906
Near-infrared 0.0467 0.7931

Reference image dates: April 8 and November 2 in 2018; target image 
date: September 15, 2018.

Table 3. Spatiotemporal fusion accuracy for NDVI, LST, and 
NDBSI.

Indicator RMSE R2

NDVI 0.1147 0.7099
LST 3.2501 0.7707
NDBSI 0.0690 0.6938

Reference image dates: October 20, 2019 and August 3, 2020; target 
image date: April 13, 2020.
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4.2. Weight of each index in the ELI of the WHC area

The weight of each index in the ELI for the WHC area 
was determined according to the entropy method. The 
specific results are shown in Table 4. A comparison of 
the weight values of each index reveals no obvious 

difference in the quantitative characteristics between 
two seasons, most of which float at approximately 0.2. 
Among them, the largest weight value in spring and 
autumn was the LST, while the minimum value in the 
former season was the NWD, and the weight value of 
the NDBSI was the smallest in winter. Furthermore, the 
maximum weight value in summer and winter is the 
NDVI, whereas the minimum of the former season is 
the NDBSI, while the latter is the LST. The changes in 
time (different seasons or years) and space of the ELQ in 
the WHC area were then obtained according to the 
established evaluation system and the results of the ELI.

Figure 5. Real and fused difference results for NDVI, LST, and NDBSI.

Table 4. Weight results for each index of the ELI in the WHC 
area.

Weight w1 (NDVI) w2 (LST) w3 (NDBSI) w4 (NWD) w5 (AOD)

Spring 0.2050 0.2736 0.1770 0.1681 0.1763
Summer 0.2362 0.2134 0.1620 0.1801 0.2083
Autumn 0.2104 0.2934 0.1436 0.1741 0.1785
Winter 0.2193 0.1733 0.1869 0.2173 0.2032
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4.3. Temporal change in the ecological livability 
quality in the WHC area

Figure 6 represents the temporal change trend of the 
ELQ results for the WHC area from 2002 to 2017 
based on the normalized ELI (green and red represent 
the excellent and poor ecological livability quality 
levels, respectively). First, in terms of the seasonal 
variation, the ELQ in spring and autumn is distinctly 
better than that in summer and winter, with spring 
being the best and winter being the worst, that is to 
say, the results of the ELI in summer and winter are 
mainly occupied by yellow and orange areas, and for 
the winter results shown in Figure 6, the red and 
orange areas dominate (fourth row of Figure 6). 
These findings may be attributed to the weight results 
for each season: while the weights of the NDVI and 
LST are relatively high, the AOD in winter is also high 
and even exceeds the weight of the LST. However, it is 
difficult for the NDVI to dominate, even with a high 
weight, due to the low vegetation coverage in winter. 
This finding also indicates that the results of the ELI in 
winter are mainly affected by the AOD and NWD 
(both of their weights exceed 0.2).

The results of the ELI in the other seasons are mainly 
based on the weights of the NDVI and LST. Even if the 
temperature is higher in the spring and summer, the high 
vegetation cover offsets the corresponding influence. 
Furthermore, although the weight of the NDVI is lower 
than that of the LST in autumn, the relative suitability of 
the temperature adequately reflects the habitability.

In addition, the quantitative ratios of each quality 
grade based on the ELI were calculated. For brevity, the 
ELI was classified into three grades (poor, medium, and 
good), which refer to the 5-leveled RSEI map, according 
to its value range (Xu et al. 2018). Among them, ELI 
values of less than 0.4 and greater than 0.6 belong to the 
poor grades and good grades, respectively, and the med-
ium grade for the ELI ranges from 0.4 to 0.6. The statis-
tical result for Figure 6 is shown in Figure 7. In spring, the 
ELI from 2002 to 2017 in Figure 7 (a) was mainly 
approximately 0.6, indicating that the overall ecological 
livability quality level of the WHC area was acceptable. 
Specifically, the good grade of the ELI in the spring of 
2002, 2007, 2012, and 2017 accounted for 85.419%, 
49.750%, 42.461%, and 86.774%, respectively. This 
change indicates that the ELQ of the WHC area showed 
a deteriorating trend from 2002 to 2012, and then 
improved from 2012 to 2017. The ELQ in 2017 then 
recovered to basically the same condition as that of 2002.

The ELI of the WHC area in the other three 
seasons showed a similar pattern to that of spring, 
with all three seasons being above the medium 
grade, as shown in Figure 7 (b) to Figure 7 (d). 
The percentage of the good grade in summer 
decreased from 56.025% to 47.805% and then to 
39.004% but increased to 66.711% from 2002 to 
2017. The corresponding percentage in autumn 
decreased from 66.128% to 60.500% and then to 
56.596% but then increased to 78.821%. The good 

Figure 6. Temporal variation of the ELI in the WHC area.
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grade in winter occupied a very low ratio, and the 
percentage above the general grade changed from 
80.886% to 90.669%, but it decreased significantly 
to 65.561%, and finally rose to 88.695% in the 
next year.

4.4. Spatial distribution of the ecological 
livability quality in the WHC area

The results of spatial autocorrelation (Figure 8) 
and SDE (Figure 9) are utilized for the spatial 
characteristics analysis of the ELI for a better 

Figure 7. Area percentage results for the ecological quality grades in the different seasons from 2002 to 2017.

Figure 8. LISA index clustering results for the ELI from 2002 to 2017 in every season.
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formulation of urban ecological planning. The 
local Moran’s I values for each year and season 
were approximately 0.9, indicating that the ELQ in 
the WHC area has a high local autocorrelation. In 
combination with Moran’s I scatter map, the spa-
tial pattern of the ELQ in the WHC area was 
visualized and its distribution characteristics were 
established when the significance level was set to 
0.05. The local indicators of spatial association 

were employed to detect the spatiotemporal clus-
ters of the ELI: High–High (HH), Low–Low (LL), 
Low–High (LH), High–Low (HL), and not signifi-
cant (Figure 8). In general, the purpose of the 
spatial clusters was to identify the HH (hot-spot) 
or LL (cold-spot) patterns in the WHC area within 
a certain time period. In Figure 8, HH/LL means 
that the value of the ELQ of a spatial unit in the 
WHC area is high/low, and the surrounding 

Figure 9. Standard deviation ellipse distribution in every season from 2002 to 2017.

14 J. YU ET AL.



spatial units are also high/low, reflecting the co- 
directional influence relationship. LH shows that 
the ELQ of a spatial unit is relatively low, but it is 
surrounded by nearby spatial units with high- 
quality scores, while HL is just the opposite.

The first line in Figure 8 shows clustering results of 
the local indicators of spatial association in spring 
from 2002 to 2017. The HH regions are mainly dis-
tributed east of the WHC area, near East Lake, the 
southwest corner of Hongshan District, the southeast 
area of Hanyang District, and part of the riverside 
area. In contrast, the LL regions are mainly distributed 
in the center of the WHC area, including Jianghan 
District and Jiang’an District. Moreover, the LL 
regions show a tendency of spreading to the surround-
ing areas over time, especially from 2007 to 2017, and 
HH aggregation regions gradually appear in the cen-
tral area. On the whole, the other three seasons show 
roughly the same pattern as the spring distribution.

Double SDE is applied in this paper. The second 
standard deviation range includes approximately 95% 
of the elements of the good grade ecological livability 
quality. Based on the shape of the SDE and the move-
ment of the centers of gravity, the spatial concentra-
tion degree and the direction change trend of the good 
grade ELQ in the WHC area were analyzed. Figure 9 
shows the SDE distribution and center of gravity posi-
tions of the four seasons from 2002 to 2017. In terms 
of the overall spatial distribution (Figure 9, left), the 
spatial pattern of the SDE in each season is roughly the 
same, and can be roughly divided into northeast and 
east by north, according to the direction of the long 
axis of the ellipse. This finding shows that the good 
grade ELQ in this direction is higher than that in the 
short axis direction and concentrated in the middle 
and east as the eastern part of Wuchang District and 
central part of Hongshan District have many lakes and 
forest parks, and the government has greatly invested 
in their protection and development.

Furthermore, the SDE direction generated 
each year is basically consistent with the Yangtze 
River, which means that the ecological and environ-
mental impact in the WHC area is closely related to 
the Yangtze River. Although the SDEs in the winter of 
2002 and 2012 were slightly off, the direction of the 
long axis, approximately east by north, was similar to 
the distribution direction of the Yangtze River and all 
the major lakes in the WHC area. Therefore, a close 
relationship between the ecological environmental 
quality of WHC and the distribution of open water 
sources, such as the Yangtze River in this region, may 
be observed. For the change in the center of gravity of 
the SDEs (Figure 9, right), the center of gravity of the 
good grade ELQ during the study period mainly fluc-
tuated Wuchang District, and an overall trend of small 
amplitude fluctuation was observed in the east of the 

WHC area. Although the winter results for 2002 and 
2012 show some deviation, the centers of gravity of 
these two SDEs are still east of the WHC area, which is 
consistent with the previous overall SDE distribution. 
Meanwhile, Figure 6 shows that the ELQ in winter is 
generally poor, and the area with an ELI greater than 
0.6 is reduced. Therefore, the centers of gravity of the 
SDEs migrate to the areas with lakes and forest, i.e. 
east of the WHC area.

5. Discussions

The factors of human activities and the urban envir-
onment itself were discussed in relation to these spa-
tiotemporal changes to ELI in the WHC area. The 
feasibility and universality of the ELI were 
investigated.

5.1. What accounts for the spatiotemporal trends 
of the ELI in the WHC area?

With the impact of human activities and climate 
change, the ecological environment and livability of 
urban areas are receiving more attention (Huang and 
Wang 2020; Wu 2020; Li et al. 2021). This paper shows 
the change trend and spatial difference of the ELQ in 
the WHC area in the last 15 years via the ELI.

In terms of all four seasons in each year, as shown 
in Figure 6, the ELQ in the northwest is the worst, and 
the worst area is located in Hankou, which is the 
economic and financial center of Wuhan. The main 
reason for these findings is the large number of com-
pact buildings, a large population flow, and fewer 
water resources, such as lakes in these areas, leading 
to the prominent influence of the negative indicators 
in the ELI, such as the NDBSI, LST, and NWD.

On the other hand, from an annual perspective, the 
green areas in 2007 and 2012 were significantly smaller 
than those in 2002 and 2017. This phenomenon indi-
cates that the ELQ of the WHC area first decreased 
and then increased. In particular, the results for winter 
in 2012 can be partly attributed to the extreme air 
pollution events in China in 2012, where haze blan-
keted eastern China for several days, including Wuhan 
(Tao et al. 2013). Meanwhile, during the Spring 
Festival, fireworks caused serious particulate matter 
pollution, and the air pollution index exceeded the 
standard. The AOD in 2012 was relatively high, con-
tributing to the overall poor ecological livability qual-
ity (red and orange results of the ELI in Figure 6) in 
the prosperous areas (Jianghan District and the sur-
rounding Qiaokou District).

Moreover, the ELQ of the WHC area showed 
a trend of degradation from 2002 to 2012, due to city 
expansion and development. Unlike this situation, 
under the policies of green development and ecologi-
cal protection measures from the Twelfth Five-Year 
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Plan of China, the good grade of the ELQ in the WHC 
area gradually increased from 2012 to 2017, and the 
ELI also increased accordingly. These results comprise 
response of human environmental protection actions 
and policy implementation to the ELQ of the WHC 
area.

Overall, an excellent ELQ was obtained for the 
vegetation and lake areas from 2002 to 2017, especially 
near East Lake. Due to the protection of the East Lake 
Scenic Area, particularly the opening of the East Lake 
Greenway in 2016, the ELQ near East Lake has gradu-
ally improved over the past 15 years. A poor ELQ was 
obtained around the second ring road of the WHC 
area, which was mainly employed for the construction 
of Wuhan’s central business circle and residential 
buildings. For example, Qingshan District, which has 
many heavy industries, including chemical and man-
ufacturing factories, often exhibited a poor level of 
ecological livability quality and showed a certain ten-
dency for deterioration, due to the long-term impact 
of industrial pollution and the lack of lakes and vege-
tation (Trinder and Liu 2020).

In addition, there are many reasons for the phe-
nomenon of the spatial distribution of the ELQ in 
Figure 8 from 2002 to 2017. On the one hand, the 
HH regions, such as those near East Lake, are well 
protected by green development and are less affected 
by urbanization, so the ELQ in these areas is high. On 
the other hand, many impermeable surfaces in the 
WHC area appeared as the city gradually expanded, 
leading to the outward diffusion of the LL regions with 
the rapid development of Wuhan. This situation is 
evident between the second ring road and third ring 
road in the WHC. However, after the implementation 
of a series of ecological environmental protection 
measures by Wuhan’s government (Luo et al. 2019), 
the greening of the central area along the river was 
improved, and the ELQ in these areas was also 
improved.

5.2. The ELI can quickly and comprehensively 
evaluate the urban ecologically livable 
environment

Through the real-time feedback of the high-efficiency 
and fast ELI, it is possible to realize the management 
and analysis of dynamic remote sensing data and the 
real-time monitoring or identification of the urban 
ecologically livable environment from a multi-scale 
and high-precision perspective. Compared with LST- 
and-EVI-regulated-NTL-city index (LERNCI) for 
inner-city patterns (Liu et al. 2017c), the ELI pays 
more attention to the ecological livability, taking the 
ecological dimensions felt by citizens as the priority. 
Unlike neighborhood-level environmental performance 
in global cities from Urban Environment and Social 
Inclusion index (UESI) (Hsu et al. 2020), the ELI 

based on remote sensing data primarily reveals the 
quantitative characteristics of urban ecological livability 
in each landscape pixel grid. On the other hand, con-
sidering the comprehensiveness of the urban ecologi-
cally livable environment, the ELI constructed in this 
study adequately utilizes the five ecological indices of 
greenness, temperature, dryness, water-wetness, and 
atmospheric turbidity, to meet the evaluation needs of 
urban ecological livability quality. However, there are 
still some limitations to this study. First, in the process 
of remote sensing evaluation dataset generation or eva-
luation, it is difficult to avoid errors that may affect the 
accuracy of the characteristics or spatial distribution of 
the results in order to ensure the lower boundary of the 
model, for example, due to the limitation of meteoro-
logical station data, the overestimated value of tempera-
ture from the LST is selected (Venter Zander, 
Chakraborty, and Lee 2021). Second, there is a lack of 
investigation of other living indicators and the relation-
ship between urban ecologically livable environment 
change in continuous years and potential driving fac-
tors, such as the social economy and policies.

5.3. Some future directions for the ELI

The ELI is primarily intended to show the intra-urban 
ecological livability or get its variability. In the future, 
some ecological indicators based on remote sensing ana-
lysis that are highly dependent on the spatial variability in 
urban environment need to be employed more rationally 
rather than overestimated, such as the biases between the 
LST and air temperature in different seasons. Some 
indicators, such as the planar PM2.5, may also be intro-
duced in the ELI for comparative spatial variation.

In addition, research with long time series in contin-
uous years that covers large areas could be carried out to 
explore the change rules of the urban ecologically livable 
environment in different cities, especially environmental 
events, through historical data and different image pro-
cessing methods to provide a reference for urban ecolo-
gical planning. More datasets combined with multi- 
source remote sensing data, statistical data, and big data 
with higher spatial and temporal resolutions could be 
reasonably generated. Moreover, reasonable and objec-
tive comprehensive evaluation indices for the ecological 
environment should be established to provide decision- 
making support for ecological protection and environ-
mental management.

6. Conclusions

pIn this study, the five urban ecological indices of 
greenness, temperature, dryness, water-wetness, and 
atmospheric turbidity were used to construct the ELI, 
which is a comprehensive evaluation index for 
remote sensing ecological livability. The ELI allows 
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an efficient and real-time comprehensive assessment 
of the urban ecologically livable environments, and 
will be of great significance for the in-depth analysis 
of urban development. The advantages of remote 
sensings, such as large-area dynamic observation, 
timeliness, periodicity, and data comparability, have 
been considered by the ELI. Compared with site or 
statistical data and other evaluation frameworks, the 
ELI takes into account five aspects of urban ecology, 
and its results can be clearly visualized at national, 
urban, or even regional levels. Moreover, the spatial 
and temporal distribution pattern of urban ecological 
livability quality and its dynamic change characteris-
tics can be analyzed by the ELI at different scales 
based on multi-source data and information proces-
sing technologies.

Specifically, the ELQ in the WHC area has been at 
a medium level (ELI ≈0.6), and its change showed 
a trend of stability or improvement from 2002 to 
2017. From 2002 to 2012, the ELQ showed a stable or 
declining trend in different seasons but gradually 
turned to an improving trend from 2012 to 2017. In 
terms of the spatial distribution, the surrounding areas, 
such as East Lake and the riverside green parks, have 
a good grade of ecological livability quality. Meanwhile, 
Qingshan District, which has heavy and chemical 
industries, and the southeastern Hongshan District, 
which has limited water resources, have a poor grade 
of ecological livability quality. Although urban expan-
sion led to ecological degradation and a poor grade of 
ELQ in the WHC area, urban afforestation and the 
implementation of government policies improved the 
urban environment.

In general, a remote sensing assessment index frame-
work has been constructed to rapidly reflect the urban 
ecological livability quality with multi-source data, but 
there are still some to be further explored. More ecolo-
gical factors could be considered to further optimize the 
evaluation model in future studies, such as air tempera-
ture, PM2.5, noise and other issues. In the future, more 
effective urban ecological evaluation systems and envir-
onmental protection policies should be implemented to 
provide decision-making support for ecological protec-
tion and environmental management, and a further 
reference for urban construction with harmonious devel-
opment between humans and nature.

Acknowledgements

Special thanks are given to the editor and referees for their 
suggestions.

Data availability statement

The raw Landsat land surface reflectance products can 
be obtained from the United States Geological Survey 
(USGS, https://earthexplorer.usgs.gov/). Meanwhile, all 
the standard MODIS land product can be downloaded 
from the National Aeronautics and Space 
Administration (NASA, https://ladsweb.modaps.eosdis. 
nasa.gov/search/).

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Notes on contributors

Junbo Yu is currently a PhD candidate at Wuhan University. 
His research interests include image processing, remote 
sensing application, multi-scale change detection of map 
data.

Xinghua Li is currently an associate professor at Wuhan 
University. He received his BSc degree in geographical 
information system and his PhD degree in cartography 
and geographical information engineering from Wuhan 
University in 2011 and 2016, respectively. His research 
interests include multi-temporal remote sensing analysis 
and application, remote sensing image processing, deep 
learning, and sparse representation.

Xiaobin Guan is currently a postdoctoral research assistant 
at Wuhan University. He received the BSc and PhD degrees 
in geographical information system at Wuhan University in 
2013 and 2018, respectively. His research interests include 
the processing of multi-source remote sensing images and 
its application in the terrestrial ecosystem and global 
change.

Huanfeng Shen is currently a professor at Wuhan 
University. He received a BSc degree in surveying and map-
ping engineering and a PhD degree in photogrammetry and 
remote sensing from Wuhan University in 2002 and 2007, 
respectively. His research interests include remote sensing 
image processing, multi-source data fusion, intelligent 
environmental sensing, and regional and global environ-
mental changes.

Funding

This work is supported by the National Natural Science 
Foundation of China [grant number 41701394] and 
National Key Research and Development Program of 
China [grant number 2018YFB2100500].

ORCID

Xinghua Li http://orcid.org/0000-0002-2094-6480
Xiaobin Guan http://orcid.org/0000-0002-3812-7141
Huanfeng Shen http://orcid.org/0000-0002-4140-1869

GEO-SPATIAL INFORMATION SCIENCE 17

https://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/


References

Adams, S., and E.K.M. Klobodu. 2017. “Urbanization, 
Democracy, Bureaucratic Quality, and Environmental 
Degradation.” Journal of Policy Modeling 39: 1035–1051. 
doi:10.1016/j.jpolmod.2017.04.006.

Alemi-Ardakani, M., A.S. Milani, S. Yannacopoulos, and 
G. Shokouhi. 2016. “On the Effect of Subjective, 
Objective and Combinative Weighting in Multiple 
Criteria Decision Making: A Case Study on Impact 
Optimization of Composites.” Expert Systems with 
Applications 46: 426–438. doi:10.1016/j.eswa.2015.11.003.

Alijani, S., A. Pourahmad, H. Hatami Nejad, K. Ziari, and 
S. Sodoudi. 2020. “A New Approach of Urban Livability 
in Tehran: Thermal Comfort as a Primitive Indicator. 
Case Study, District 22.” Urban Climate 33: 100656. 
doi:10.1016/j.uclim.2020.100656.

Alqurashi, A.F., and L. Kumar. 2016. “Spatiotemporal 
Patterns of Urban Change and Associated Environmental 
Impacts in Five Saudi Arabian Cities: A Case Study Using 
Remote Sensing Data.” Habitat International 58: 75–88. 
doi:10.1016/j.habitatint.2016.10.001.

Anselin, L. 1995. “Local Indicators of Spatial Association— 
lisa.” Geographical Analysis 27: 93–115. doi:10.1111/ 
j.1538-4632.1995.tb00338.x.

Anselin, L., I. Syabri, and Y. Kho. 2006. “GeoDa : An 
Introduction to Spatial Data Analysis.” Geographical 
Analysis 38: 5–22. doi:10.1111/j.0016-7363.2005.00671.x.

Aulia, D.N. 2016. “A Framework for Exploring Livable 
Community in Residential Environment. Case Study: 
Public Housing in Medan, Indonesia.” Procedia - Social 
and Behavioral Sciences 234: 336–343. doi:10.1016/j. 
sbspro.2016.10.250.

Benali, A., A.C. Carvalho, J.P. Nunes, N. Carvalhais, and 
A. Santos. 2012. “Estimating Air Surface Temperature in 
Portugal Using MODIS LST Data.” Remote Sensing of 
Environment 124: 108–121. doi:10.1016/j.rse.2012.04.024.

Bhardwaj, A., L. Sam, A. Bhardwaj, and F.J. Martín-Torres. 
2016. “LiDar Remote Sensing of the Cryosphere: Present 
Applications and Future Prospects.” Remote Sensing of 
Environment 177: 125–143. doi:10.1016/j.rse.2016.02.031.

Buyantuyev, A., and J. Wu. 2010. “Urban Heat Islands and 
Landscape Heterogeneity: Linking Spatiotemporal 
Variations in Surface Temperatures to Land-Cover and 
Socioeconomic Patterns.” Landscape Ecology 25: 17–33. 
doi:10.1007/s10980-009-9402-4.

Castrence, M., D. Nong, C. Tran, L. Young, and J. Fox. 2014. 
“Mapping Urban Transitions Using Multi-Temporal 
Landsat and DMSP-OLS Night-Time Lights Imagery of 
the Red River Delta in Vietnam.” Land 3: 148–166. 
doi:10.3390/land3010148.

Chang, I.S., Q. Yilihamu, J. Wu, H. Wu, and B. Nan. 2017. 
“Health Impact Assessment in Environmental Impact 
Assessment in China: Status, Practice and Problems.” 
Environmental Impact Assessment Review 66: 127–137. 
doi:10.1016/j.eiar.2017.05.007.

Chen, M., D. Lu, and L. Zha. 2010. “The Comprehensive 
Evaluation of China’s Urbanization and Effects on 
Resources and Environment.” Journal of Geographical 
Sciences 20: 17–30. doi:10.1007/s11442-010-0017-0.

Chen, G., L.D. Knibbs, W. Zhang, S. Li, W. Cao, J. Guo, 
H. Ren, et al. 2018a. “Estimating Spatiotemporal 
Distribution of PM1 Concentrations in China with 
Satellite Remote Sensing, Meteorology, and Land Use 
Information.” Environmental Pollution 233: 1086–1094. 
doi:10.1016/j.envpol.2017.10.011.

Chen, G., Y. Wang, S. Li, W. Cao, H. Ren, L.D. Knibbs, M. 
J. Abramson, and Y. Guo. 2018b. “Spatiotemporal 
Patterns of PM10 Concentrations Over China During 
2005–2016: A Satellite-Based Estimation Using the 
Random Forests Approach.” Environmental Pollution 
242: 605–613. doi:10.1016/j.envpol.2018.07.012.

Chen, W., H. Huang, J. Dong, Y. Zhang, Y. Tian, and 
Z. Yang. 2018c. “Social Functional Mapping of Urban 
Green Space Using Remote Sensing and Social Sensing 
Data.” ISPRS Journal of Photogrammetry and Remote 
Sensing 146: 436–452. doi:10.1016/j.isprsjprs.2018.10.010.

Cheng, Q., H. Liu, H. Shen, P. Wu, and L. Zhang. 2017. 
“A Spatial and Temporal Nonlocal Filter-Based Data 
Fusion Method.” IEEE Transactions on Geoscience and 
Remote Sensing 55: 4476–4488. doi:10.1109/ 
TGRS.2017.2692802.

Chin, M., T. Diehl, Q. Tan, J.M. Prospero, R.A. Kahn, L. 
A. Remer, H. Yu, et al. 2014. “Multi-Decadal Aerosol 
Variations from 1980 to 2009: A Perspective from 
Observations and a Global Model.” Atmospheric 
Chemistry and Physics 14: 3657–3690. doi:10.5194/acp- 
14-3657-2014.

Cobbinah, P.B., M. Poku-Boansi, and C. Peprah. 2017. 
“Urban Environmental Problems in Ghana.” 
Environmental Development 23: 33–46. doi:10.1016/j. 
envdev.2017.05.001.

Cummins, R.A. 1995. “On the Trail of the Gold Standard for 
Subjective Well-Being.” Social Indicators Research 35: 
179–200. doi:10.1007/BF01079026.

de Araujo Barbosa, C.C., P.M. Atkinson, and J.A. Dearing. 
2015. “Remote Sensing of Ecosystem Services: 
A Systematic Review.” Ecological Indicators 52: 430–443. 
doi:10.1016/j.ecolind.2015.01.007.

Dlamini, S.N., A. Beloconi, S. Mabaso, P. Vounatsou, 
B. Impouma, and I.S. Fall. 2019. “Review of 
Remotely Sensed Data Products for Disease Mapping 
and Epidemiology.” Remote Sensing Applications: 
Society and Environment 14: 108–118. doi:10.1016/j.rs 
ase.2019.02.005.

Ellis, E.C., H. Wang, H.S. Xiao, K. Peng, X.P. Liu, S.C. Li, 
H. Ouyang, X. Cheng, and L.Z. Yang. 2006. “Measuring 
Long-Term Ecological Changes in Densely Populated 
Landscapes Using Current and Historical High 
Resolution Imagery.” Remote Sensing of Environment 
100: 457–473. doi:10.1016/j.rse.2005.11.002.

Fassnacht, F.E., H. Latifi, K. Stereńczak, A. Modzelewska, 
M. Lefsky, L.T. Waser, C. Straub, and A. Ghosh. 2016. 
“Review of Studies on Tree Species Classification from 
Remotely Sensed Data.” Remote Sensing of Environment 
186: 64–87. doi:10.1016/j.rse.2016.08.013.

Feyisa, G.L., H. Meilby, R. Fensholt, and S.R. Proud. 2014. 
“Automated Water Extraction Index: A New Technique 
for Surface Water Mapping Using Landsat Imagery.” 
Remote Sensing of Environment 140: 23–35. doi:10.1016/ 
j.rse.2013.08.029.

Fu, B., D. Yu, and Y. Zhang. 2019. “The Livable Urban 
Landscape: GIS and Remote Sensing Extracted Land 
Use Assessment for Urban Livability in Changchun 
Proper, China.” Land Use Policy 87: 104048. 
doi:10.1016/j.landusepol.2019.104048.

Gallo, K., R. Hale, D. Tarpley, and Y. Yu. 2011. “Evaluation 
of the Relationship Between Air and Land Surface 
Temperature Under Clear- and Cloudy-Sky 
Conditions.” Journal of Applied Meteorology and 
Climatology 50: 767–775. doi:10.1175/2010JAMC2460.1.

18 J. YU ET AL.

https://doi.org/10.1016/j.jpolmod.2017.04.006
https://doi.org/10.1016/j.eswa.2015.11.003
https://doi.org/10.1016/j.uclim.2020.100656
https://doi.org/10.1016/j.habitatint.2016.10.001
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.0016-7363.2005.00671.x
https://doi.org/10.1016/j.sbspro.2016.10.250
https://doi.org/10.1016/j.sbspro.2016.10.250
https://doi.org/10.1016/j.rse.2012.04.024
https://doi.org/10.1016/j.rse.2016.02.031
https://doi.org/10.1007/s10980-009-9402-4
https://doi.org/10.3390/land3010148
https://doi.org/10.1016/j.eiar.2017.05.007
https://doi.org/10.1007/s11442-010-0017-0
https://doi.org/10.1016/j.envpol.2017.10.011
https://doi.org/10.1016/j.envpol.2018.07.012
https://doi.org/10.1016/j.isprsjprs.2018.10.010
https://doi.org/10.1109/TGRS.2017.2692802
https://doi.org/10.1109/TGRS.2017.2692802
https://doi.org/10.5194/acp-14-3657-2014
https://doi.org/10.5194/acp-14-3657-2014
https://doi.org/10.1016/j.envdev.2017.05.001
https://doi.org/10.1016/j.envdev.2017.05.001
https://doi.org/10.1007/BF01079026
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.rsase.2019.02.005
https://doi.org/10.1016/j.rsase.2019.02.005
https://doi.org/10.1016/j.rse.2005.11.002
https://doi.org/10.1016/j.rse.2016.08.013
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1016/j.landusepol.2019.104048
https://doi.org/10.1175/2010JAMC2460.1


Gan, X., I.C. Fernandez, J. Guo, M. Wilson, Y. Zhao, 
B. Zhou, and J. Wu. 2017. “When to Use What: 
Methods for Weighting and Aggregating Sustainability 
Indicators.” Ecological Indicators 81: 491–502. 
doi:10.1016/j.ecolind.2017.05.068.

Ghasemi, K., M. Hamzenejad, and A. Meshkini. 2018. “The 
Spatial Analysis of the Livability of 22 Districts of Tehran 
Metropolis Using Multi-Criteria Decision Making 
Approaches.” Sustainable Cities and Society 38: 382–404. 
doi:10.1016/j.scs.2018.01.018.

Ghotbi, S., S. Sotoudeheian, and M. Arhami. 2016. 
“Estimating Urban Ground-Level PM10 Using MODIS 
3km AOD Product and Meteorological Parameters from 
WRF Model.” Atmospheric Environment 141. 
doi:10.1016/j.atmosenv.2016.06.057.

Graafland, J., and H. Smid. 2017. “Reconsidering the 
Relevance of Social License Pressure and Government 
Regulation for Environmental Performance of European 
Smes.” Journal of Cleaner Production 141: 967–977. 
doi:10.1016/j.jclepro.2016.09.171.

Grubert, E. 2018. “Relational Values in Environmental 
Assessment: The Social Context of Environmental 
Impact.” Current Opinion in Environmental 
Sustainability 35: 100–107. doi:10.1016/j.cosust.2018. 
10.020.

Gu, Q., H. Wang, Y. Zheng, J. Zhu, and X. Li. 2015. 
“Ecological Footprint Analysis for Urban 
Agglomeration Sustainability in the Middle Stream of 
the Yangtze River.” Ecological Modelling 318: 86–99. 
doi:10.1016/j.ecolmodel.2015.07.022.

Gupta, P., S.A. Christopher, J. Wang, R. Gehrig, Y. Lee, and 
N. Kumar. 2006. “Satellite Remote Sensing of Particulate 
Matter and Air Quality Assessment Over Global Cities.” 
Atmospheric Environment 40: 5880–5892. doi:10.1016/j. 
atmosenv.2006.03.016.

Gupta, K., P. Kumar, S.K. Pathan, and K.P. Sharma. 2012. 
“Urban Neighborhood Green Index – a Measure of Green 
Spaces in Urban Areas.” Landscape and Urban Planning 
105: 325–335. doi:10.1016/j.landurbplan.2012.01.003.

Gupta, P., M.N. Khan, A. da Silva, and F. Patadia. 2013. 
“MODIS Aerosol Optical Depth Observations Over 
Urban Areas in Pakistan: Quantity and Quality of the 
Data for Air Quality Monitoring.” Atmospheric 
Pollution Research 4: 43–52. doi:10.5094/APR.2013.005.

Hammer, M.S., A. van Donkelaar, C. Li, A. Lyapustin, 
A.M. Sayer, N.C. Hsu, R.C. Levy, et al., 2022. Global 
Annual PM2.5 Grids from MODIS, MISR and SeaWifs 
Aerosol Optical Depth (AOD), 1998-2019, V4.GL.03. 
NASA Socioeconomic Data and Applications Center 
(SEDAC), Palisades, NY.

He, C., B. Gao, Q. Huang, Q. Ma, and Y. Dou. 2017. 
“Environmental Degradation in the Urban Areas of 
China: Evidence from Multi-Source Remote Sensing 
Data.” Remote Sensing of Environment 193: 65–75. 
doi:10.1016/j.rse.2017.02.027.

Hsu, A., A. Lloyd, and J.W. Emerson. 2013. “What Progress 
Have We Made Since Rio? Results from the 2012 
Environmental Performance Index (EPI) and Pilot 
Trend EPI.” Environmental Science & Policy 33: 
171–185. doi:10.1016/j.envsci.2013.05.011.

Hsu, A., T. Chakraborty, R. Thomas, D. Manya, 
A. Weinfurter, N.J.W. Chin, N. Goyal, and A. Feierman. 
2020. “Measuring What Matters, Where It Matters: 
A Spatially Explicit Urban Environment and Social 
Inclusion Index for the Sustainable Development 
Goals.” Frontiers in Sustainable Cities 2: 62. doi:10.3389/ 
frsc.2020.556484.

Hu, X., and H. Xu. 2018. “A New Remote Sensing Index for 
Assessing the Spatial Heterogeneity in Urban Ecological 
Quality: A Case from Fuzhou City, China.” Ecological 
Indicators 89: 11–21. doi:10.1016/j.ecolind.2018.02.006.

Huang, R.-J., Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, 
Y. Han, K.R. Daellenbach, et al. 2014. “High Secondary 
Aerosol Contribution to Particulate Pollution During 
Haze Events in China.” Nature 514: 218–222. 
doi:10.1038/nature13774.

Huang, L., J. Wu, and L. Yan. 2015. “Defining and 
Measuring Urban Sustainability: A Review of 
Indicators.” Landscape Ecology 30: 1175–1193. 
doi:10.1007/s10980-015-0208-2.

Huang, X., D. Wen, J. Li, and R. Qin. 2017. “Multi-Level 
Monitoring of Subtle Urban Changes for the Megacities 
of China Using High-Resolution Multi-View Satellite 
Imagery.” Remote Sensing of Environment 196: 56–75. 
doi:10.1016/j.rse.2017.05.001.

Huang, B., and J. Wang. 2020. “Big Spatial Data for Urban 
and Environmental Sustainability.” Geo-Spatial 
Information Science 23: 125–140. doi:10.1080/ 
10095020.2020.1754138.

Jiang, Z., A.R. Huete, J. Chen, Y. Chen, J. Li, G. Yan, and 
X. Zhang. 2006. “Analysis of NDVI and Scaled Difference 
Vegetation Index Retrievals of Vegetation Fraction.” 
Remote Sensing of Environment 101: 366–378. 
doi:10.1016/j.rse.2006.01.003.

Jin, M., and R.E. Dickinson. 2010. “Land Surface Skin 
Temperature Climatology: Benefitting from the 
Strengths of Satellite Observations.” Environmental 
Research Letters 5: 044004. doi:10.1088/1748-9326/5/4/ 
044004.

Kashef, M. 2016. “Urban Livability Across Disciplinary and 
Professional Boundaries.” Frontiers of Architectural 
Research 5: 239–253. doi:10.1016/j.foar.2016.03.003.

Lan, L.W., W.W. Wu, and Y.T. Lee. 2012. “Exploring an 
Objective Weighting System for Travel & Tourism 
Pillars.” Procedia - Social and Behavioral Sciences 57: 
183–192. doi:10.1016/j.sbspro.2012.09.1173.

Li, X., P. Gong, and L. Liang. 2015. “A 30-Year (1984–2013) 
Record of Annual Urban Dynamics of Beijing City 
Derived from Landsat Data.” Remote Sensing of 
Environment 166: 78–90. doi:10.1016/j.rse.2015.06.007.

Li, G., C. Fang, and S. Wang. 2016. “Exploring 
Spatiotemporal Changes in Ecosystem-Service Values 
and Hotspots in China.” The Science of the Total 
Environment 545-546: 609–620. doi:10.1016/j. 
scitotenv.2015.12.067.

Li, T., H. Shen, Q. Yuan, X. Zhang, and L. Zhang. 2017. 
“Estimating Ground-Level PM2.5 by Fusing Satellite and 
Station Observations: A Geo-Intelligent Deep Learning 
Approach.” Geophysical Research Letters 44. doi:10.1002/ 
2017gl075710.

Li, X., L. Wang, Q. Cheng, P. Wu, W. Gan, and L. Fang. 
2019. “Cloud Removal in Remote Sensing Images Using 
Nonnegative Matrix Factorization and Error Correction.” 
ISPRS Journal of Photogrammetry and Remote Sensing 
148: 103–113. doi:10.1016/j.isprsjprs.2018.12.013.

Li, X., H. Zhang, J. Yu, Y. Gong, X. Guan, and S. Li. 2021. 
“Spatial–temporal Analysis of Urban Ecological Comfort 
Index Derived from Remote Sensing Data: A Case Study 
of Hefei, China.” Journal of Applied Remote Sensing 15: 
1–21. doi:10.1117/1.JRS.15.042403.

Lin, S., N.J. Moore, J.P. Messina, M.H. DeVisser, and J. Wu. 
2012. “Evaluation of Estimating Daily Maximum and 
Minimum Air Temperature with MODIS Data in East 

GEO-SPATIAL INFORMATION SCIENCE 19

https://doi.org/10.1016/j.ecolind.2017.05.068
https://doi.org/10.1016/j.scs.2018.01.018
https://doi.org/10.1016/j.atmosenv.2016.06.057
https://doi.org/10.1016/j.jclepro.2016.09.171
https://doi.org/10.1016/j.cosust.2018.10.020
https://doi.org/10.1016/j.cosust.2018.10.020
https://doi.org/10.1016/j.ecolmodel.2015.07.022
https://doi.org/10.1016/j.atmosenv.2006.03.016
https://doi.org/10.1016/j.atmosenv.2006.03.016
https://doi.org/10.1016/j.landurbplan.2012.01.003
https://doi.org/10.5094/APR.2013.005
https://doi.org/10.1016/j.rse.2017.02.027
https://doi.org/10.1016/j.envsci.2013.05.011
https://doi.org/10.3389/frsc.2020.556484
https://doi.org/10.3389/frsc.2020.556484
https://doi.org/10.1016/j.ecolind.2018.02.006
https://doi.org/10.1038/nature13774
https://doi.org/10.1007/s10980-015-0208-2
https://doi.org/10.1016/j.rse.2017.05.001
https://doi.org/10.1080/10095020.2020.1754138
https://doi.org/10.1080/10095020.2020.1754138
https://doi.org/10.1016/j.rse.2006.01.003
https://doi.org/10.1088/1748-9326/5/4/044004
https://doi.org/10.1088/1748-9326/5/4/044004
https://doi.org/10.1016/j.foar.2016.03.003
https://doi.org/10.1016/j.sbspro.2012.09.1173
https://doi.org/10.1016/j.rse.2015.06.007
https://doi.org/10.1016/j.scitotenv.2015.12.067
https://doi.org/10.1016/j.scitotenv.2015.12.067
https://doi.org/10.1002/2017gl075710
https://doi.org/10.1002/2017gl075710
https://doi.org/10.1016/j.isprsjprs.2018.12.013
https://doi.org/10.1117/1.JRS.15.042403


Africa.” International Journal of Applied Earth 
Observation and Geoinformation 18: 128–140. 
doi:10.1016/j.jag.2012.01.004.

Lin, D., L. Hanscom, A. Murthy, A. Galli, M. Evans, E. Neill, 
M. Mancini, et al. 2018. “Ecological Footprint 
Accounting for Countries: Updates and Results of the 
National Footprint Accounts, 2012-2018.” Resources 7: 
1–22. doi:10.3390/resources7030058.

Liu, J., C. Zang, S. Tian, J. Liu, H. Yang, S. Jia, L. You, B. Liu, 
and M. Zhang. 2013. “Water Conservancy Projects in 
China: Achievements, Challenges and Way Forward.” 
Global Environmental Change 23: 633–643. doi:10.1016/ 
j.gloenvcha.2013.02.002.

Liu, J., P. Nijkamp, X. Huang, and D. Lin. 2017a. “Urban 
Livability and Tourism Development in China: Analysis 
of Sustainable Development by Means of Spatial Panel 
Data.” Habitat International 68: 99–107. doi:10.1016/j. 
habitatint.2017.02.005.

Liu, Y., M. Dijst, J. Faber, S. Geertman, and C. Cui. 2017b. 
“Healthy Urban Living: Residential Environment and 
Health of Older Adults in Shanghai.” Health & Place 47: 
80–89. doi:10.1016/j.healthplace.2017.07.007.

Liu, Y., Y. Yang, W. Jing, L. Yao, X. Yue, and X. Zhao. 2017c. 
“A New Urban Index for Expressing Inner-City Patterns 
Based on MODIS LST and EVI Regulated DMSP/OLS 
NTL.” Remote Sensing 9. doi:10.3390/rs9080777.

Liu, Y., W. Song, and X. Deng. 2019. “Understanding the 
Spatiotemporal Variation of Urban Land Expansion 
in Oasis Cities by Integrating Remote Sensing 
and Multi-Dimensional DPSIR-Based Indicators.” 
Ecological Indicators 96: 23–37. doi:10.1016/j.ecolind 
.2018.01.029.

Lu, Z., Q. Zhang, and D.G. Streets. 2011. “Sulfur Dioxide 
and Primary Carbonaceous Aerosol Emissions in China 
and India, 1996–2010.” Atmospheric Chemistry and 
Physics 11: 9839–9864. doi:10.5194/acp-11-9839-2011.

Luo, Q., L. Luo, Q. Zhou, and Y. Song. 2019. “Does China’s 
Yangtze River Economic Belt Policy Impact on Local 
Ecosystem Services?” The Science of the Total 
Environment 676: 231–241. doi:10.1016/j.scitotenv.2019. 
04.135.

Madadi, A., A.H. Sadr, A. Kashani, A.G. Gilandeh, 
V. Safarianzengir, and M. Kianian. 2021. 
“Monitoring of Aerosols and Studying Its Effects on 
the Environment and Humans Health in Iran.” 
Environmental Geochemistry and Health 43: 
317–331. doi:10.1007/s10653-020-00709-w.

Marzban, F., S. Sodoudi, and R. Preusker. 2018. “The 
Influence of Land-Cover Type on the Relationship 
Between NDVI–LST and LST-Tair.” International 
Journal of Remote Sensing 39: 1377–1398. doi:10.1080/ 
01431161.2017.1402386.

Mikulić, J., I. Kožić, and D. Krešić. 2015. “Weighting 
Indicators of Tourism Sustainability: A Critical Note.” 
Ecological Indicators 48: 312–314. doi:10.1016/j. 
ecolind.2014.08.026.

Mildrexler, D.J., M. Zhao, and S.W. Running. 2011. 
“A Global Comparison Between Station Air 
Temperatures and MODIS Land Surface Temperatures 
Reveals the Cooling Role of Forests.” Journal of 
Geophysical Research: Biogeosciences 116. doi:10.1029/ 
2010JG001486.

Mushore, T.D., J. Odindi, T. Dube, T.N. Matongera, and 
O. Mutanga. 2017. “Remote Sensing Applications in 
Monitoring Urban Growth Impacts on In-And-Out 

Door Thermal Conditions: A Review.” Remote Sensing 
Applications: Society and Environment 8: 83–93. 
doi:10.1016/j.rsase.2017.08.001.

Musse, M.A., D.A. Barona, and L.M. Santana Rodriguez. 
2018. “Urban Environmental Quality Assessment Using 
Remote Sensing and Census Data.” International Journal 
of Applied Earth Observation and Geoinformation 71: 
95–108. doi:10.1016/j.jag.2018.05.010.

Mutiibwa, D., S. Strachan, and T. Albright. 2015. “Land 
Surface Temperature and Surface Air Temperature in 
Complex Terrain.” IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing 8: 
4762–4774. doi:10.1109/JSTARS.2015.2468594.

Nguyen, K.-A., and Y.-A. Liou. 2019. “Global Mapping of 
Eco-Environmental Vulnerability from Human and 
Nature Disturbances.” The Science of the Total 
Environment 664. doi:10.1016/j.scitotenv.2019.01.407.

Omonijo, A.G. 2017. “Assessing Seasonal Variations in 
Urban Thermal Comfort and Potential Health Risks 
Using Physiologically Equivalent Temperature: A Case 
of Ibadan, Nigeria.” Urban Climate 21: 87–105. 
doi:10.1016/j.uclim.2017.05.006.

Park, Y.-S., T.-S. Chon, I.-S. Kwak, and S. Lek. 2004. 
“Hierarchical Community Classification and Assessment 
of Aquatic Ecosystems Using Artificial Neural Networks.” 
The Science of the Total Environment 327: 105–122. 
doi:10.1016/j.scitotenv.2004.01.014.

Patino, J.E., and J.C. Duque. 2013. “A Review of Regional 
Science Applications of Satellite Remote Sensing in Urban 
Settings.” Computers, Environment and Urban Systems 37: 
1–17. doi:10.1016/j.compenvurbsys.2012.06.003.

Phillis, Y.A., V.S. Kouikoglou, and C. Verdugo. 2017. 
“Urban Sustainability Assessment and Ranking of 
Cities.” Computers, Environment and Urban Systems 64: 
254–265. doi:10.1016/j.compenvurbsys.2017.03.002.

Rocchini, D., V. Petras, A. Petrasova, N. Horning, 
L. Furtkevicova, M. Neteler, B. Leutner, and 
M. Wegmann. 2017. “Open Data and Open Source for 
Remote Sensing Training in Ecology.” Ecological 
Informatics 40: 57–61. doi:10.1016/j.ecoinf.2017.05.004.

Rowley, H.V., G.M. Peters, S. Lundie, and S.J. Moore. 
2012. “Aggregating Sustainability Indicators: Beyond 
the Weighted Sum.” Journal of Environmental 
Management 111: 24–33. doi:10.1016/j.jenvman.2012. 
05.004.

Rsei, X.H. 2013. “A Remote Sensing Index for Assessment of 
Regional Ecological Changes.” Zhongguo Huanjing 
Kexue/china Environmental Science 33: 889–897.

Sahoo, M., S. Sahoo, A. Dhar, and B. Pradhan. 2016. 
“Effectiveness Evaluation of Objective and Subjective 
Weighting Methods for Aquifer Vulnerability 
Assessment in Urban Context.” Journal of Hydrology 
541: 1303–1315. doi:10.1016/j.jhydrol.2016.08.035.

Salonen, M., T. Toivonen, J.-M. Cohalan, and O.T. Coomes. 
2012. “Critical Distances: Comparing Measures of Spatial 
Accessibility in the Riverine Landscapes of Peruvian 
Amazonia.” Applied Geography 32: 501–513. doi:10.1016/j. 
apgeog.2011.06.017.

Setti, L., F. Passarini, G. De Gennaro, P. Barbieri, M. 
G. Perrone, M. Borelli, J. Palmisani, et al. 2020. “SARS- 
Cov-2RNA Found on Particulate Matter of Bergamo in 
Northern Italy: First Evidence.” Environmental Research 
188: 109754. doi:10.1016/j.envres.2020.109754.

Shan, W., X. Jin, J. Ren, Y. Wang, Z. Xu, Y. Fan, Z. Gu, 
C. Hong, J. Lin, and Y. Zhou. 2019. “Ecological 
Environment Quality Assessment Based on Remote 

20 J. YU ET AL.

https://doi.org/10.1016/j.jag.2012.01.004
https://doi.org/10.3390/resources7030058
https://doi.org/10.1016/j.gloenvcha.2013.02.002
https://doi.org/10.1016/j.gloenvcha.2013.02.002
https://doi.org/10.1016/j.habitatint.2017.02.005
https://doi.org/10.1016/j.habitatint.2017.02.005
https://doi.org/10.1016/j.healthplace.2017.07.007
https://doi.org/10.3390/rs9080777
https://doi.org/10.1016/j.ecolind.2018.01.029
https://doi.org/10.1016/j.ecolind.2018.01.029
https://doi.org/10.5194/acp-11-9839-2011
https://doi.org/10.1016/j.scitotenv.2019.04.135
https://doi.org/10.1016/j.scitotenv.2019.04.135
https://doi.org/10.1007/s10653-020-00709-w
https://doi.org/10.1080/01431161.2017.1402386
https://doi.org/10.1080/01431161.2017.1402386
https://doi.org/10.1016/j.ecolind.2014.08.026
https://doi.org/10.1016/j.ecolind.2014.08.026
https://doi.org/10.1029/2010JG001486
https://doi.org/10.1029/2010JG001486
https://doi.org/10.1016/j.rsase.2017.08.001
https://doi.org/10.1016/j.jag.2018.05.010
https://doi.org/10.1109/JSTARS.2015.2468594
https://doi.org/10.1016/j.scitotenv.2019.01.407
https://doi.org/10.1016/j.uclim.2017.05.006
https://doi.org/10.1016/j.scitotenv.2004.01.014
https://doi.org/10.1016/j.compenvurbsys.2012.06.003
https://doi.org/10.1016/j.compenvurbsys.2017.03.002
https://doi.org/10.1016/j.ecoinf.2017.05.004
https://doi.org/10.1016/j.jenvman.2012.05.004
https://doi.org/10.1016/j.jenvman.2012.05.004
https://doi.org/10.1016/j.jhydrol.2016.08.035
https://doi.org/10.1016/j.apgeog.2011.06.017
https://doi.org/10.1016/j.apgeog.2011.06.017
https://doi.org/10.1016/j.envres.2020.109754


Sensing Data for Land Consolidation.” Journal of 
Cleaner Production 239: 118126. doi:10.1016/j.jclepro. 
2019.118126.

Shao, Z., N.S. Sumari, A. Portnov, F. Ujoh, W. Musakwa, and P. 
J. Mandela. 2021a. “Urban Sprawl and Its Impact on 
Sustainable Urban Development: A Combination of Remote 
Sensing and Social Media Data.” Geo-Spatial Information 
Science 24: 241–255. doi:10.1080/10095020.2020.1787800.

Shao, Z., W. Wu, and D. Li. 2021b. “Spatio-Temporal- 
Spectral Observation Model for Urban Remote 
Sensing.” Geo-Spatial Information Science 24: 372–386. 
doi:10.1080/10095020.2020.1864232.

Shen, H., X. Li, Q. Chen, C. Zeng, G. Yang, H. Li, and 
L. Zhang. 2015. “Missing Information Reconstruction of 
Remote Sensing Data: A Technical Review.” IEEE 
Geoscience and Remote Sensing Magazine 3: 61–85. 
doi:10.1109/MGRS.2015.2441912.

Shen, H., L. Huang, L. Zhang, P. Wu, and C. Zeng. 2016. 
“Long-Term and Fine-Scale Satellite Monitoring of the 
Urban Heat Island Effect by the Fusion of 
Multi-Temporal and Multi-Sensor Remote Sensed Data: 
A 26-Year Case Study of the City of Wuhan in China.” 
Remote Sensing of Environment 172: 109–125. 
doi:10.1016/j.rse.2015.11.005.

Shen, H., Y. Jiang, T. Li, Q. Cheng, C. Zeng, and 
L. Zhang. 2020. “Deep Learning-Based Air 
Temperature Mapping by Fusing Remote Sensing, 
Station, Simulation and Socioeconomic Data.” 
Remote Sensing of Environment 240: 111692. 
doi:10.1016/j.rse.2020.111692.

Sobrino, J.A., J.C. Jiménez-Muñoz, and L. Paolini. 2004. 
“Land Surface Temperature Retrieval from LANDSAT 
TM 5.” Remote Sensing of Environment 90: 434–440. 
doi:10.1016/j.rse.2004.02.003.

Song, G., Y. Chen, M. Tian, S. Lv, S. Zhang, and S. Liu. 
2010. “The Ecological Vulnerability Evaluation in 
Southwestern Mountain Region of China Based on 
GIS and AHP Method.” Procedia Environmental 
Sciences 2: 465–475. doi:10.1016/j.proenv.2010.10.051.

Soni, M., S. Payra, and S. Verma. 2018. “Particulate Matter 
Estimation Over a Semi Arid Region Jaipur, India Using 
Satellite AOD and Meteorological Parameters.” 
Atmospheric Pollution Research 9: 949–958. doi:10.1016/ 
j.apr.2018.03.001.

Soranno, P.A., E.G. Bissell, K.S. Cheruvelil, S.T. Christel, S. 
M. Collins, C.E. Fergus, C.T. Filstrup, et al. 2015. Building 
a Multi-Scaled Geospatial Temporal Ecology Database 
from Disparate Data Sources: Fostering Open Science 
and Data ReuseGigaScience4: s13742-13015-10067- 
13744. doi:10.1186/s13742-015-0067-4

Tang, L., M. Ruth, Q. He, and S. Mirzaee. 2017. 
“Comprehensive Evaluation of Trends in Human 
Settlements Quality Changes and Spatial Differentiation 
Characteristics of 35 Chinese Major Cities.” Habitat 
International 70: 81–90. doi:10.1016/j.habitatint.2017. 
10.001.

Tao, M., L. Chen, Z. Wang, J. Tao, and L. Su. 2013. “Satellite 
Observation of Abnormal Yellow Haze Clouds Over East 
China During Summer Agricultural Burning Season.” 
Atmospheric Environment 79: 632–640. doi:10.1016/j. 
atmosenv.2013.07.033.

Trinder, J., and Q. Liu. 2020. “Assessing Environmental 
Impacts of Urban Growth Using Remote Sensing.” Geo- 
Spatial Information Science 23: 20–39. doi:10.1080/ 
10095020.2019.1710438.

Valcárcel-Aguiar, B., and P. Murias. 2019. “Evaluation and 
Management of Urban Liveability: A Goal Programming 
Based Composite Indicator.” Social Indicators Research 
142: 689–712. doi:10.1007/s11205-018-1861-z.

Van Puyenbroeck, T., and N. Rogge. 2017. “Geometric 
Mean Quantity Index Numbers with Benefit-Of-The- 
Doubt Weights.” European Journal of Operational 
Research 256: 1004–1014. doi:10.1016/j.ejor.2016.07.038.

Venter Zander, S., T. Chakraborty, and X. Lee. 2021. 
“Crowdsourced Air Temperatures Contrast Satellite 
Measures of the Urban Heat Island and Its Mechanisms.” 
Science Advances 7: eabb9569. doi:10.1126/sciadv.abb9569.

Vogt, J.M., S.L. Watkins, S.K. Mincey, M.S. Patterson, and B. 
C. Fischer. 2015. “Explaining Planted-Tree Survival and 
Growth in Urban Neighborhoods: A Social–ecological 
Approach to Studying Recently-Planted Trees in 
Indianapolis.” Landscape and Urban Planning 136: 
130–143. doi:10.1016/j.landurbplan.2014.11.021.

Wang, C., and H. Zhao. 2016. “The Assessment of Urban 
Ecological Environment in Watershed Scale.” Procedia 
Environmental Sciences 36: 169–175. doi:10.1016/j. 
proenv.2016.09.028.

Wang, C., C. Wang, S.W. Myint, and Z.-H. Wang. 2017. 
“Landscape Determinants of Spatio-Temporal Patterns of 
Aerosol Optical Depth in the Two Most Polluted 
Metropolitans in the United States.” The Science of the 
Total Environment 609: 1556–1565. doi:10.1016/j. 
scitotenv.2017.07.273.

Wei, L., and F. Gao. 2017. “Social Media, Social Integration 
and Subjective Well-Being Among New Urban Migrants 
in China.” Telematics and Informatics 34: 786–796. 
doi:10.1016/j.tele.2016.05.017.

Willis, K.S. 2015. “Remote Sensing Change Detection for 
Ecological Monitoring in United States Protected Areas.” 
Biological Conservation 182: 233–242. doi:10.1016/j. 
biocon.2014.12.006.

Wu, D. 2020. “Spatially and Temporally Varying 
Relationships Between Ecological Footprint and 
Influencing Factors in China’s Provinces Using 
Geographically Weighted Regression (GWR).” Journal 
of Cleaner Production 261: 121089. doi:10.1016/j. 
jclepro.2020.121089.

Xu, H. 2006. “Modification of Normalised Difference Water 
Index (NDWI) to Enhance Open Water Features in 
Remotely Sensed Imagery.” International Journal of 
Remote Sensing 27: 3025–3033. doi:10.1080/ 
01431160600589179.

Xu, H. 2008. “A New Index for Delineating Built-up Land 
Features in Satellite Imagery.” International Journal of 
Remote Sensing 29: 4269–4276. doi:10.1080/ 
01431160802039957.

Xu, H., and T. Zhang. 2013. “Assessment of Consistency in 
Forest-Dominated Vegetation Observations Between 
ASTER and Landsat ETM+ Images in Subtropical 
Coastal Areas of Southeastern China.” Agricultural and 
Forest Meteorology 168: 1–9. doi:10.1016/j. 
agrformet.2012.08.012.

Xu, X., G. Yang, Y. Tan, Q. Zhuang, H. Li, R. Wan, W. Su, 
and J. Zhang. 2016. “Ecological Risk Assessment of 
Ecosystem Services in the Taihu Lake Basin of China 
from 1985 to 2020.” The Science of the Total 
Environment 554-555: 7–16. doi:10.1016/j. 
scitotenv.2016.02.120.

Xu, H., M. Wang, T. Shi, H. Guan, C. Fang, and Z. Lin. 2018. 
“Prediction of Ecological Effects of Potential Population 
and Impervious Surface Increases Using a Remote 

GEO-SPATIAL INFORMATION SCIENCE 21

https://doi.org/10.1016/j.jclepro.2019.118126
https://doi.org/10.1016/j.jclepro.2019.118126
https://doi.org/10.1080/10095020.2020.1787800
https://doi.org/10.1080/10095020.2020.1864232
https://doi.org/10.1109/MGRS.2015.2441912
https://doi.org/10.1016/j.rse.2015.11.005
https://doi.org/10.1016/j.rse.2020.111692
https://doi.org/10.1016/j.rse.2004.02.003
https://doi.org/10.1016/j.proenv.2010.10.051
https://doi.org/10.1016/j.apr.2018.03.001
https://doi.org/10.1016/j.apr.2018.03.001
https://doi.org/10.1186/s13742-015-0067-4
https://doi.org/10.1016/j.habitatint.2017.10.001
https://doi.org/10.1016/j.habitatint.2017.10.001
https://doi.org/10.1016/j.atmosenv.2013.07.033
https://doi.org/10.1016/j.atmosenv.2013.07.033
https://doi.org/10.1080/10095020.2019.1710438
https://doi.org/10.1080/10095020.2019.1710438
https://doi.org/10.1007/s11205-018-1861-z
https://doi.org/10.1016/j.ejor.2016.07.038
https://doi.org/10.1126/sciadv.abb9569
https://doi.org/10.1016/j.landurbplan.2014.11.021
https://doi.org/10.1016/j.proenv.2016.09.028
https://doi.org/10.1016/j.proenv.2016.09.028
https://doi.org/10.1016/j.scitotenv.2017.07.273
https://doi.org/10.1016/j.scitotenv.2017.07.273
https://doi.org/10.1016/j.tele.2016.05.017
https://doi.org/10.1016/j.biocon.2014.12.006
https://doi.org/10.1016/j.biocon.2014.12.006
https://doi.org/10.1016/j.jclepro.2020.121089
https://doi.org/10.1016/j.jclepro.2020.121089
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160802039957
https://doi.org/10.1080/01431160802039957
https://doi.org/10.1016/j.agrformet.2012.08.012
https://doi.org/10.1016/j.agrformet.2012.08.012
https://doi.org/10.1016/j.scitotenv.2016.02.120
https://doi.org/10.1016/j.scitotenv.2016.02.120


Sensing Based Ecological Index (RSEI).” Ecological 
Indicators 93: 730–740. doi:10.1016/j.ecolind.2018.05. 
055.

Yan, Y., C. Wang, Y. Quan, G. Wu, and J. Zhao. 2018. 
“Urban Sustainable Development Efficiency Towards 
the Balance Between Nature and Human Well-Being 
Connotation, Measurement, and Assessment.” Journal 
of Cleaner Production 178: 67–75. doi:10.1016/j. 
jclepro.2018.01.013.

Yang, G., H. Shen, L. Zhang, Z. He, and X. Li. 2015. “A Moving 
Weighted Harmonic Analysis Method for Reconstructing 
High-Quality SPOT VEGETATION NDVI Time-Series 
Data.” IEEE Transactions on Geoscience and Remote Sensing 
53: 6008–6021. doi:10.1109/TGRS.2015.2431315.

Yu, S., B. Yu, W. Song, B. Wu, J. Zhou, Y. Huang, J. Wu, F. Zhao, 
and W. Mao. 2016. “View-Based Greenery: A Three- 
Dimensional Assessment of City Buildings’ Green Visibility 
Using Floor Green View Index.” Landscape and Urban 
Planning 152: 13–26. doi:10.1016/j.landurbplan.2016.04.004.

Yuan, Q., H. Shen, T. Li, Z. Li, S. Li, Y. Jiang, H. Xu, et al. 
2020. “Deep Learning in Environmental Remote Sensing: 
Achievements and Challenges.” Remote Sensing of 
Environment 241: 111716. doi:10.1016/j.rse.2020.111716.

Zachariasz, A., and K. Porada, 2019. Water in Krakow’s 
Gardens, Parks and Areas of Greenery. IOP Conference 
Series: Materials Science and Engineering 603: 052038. 
doi:10.1088/1757-899x/603/5/052038.

Zang, Z., W. Wang, W. You, Y. Li, F. Ye, and C. Wang. 2017. 
“Estimating Ground-Level PM2.5 Concentrations in 
Beijing, China Using Aerosol Optical Depth and 
Parameters of the Temperature Inversion Layer.” The 
Science of the Total Environment 575: 1219–1227. 
doi:10.1016/j.scitotenv.2016.09.186.

Zang, L., F. Mao, J. Guo, W. Gong, W. Wang, and Z. Pan. 2018. 
“Estimating Hourly PM1 Concentrations from Himawari-8 
Aerosol Optical Depth in China.” Environmental Pollution 
241: 654–663. doi:10.1016/j.envpol.2018.05.100.

Zhan, D., M.-P. Kwan, W. Zhang, X. Yu, B. Meng, and 
Q. Liu. 2018. “The Driving Factors of Air Quality Index 
in China.” Journal of Cleaner Production 197: 1342–1351. 
doi:10.1016/j.jclepro.2018.06.108.

Zhang, Z., W. Zhao, and X. Gu. 2014. “Changes 
Resulting from a Land Consolidation Project (LCP) 
and Its Resource–environment Effects: A Case Study 
in Tianmen City of Hubei Province, China.” Land 
Use Policy 40: 74–82. doi:10.1016/j. 
landusepol.2013.09.013.

Zhang, J., Y. Zhu, and F. Fan. 2016. “Mapping and 
Evaluation of Landscape Ecological Status Using 
Geographic Indices Extracted from Remote Sensing 
Imagery of the Pearl River Delta, China, Between 1998 
and 2008.” Environmental Earth Sciences 75: 327. 
doi:10.1007/s12665-015-5158-0.

Zhao, J., G. Ji, Y. Tian, Y. Chen, and Z. Wang. 2018. 
“Environmental Vulnerability Assessment for Mainland 
China Based on Entropy Method.” Ecological Indicators 
91: 410–422. doi:10.1016/j.ecolind.2018.04.016.

Zhou, Z., X. Guo, H. Wu, and J. Yu. 2018. “Evaluating Air 
Quality in China Based on Daily Data: Application of Integer 
Data Envelopment Analysis.” Journal of Cleaner Production 
198: 304–311. doi:10.1016/j.jclepro.2018.06.180.

Zhu, D., T. Chen, Z. Wang, and R. Niu. 2021. “Detecting 
Ecological Spatial-Temporal Changes by Remote Sensing 
Ecological Index with Local Adaptability.” Journal of 
Environmental Management 299: 113655. doi:10.1016/j. 
jenvman.2021.113655.

22 J. YU ET AL.

https://doi.org/10.1016/j.ecolind.2018.05.055
https://doi.org/10.1016/j.ecolind.2018.05.055
https://doi.org/10.1016/j.jclepro.2018.01.013
https://doi.org/10.1016/j.jclepro.2018.01.013
https://doi.org/10.1109/TGRS.2015.2431315
https://doi.org/10.1016/j.landurbplan.2016.04.004
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1088/1757-899x/603/5/052038
https://doi.org/10.1016/j.scitotenv.2016.09.186
https://doi.org/10.1016/j.envpol.2018.05.100
https://doi.org/10.1016/j.jclepro.2018.06.108
https://doi.org/10.1016/j.landusepol.2013.09.013
https://doi.org/10.1016/j.landusepol.2013.09.013
https://doi.org/10.1007/s12665-015-5158-0
https://doi.org/10.1016/j.ecolind.2018.04.016
https://doi.org/10.1016/j.jclepro.2018.06.180
https://doi.org/10.1016/j.jenvman.2021.113655
https://doi.org/10.1016/j.jenvman.2021.113655

	Abstract
	1. Introduction
	2. Study area and data
	2.1. Study area
	2.2. Data

	3. Methods
	3.1. Remote sensing dataset generation for ecological assessment
	3.1.1. Reconstruction and fusion of missing information
	3.1.2. Spatiotemporal fusion of Landsat and MODIS

	3.2. Calculation of the urban ecologically livable environment indicators
	3.2.1. Greenness
	3.2.2. Temperature
	3.2.3. Dryness
	3.2.4. Water-Wetness
	3.2.5. Atmospheric turbidity

	3.3. ELI construction
	3.4. Spatiotemporal characteristics analysis of the ELI

	4. Results
	4.1. Basic dataset generation for the urban ecologically livable environment
	4.2. Weight of each index in the ELI of the WHC area
	4.3. Temporal change in the ecological livability quality in the WHC area
	4.4. Spatial distribution of the ecological livability quality in the WHC area

	5. Discussions
	5.1. What accounts for the spatiotemporal trends of the ELI in the WHC area?
	5.2. The ELI can quickly and comprehensively evaluate the urban ecologically livable environment
	5.3. Some future directions for the ELI

	6. Conclusions
	Acknowledgements
	Data availability statement
	Disclosure statement
	Notes on contributors
	Funding
	ORCID
	References

