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Abstract— Solar-induced chlorophyll fluorescence (SIF) is an1

intuitive and accurate way to measure vegetation photosynthe-2

sis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has3

shown great potential in estimating terrestrial gross primary4

production (GPP), but the discontinuous spatial coverage limits5

its application. Although some researchers have reconstructed6

OCO-2 SIF data, few have considered the uneven spatial and tem-7

poral distribution of the swath-distributed data, which can induce8

large uncertainties. In this article, we propose a spatiotemporal9

constrained light gradient boosting machine model (ST-LGBM)10

to reconstruct a contiguous OCO-2 SIF product (eight days,11

0.05◦), considering the data distribution characteristics. Two12

spatial and temporal constraining factors are introduced to utilize13

the relationships between the swath-distributed OCO-2 samples,14

combining the geographical regularity and vegetation pheno-15

logical characteristics. The results indicate that the ST-LGBM16

method can improve the reconstruction accuracy in the missing17

data areas (R2 = 0.79), with an increment of 0.05 in R2.18

The declined accuracy of the traditional light gradient boosting19

machine (LightGBM) method in the missing data areas is well20

alleviated in our results. The real-data comparison with TRO-21

POspheric Monitoring Instrument (TROPOMI) SIF observations22

also shows that the results of the ST-LGBM method can achieve a23

much better consistency, in both spatial distribution and temporal24

variation. The sensitivity analysis also shows that the ST-LGBM25

can support stable results when using various input combinations26

or different machine learning models. This approach represents27

an innovative way to reconstruct a more accurate globally28

continuous OCO-2 SIF product and also provides references to29

reconstruct other data with a similar distribution.30
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Index Terms— Machine learning, Orbiting Carbon 31

Observatory-2 (OCO-2), solar-induced chlorophyll fluorescence 32

(SIF), spatiotemporal constraint. 33

I. INTRODUCTION 34

PHOTOSYNTHESIS, which is the fundamental and intri- 35

cate physiological process of vegetation, is one of the 36

key factors of the global carbon cycle [1]. Gross primary 37

productivity (GPP), which is the amount of organic carbon 38

fixed by plants per unit of time, represents the photosynthetic 39

carbon uptake of the terrestrial ecosystem [2]. Previous studies 40

have made considerable efforts to quantify terrestrial GPP, and 41

a large number of models have been developed, including data- 42

driven models [3], process-based models [4], and light-use 43

efficiency models [5]. Although these models can acquire mul- 44

tiscale GPP simulations with varied accuracy when combined 45

with remote sensing technology, they are usually impacted 46

by model complexity, parameter uncertainty, and assumption 47

differences [6]. Solar-induced chlorophyll fluorescence (SIF), 48

which is the phenomenon of energy released in a long-wave 49

manner during photosynthesis [7], is a new way to study 50

terrestrial plants. Several studies over the last decade have 51

reported a strong relationship between GPP and SIF, showing 52

the great potential of SIF to estimate GPP with a high degree 53

of accuracy [8], [9]. 54

Numerous hyperspectral satellites have been launched into 55

space over the last decades, making large-scale and global SIF 56

inversion possible. Several SIF products have been released 57

with different spatial and temporal resolutions, such as the 58

products produced by the Scanning Imaging Absorption Spec- 59

troMeter for Atmospheric ChartogrphY (SCIAMACHY) [10], 60

the Global Ozone Monitoring Experiment-2 (GOME-2) [11], 61

the Greenhouse Gases Observing SATellite (GOSAT) [10], the 62

Orbiting Carbon Observatory-2 (OCO-2) [12], and the TRO- 63

POspheric Monitoring Instrument (TROPOMI) [13]. These 64

products have been widely used to monitor vegetation photo- 65

synthesis at different scales [14], [15], based on their various 66

application scenarios and requirements. Among the differ- 67

ent products, the SCIAMACHY (30 × 240 km), GOME-2 68

(40 × 80 km), and GOSAT (10 km) products, which are early 69

SIF products, can provide long-term coverage. However, they 70

cannot meet the needs of vegetation research at a regional scale 71

because they are limited by the coarse resolution and huge 72
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data uncertainties. The TROPOMI instrument on board the73

Sentinel-5 Precursor satellite, which was launched in October74

2017, is the newest instrument that can acquire finer observa-75

tions, with a minimum footprint of 5.5 × 3.5 km2 and a daily76

revisit cycle. Nevertheless, it cannot support vegetation moni-77

toring over a long time scale [16]. The OCO-2 satellite, which78

was launched in July 2014, is the first specialized satellite to79

study atmospheric carbon dioxide from space. Several studies80

have reported a high correlation between OCO-2 SIF and eddy81

covariance (EC) GPP [17]. The OCO-2 satellite provides a82

small spatial footprint that can match the EC flux towers83

better [18]. Specifically, the spectrometer used for SIF retrieval84

provides eight independent cross-track spectra, whose spatial85

resolution (i.e., footprint size) is 1.29 × 2.25 km2 at nadir and86

covers an approximately 10-km-wide swath altogether [19].87

The data collection characteristics of OCO-2 promise a high88

data density with a finer resolution [20] and a better signal-89

to-noise ratio (SNR) [12]. In addition, the Orbiting Carbon90

Observatory-3 (OCO-3) instrument on board the International91

Space Station completed its in-orbit checkout in 2019 [21]92

and continues to provide SIF observations. By using the same93

core grating spectrometer and applying the same techniques as94

OCO-2, but with improvements in many areas [21], OCO-395

can be regarded as a supplement and augment to the OCO-296

data record [22]. All of the above indicates the great potential97

of OCO-2 SIF retrieval in global carbon cycle study [23].98

However, limited by the discontinuous and sparse sampling99

strategy, the OCO-2 SIF product also has a fatal deficiency100

with regard to its spatiotemporal coverage, which cannot be101

ignored. Although the footprint of OCO-2 SIF retrieval is102

less than 2.25-km downtrack, there are massive gaps between103

adjacent swaths, due to the 16-day revisit cycle and sparse104

sampling strategy. The huge gaps mean that the results of105

OCO-2 SIF retrieval are often aggregated to 1◦ × 1◦ monthly106

datasets, losing the high spatial resolution and data density.107

In order to solve this problem, several reconstruction studies108

have been completed in recent years to make better use of109

the OCO-2 SIF product [24], [25], [26], with the aim being110

to reconstruct the swath-distributed OCO-2 samples into a111

continuous spatiotemporal distribution. Different continuous112

products with higher spatiotemporal resolutions have been113

generated, such as CSIF [25] (0.05◦, four days) and GOSIF114

[26] (0.05◦, eight days), which have significantly improved115

the data availability. These products are usually reconstructed116

using a data-driven method, combined with remote sensing117

vegetation indices or reflectance bands and other auxiliary118

data. Due to the advantages in spatial and temporal continuity119

and resolution, these reconstructed products have been widely120

used in vegetation-related studies, including GPP estima-121

tion [27], phenology analyses [28], vegetation stress detection122

[29], and carbon cycle studies [30].123

Although these previous OCO-2 reconstruction works have124

obtained reasonable accuracies, one issue has been ignored,125

which can induce large uncertainties, that is, none of the126

previous studies have considered the uneven spatiotemporal127

distribution of the OCO-2 observations. The sparse sampling128

strategy of the OCO-2 instrument typically leads to severe129

gaps in the data, i.e., each swath only contains 2–3 pixels,130

but the gap between two adjacent swaths covers more than 131

60 pixels even if aggregated to 0.05◦, eight-day gridded data. 132

Hence, there may be no data observed in many regions all 133

year round. In this condition, huge uncertainties exist in these 134

gaps [12], [17], [23] because the relationship trained by the 135

samples from limited orbits may not be suitable for these 136

regions without observations. Furthermore, the uncertainties 137

caused by the uneven sample distribution have not been 138

validated and eliminated. Therefore, there is an urgent need 139

to complete the following two tasks. On the one hand, the 140

prediction accuracy in the areas without valid observations 141

needs to be carefully validated, in both the model training 142

process and the real comparison process. In the model training 143

process, the previous works have selected samples randomly 144

to test, without building a validation method specifically for 145

the missing data areas, which can result in overestimated 146

prediction accuracy in the missing data areas. Therefore, it is 147

necessary to evaluate the accuracy in the areas without valid 148

observations, in order to obtain a more objective evaluation 149

of the SIF reconstruction accuracy. In the real comparison 150

process, previous works have only used the coarse-resolution 151

GOME-2 product with a spatial resolution of 0.5◦, with which 152

it is difficult to prove the reliability of the spatial details in 153

the reconstruction results. However, the TROPOMI instrument 154

with a spatial resolution of 0.05◦ can provide ideal true data 155

as the validation product, to assess the spatial and temporal 156

variation of the reconstructed OCO-2 data. On the other hand, 157

a new approach is urgently needed to meet the needs of 158

improving the reconstruction accuracy and data availability 159

in the areas without valid observations. The previous works 160

have attempted to improve the prediction accuracy based on 161

the overall samples; however, none of them have considered 162

prediction accuracy improvement in the missing data areas as 163

the focus. It is, therefore, necessary to make full use of the 164

limited samples and further explore the relationship between 165

the observations, as the swath-distributed sparse OCO-2 SIF 166

retrievals are the only data that can be used as a reference. 167

In this article, in order to address the abovementioned 168

issues, we present a new spatial and temporal constrained 169

data-driven method to reconstruct the OCO-2 SIF product, 170

considering the spatial and temporal characteristics of the data. 171

The aims of this study were: 1) to develop a spatiotemporal 172

constrained machine learning method to reconstruct OCO-2 173

SIF with a high degree of accuracy while considering the 174

spatial and temporal characteristics of the data; 2) to evaluate 175

the reconstruction uncertainties in the areas without valid 176

observations; and 3) to compare the performance of differ- 177

ent remote sensing inputs and machine learning models and 178

generate a superior global contiguous 0.05◦, eight-day gridded 179

SIF product. 180

II. METHOD 181

In this study, the light gradient boosting machine (Light- 182

GBM) framework was chosen as the main learning model to 183

reconstruct the OCO-2 SIF data. A spatiotemporal constrained 184

Light-GBM model (ST-LGBM) was further developed by 185

designing two spatial and temporal mechanism factors to 186

further utilize the spatial and temporal correlation of the 187
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Fig. 1. Schematics of the ST-LGBM model used to reconstruct the SIF data.

swath-distributed samples. The overall framework of the pro-188

posed ST-LGBM model is shown in Fig. 1.189

A. LightGBM Model190

Machine learning algorithms have been widely used in the191

SIF product generation and have been used to downscale low-192

resolution GOME-2 data into high-resolution data [31], [32],193

[33] and to reconstruct discrete OCO-2 data into continuous194

data [24], [25], [26]. The LightGBM model [34], which is195

a relatively new and efficient tree model, was selected to196

reconstruct the OCO-2 SIF data in this study. The LightGBM197

model was developed based on XGBoost [35], which is an198

implementation of the gradient boosting decision tree (GBDT)199

algorithm [36], using K additive functions to predict the200

output. For a given input dataset with n data instances, the201

predicted output of the i th instance is expressed as202

ŷi = φ(xi ) =
K∑

k=1

fk(xi ), fk ∈ F (1)203

where xi is the data instance, F is the function space of the204

regression trees, and each fk is an independent regression tree.205

The objective function of the LightGBM model is206

L(φ) =
∑

i

l(ŷi , yi) +
∑

k

�( fk) (2)207

where l is the loss function, adopting the root-mean-square208

error (RMSE) in this case; yi is the target value; and �( f ) is209

the regularization term, which is expressed as210

�( f ) = γ T + 1

2
λ�w�2 (3)211

where T is the number of leaf nodes and w is the leaf weights,212

which are calculated by summing the score of all the leaves.213

The process of minimizing the objective function uses the 214

second-order approximation, which can quickly optimize the 215

objective function 216

L(t) =
n∑

i=1

l(yi , ŷ(t−1) + ft (xi)) + �( ft) 217

�
n∑

i=1

[
l(yi , ŷ(t−1)) + gi ft (xi) + 1

2
hi f 2

t (xi)

]
+ �( ft ) 218

(4) 219

where 220

gi = ∂ ŷ(t−1)l
(

yi , ŷ(t−1)
)

(5) 221

hi = ∂2
ŷ(t−1)l

(
yi , ŷ(t−1)

)
(6) 222

representing the first- and second-order gradients on the loss 223

function, respectively. The LightGBM model shares the same 224

analytical solution to the objective function as XGBoost but 225

differs from XGBoost in terms of the split finding algorithm 226

and tree growth strategy, adopting a histogram-based algorithm 227

and a leafwise strategy. 228

The LightGBM model improves the efficiency of XGBoost 229

through two key techniques: mutually exclusive feature 230

bundling (EFB) and gradient-based one-side sampling 231

(GOSS), as shown in Fig. 1. The EFB bundles mutually 232

reduce the number of features utilizing the sparsity of the 233

high-dimensional data, by computing the minimum sum of 234

the nondeterministic polynomial (NP). However, this process 235

requires completing all possible NP cases with a huge calcu- 236

lation, which is called an NP-hard problem [37]. In order to 237

solve this problem, EFB converts the problem of determining 238

what to bundle into a graph coloring problem and uses a 239

greedy algorithm to solve it. It then adds offsets to the original 240
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features, which can be bundled to ensure that the new features241

can be identified. It can avoid unnecessary computation for242

zero feature values, so it takes up very little memory. The243

GOSS filters the data instances according to the data gradient,244

to reduce the size of the input samples. It first selects a245

specific proportion (i.e., a × 100%) of the top data instances246

sorted by the absolute value of the gradient and then randomly247

selects b × 100% in the rest of the data instances and assigns248

a (100 − a)/b × 100% weight to each instance. The GOSS249

can strike a great balance between accuracy and efficiency by250

reducing the samples with a small gradient, without changing251

the data distribution. Due to the high fitting speed, low memory252

usage, and optimized accuracy, the LightGBM model has been253

widely used in classification and prediction problems in many254

fields, even though it has not been open source for a long255

time [38].256

The previous studies based on machine learning algorithms257

attempted to link the discrete [24], [25], [26] data to be258

processed with the continuous explanatory variables for the259

model training and then applied the trained model to generate260

a global product. In this case, the relationship between the261

discrete SIF and explanatory variables is learned using the262

LightGBM model and is finally applied to the continuous263

explanatory variables to obtain the continuous SIF data.264

According to the basic idea, the relationship is established265

as266

SIF = f (NIRv, VPD, AT, PAR, Landc) (7)267

where SIF is the original OCO-2 SIF. NIRv, VPD, AT, PAR,268

and Landc are the explanatory variables, representing the269

near-infrared vegetation index (NIRv), vapor pressure deficit270

(VPD), air temperature (AT), photosynthetic active radiation271

(PAR), and land cover for convenience, respectively. Among272

the variables, SIF is discrete, and NIRv, VPD, AT, PAR, and273

Landc are all continuous. Among them, NIRv approximates274

the reflected proportion by vegetation at the NIR band [39],275

which indicates the canopy structure and plays an important276

role in satellite SIF [40], [41].277

B. Improved ST-LGBM Model278

The methods based on the LightGBM model can only learn279

the relationship between the pairwise OCO-2 samples and280

explanatory data in the same time and space. However, the281

information from other OCO-2 samples in the spatial and282

temporal neighborhoods can also provide a core reference283

for the reconstruction, which is ignored in the LightGBM284

model. Specifically, in this case, an ST-LGBM is proposed to285

better use the information from the OCO-2 data in the spatial286

and temporal neighborhoods. In this situation, two spatial287

and temporal factors, considering the uneven distribution of288

the data samples, are designed and input into the LightGBM289

model as constraints, which are referred to as SIFs and290

SIFt. The spatiotemporal factors are calculated based on the291

OCO-2 original observations to further utilize the information292

from the swath-distributed samples, improve the reconstruction293

accuracy in the missing data areas, and input into the model as294

two additional explanatory variables. Rather than simply using295

Fig. 2. Schematic of spatial factor extraction: (a), (d), and (g) distribution of
SIF and NIRv, where the green pixels or swaths represent the SIF observations
and the blue color in (d)–(g) represents the NIRv; (b) similar pixels only
selected by distance for two target pixel marked as stars in red and yellow
and (h) corresponding spatial factor is shown; (c) similar pixels selected by
our method; (e) and (f) selected pixels are shown for the two target pixels;
and (i) spatial factor result.

inverse distance weighting used in previous studies [42], which 296

have already improved the accuracy in atmospheric contami- 297

nation [43], [44], hydrological [45], [46], climate forecast [47], 298

[48], [49], [50], similar pixels, and vegetation phenology are 299

introduced to further improve the spatiotemporal factors. 300

Since the original observations of OCO-2 are distributed 301

in swaths, the nearest pixels selected solely based on the 302

geographical distance [51] are always distributed in the same 303

swath, as shown in Fig. 2(b). However, this may limit the 304

reconstruction accuracy because the information from other 305

swaths is not considered. An obvious dividing line, as shown 306

in Fig. 2(h), may occur between two swaths in the mapping 307

results because they use different swath pixels. In order to 308

solve the above problems, we propose the idea of similar pixels 309

and use the solid linear correlation between the SIF signal and 310

the NIRv to extract the spatial factor. Since the NIRv is highly 311

correlated with the SIF [52], the NIRv difference can be used 312

to represent the similarity of the SIF. As a result, we sort 313

the nearby pixels of the target pixel in adaptive window size, 314

with an initial window size of 20 × 20, and then increased by 315

20 and limited to 90 × 90. The 30 pixels with the smallest 316

NIRv differences are selected as similar pixels. Thus, the 317

selected similar pixels should show the greatest similarity to 318

the target pixels, compared to those with the shortest distance, 319

and they should distribute in different swaths, as shown in 320

Fig. 2(c). In this way, the dividing line in the calculated spatial 321

factors also disappears, as shown in Fig. 2(i). In order to more 322

reasonably use the information of these similar pixels, the 323

spatial factor of the target point is calculated by the weighted 324

sum of these similar pixels, based on the NIRv difference and 325
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Fig. 3. Schematic of temporal factor extraction: the red points represent the
target point, the yellow points in (a) represent the selected points in previous
work, and the green points in (b) represent the selected points based on the
vegetation phenology.

the geographic distance, according to the following equation:326

SIFs =
∑N

i=1 wsi × w�NIRvi × SIFi × m∑N
i=1 wsi × w�NIRvi × m

(8)327

where i refers to the serial number of the similar points;328

N refers to the sum of the selected similar pixels, which329

in this case is 30; ws refers to the weight of the distance;330

w�NIRv refers to the weight of the NIRv difference; SIF is331

the aggregated OCO-2 SIF observation; and m is the number332

of the observations in the i th pixel333

wsi = 1

ds2
i

(9)334

where ds refers to the spatial distance.335

w�NIRvi = 1

d�NIRvi
(10)336

where w�NIRv refers to the NIRv difference.337

The temporal factor is calculated based on the concept that338

the information from the nearby time can act as a significant339

reference for the target time [53]. Unlike the previous study340

[42] that calculated the temporal factor using the data from341

the prior days [as shown in Fig. 3(a)], we further revised342

this by considering the phenological changes and seasonal343

similarity in vegetation, which has been successfully used344

in the field of vegetation index reconstruction to achieve345

better results [54], [55]. Due to the phenological vegetation346

growth, the vegetation growth in the nearby time phases could347

be quite different from that in the target time. In contrast,348

the information from the same season of different years can349

provide valid information, because of the similar growth status.350

Based on this, we consider the phenological characteristics of351

vegetation to extract the temporal factor, as shown in Fig. 3(b).352

The temporal factor is extracted using the spatial factor in the353

same vegetation growth period from all the years of available354

OCO-2 SIF retrievals, which is expressed as follows:355

SIFt j,yearn
356

=
∑n−1

m=1 SIFs j,yearm
× wtm + ∑N

m=n+1 SIFs j,yearm
× wtm∑n−1

m=1 wtm + ∑N
m=n+1 wtm

357

(11)358

where j refers to the point number; yearn is the current year;359

yearm is one of the remaining years used as a reference;360

N refers to the total number of reference years, which is 7 in361

this case, i.e., from 2014 to 2020; SIFs j,yearm
refers to the SIFs362

value of point j in yearm ; and wtm is the weight of the SIFs, 363

which is calculated by 364

wtm = 1(
yearm − yearn

)2 . (12) 365

The schematics of the ST-LGBM model are presented in 366

Fig. 1. The relationship that we expect to learn is improved 367

as 368

SIF = f (NIRv, VPD, AT, PAR, Landc, SIFs, SIFt) (13) 369

where SIFs and SIFt are the spatial and temporal factors 370

constraining the training process, respectively, and the other 371

variables are the same as those in (7). The nulls in the 372

spatiotemporal factors are filled using the temporal filtering 373

method. 374

In addition to the LightGBM model, a deep belief network 375

(DBN), artificial neural network (ANN), and a cubist regres- 376

sion tree, which are from three different machine learning 377

method types, were also used to prove the applicability of the 378

spatial and temporal constraints in the experiments conducted 379

in this study. 380

III. DATA FOR EXPERIMENT 381

A. OCO-2 SIF Data 382

The daily-corrected SIF data (V10r) were obtained from the 383

NASA Goddard Earth Science Data and Information Services 384

Center [12] (https://disk.gsfc.nasa.gov/datasets/). Data from 385

2015 to 2018 were used in the model training process, and 386

data from September 2014 to December 2019 were recon- 387

structed to produce the spatiotemporally continuous product. 388

It can be found that the sample is dense at low latitudes and 389

sparse at high latitudes, with a larger coverage in 2015 as 390

shown in Fig. S1 (see the Supplementary Material). Only the 391

daily-corrected SIF retrieval at 757 nm was used in this study 392

because it has been shown that SIF at 757 nm has a higher 393

correlation with EC GPP and thus has greater potential in 394

carbon cycle-related applications [56]. Only the nadir mode 395

was used among the three provided observation modes (nadir, 396

target, and glint) since the viewing zenith angle (VZA) for the 397

nadir mode is close to 0◦ but varies for the glint and target 398

modes in both time and space [57]. 399

The new version OCO-2 SIF data (V10r) was applied in this 400

study, which superseded the older version (V8r) in November 401

2020. The new version has added two more data filter fields 402

and improved the bias/offset correction by selecting barren 403

surfaces, based on a more scientific method [58], ensuring 404

the data quality and simplifying the data filter process. Only 405

the retrievals with the quality flag equal to 0 and nadir 406

as the observation mode were selected and aggregated to 407

0.05◦ × 0.05◦ grid cells conducted when there were more than 408

five footprints for each eight-day period. For all the pixels, the 409

aggregation was 0.05◦ × 0.05◦ grid, to minimize the uncer- 410

tainty, according to the suggestion of Frankenberg et al. [12]. 411

B. Explanatory Variable Selection 412

Five variables were selected as explanatory variables, based 413

on photosynthetic intensity determinants and the previous 414
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works [24], [25], [26], [56], [59], which can be divided into415

meteorological data and remote sensing data. The meteo-416

rological data were the PAR, VPD, and AT. All the data417

were obtained from the ModernEra Retrospective Analysis418

for Research and Applications, version 2 (MERRA-2, daily,419

0.5◦ × 0.625◦) reanalysis data. These meteorological data420

were first resampled into 0.05◦ × 0.05◦ and then aggregated421

to an eight-day scale before training, in order to keep the same422

resolution as the target SIF product.423

The remote sensing products were land cover and NIRv424

data. The land-cover product was the Moderate Resolution425

Imaging Spectroradiometer (MODIS) Land Cover Type prod-426

uct (MCD12C1, annual, 0.05◦), which is referred to here427

as Landc for convenience. The NIRv data were extracted428

from the MODIS bidirectional reflectance distribution func-429

tion (BRDF)-corrected reflectance product (MCD43C4 daily,430

0.05◦). The process of extracting the eight-day NIRv was431

calculating the daily NIRv based on (14) [60] and then432

aggregating the daily NIRv into an eight-day scale through433

the maximum synthesis method434

NIRv = ρNIR · ρNIR − ρRED

ρNIR + ρRED
(14)435

where ρNIR represents the near-infrared reflectance and ρRED436

represents the red reflectance. In addition, the seven origi-437

nal MODIS reflectance bands, together with the three other438

most widely used vegetation indices—the normalized differ-439

ence vegetation index (NDVI), enhanced vegetation index440

(EVI), and the leaf area index (LAI)—were also obtained441

as remote sensing drove data for comparison. The LAI442

product (eight days, 0.05◦) was obtained from the National443

Earth System Science Data Sharing Infrastructure of China444

(http://www.geodata.cn). The other vegetation indices were all445

derived and calculated from the MCD43C4 product, using the446

same aggregation method that was used for the EVI.447

C. Validation Data448

To verify the accuracy of the reconstruction processes,449

we compared the reconstruction results with the SIF product450

from TROPOMI. The TROPOMI SIF product, which is only451

available after 2018, is spatially continuous, with a relatively452

fine resolution. We used the TROPOMI SIF product produced453

by Köhler et al. [13] (ftp://fluo.gps.caltech.edu/data/tropomi/),454

which is ungridded retrievals at 740 nm. The data are filtered455

with the thresholds of 0.8 for cloud fraction, 60◦ for view456

zenith angle, 70◦ for solar zenith angle, and 120◦ for phase457

angle, and the grids are averaged from more than five sound-458

ings. In this study, the data from the TROPOMI product in459

2018 were used to validate the consistency and distribution of460

the reconstructed product. Comparisons were conducted using461

both the eight-day data and the annual synthesis data.462

IV. EXPERIMENT AND RESULTS463

A. Simulated Evaluation Results464

Simulated experiments were carried out by separating the465

OCO-2 SIF observations into a training set and a test set, using466

different ways to separate the two kinds of datasets.467

TABLE I

VALIDATION RESULTS ON THE RANDOMLY SELECTED SAMPLES FOR THE
LIGHTGBM AND ST-LGBM MODELS

1) Validation on the Randomly Selected Samples: The ten- 468

fold cross-validation technique is applied to validate the model 469

performance on randomly selected samples [61], i.e., randomly 470

selecting 10% of the samples as the test set, with the others 471

as the training set, and the average accuracy of the ten loops 472

was calculated. The results show that the ST-LGBM model 473

can increase prediction accuracy. As presented in Table I, 474

the accuracy of the LightGBM model results is 0.82 for 475

the training set and 0.81 for the test set, with an RMSE of 476

0.07 W · m−2 · μm−1 · sr−1. When adopting the ST-LGBM 477

method, the prediction statistics are R2 for the training set 478

(0.84) and test set (0.83) and the RMSE for the training set 479

(0.06 W ·m−2 ·μm−1 · sr−1) and test set (0.07 W ·m−2 ·μm−1 · 480

sr−1). The accuracy of the training and test set evenly increases 481

by 0.02, while the RMSE of the training set also decreases by 482

0.01 W · m−2 · μm−1 · sr−1 after adding the spatiotemporal 483

factors. Fig. 4 shows the scatter plots of the test set based 484

on all of the data for 2015–2018 as the sample. Overall, the 485

ST-LGBM model improves the prediction accuracy, in both 486

the quantity validation and scatter distribution. R2 between 487

the predicted SIF and observed SIF increases from 0.81 to 488

0.83 after adding the spatial and temporal constraints, with the 489

same improvement in the regression slope, and the intercept 490

also decreased by 0.01. The prediction results perform better 491

in the high-/low-value part with a wider value range when 492

adopting the ST-LGBM method, with fewer samples having 493

a large range of observed value and prediction value close 494

to zero. It is also apparent that the scatter plot between the 495

predicted SIF and observed SIF is closer to the regression line 496

after adding the spatiotemporal factors. 497

2) Validation on the Region Without Training Samples: 498

The validation on the randomly selected samples can only 499

evaluate the model’s predictive ability, whereas the extrapola- 500

tion problems and uncertainties caused by the uneven sample 501

distribution cannot be evaluated. Based on this, validation 502

on the region without training samples, which is aimed at 503

testing the model performance on the samples out of the 504

training sample space, is conducted according to the idea of 505

randomly selecting some swaths as the test set and using the 506

other swaths as the training set. As shown in Fig. 5, the 507

global scope was divided into 23 regions to extract swaths for 508

Authorized licensed use limited to: Wuhan University. Downloaded on November 16,2022 at 13:22:03 UTC from IEEE Xplore.  Restrictions apply. 



SHEN et al.: SPATIOTEMPORAL CONSTRAINED MACHINE LEARNING METHOD FOR OCO-2 SIF RECONSTRUCTION 4413817

Fig. 4. Scatter plots of the validation results based on the randomly selected samples: (a) LightGBM and (b) ST-LGBM. The red line is the 1:1 line, and
the black line is the regression line.

Fig. 5. Distribution of the globally divided regions. The strips are the OCO-2 data for 2015137, and the background is the land-cover type in 2015. The
parallelograms filled with null values represent the divided regions, and the parallelograms filled with dark blue represent the selected region for testing. The
yellow swaths are the swaths selected for testing by the selected region, while the red ones are the remaining swaths.

validation on the region without training samples, according509

to the mean distance between two adjacent swaths, which can510

form a region similar to the size of the data gaps without 511

valid observations. The division of the regions is beneficial 512
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Fig. 6. R2 between the observed and predicted SIF for (a) LightGBM model and (b) ST-LGBM model. The background is the max NIRv in 2015.

TABLE II

VALIDATION RESULTS ON THE REGIONS WITHOUT TRAINING SAMPLES

FOR THE LIGHTGBM AND ST-LGBM MODELS

to the batch operation of multiscene images by reducing the513

manual correction process and can equalize the sample sizes514

of the training and test sets. The 2015057 data were selected to515

represent the average number of swaths, and the background516

was the land-cover type in 2015. All the swaths in the specific517

region (shown as the dark blue region) were selected as the test518

set (shown as the yellow swaths), and the other swaths made519

up the training set (shown as the red swaths), to simulate the520

test set ability in the areas without valid observations.521

The results show that the accuracy is significantly decreased522

in the areas without valid observations, while the spatial523

and temporal constraints can clearly improve the predictive524

ability of the model and reduce the uncertainty in the areas525

without valid observations. As shown in Tables I and II,526

although the training accuracy of the validation on the region527

without training samples is similar to that of the validation528

on the randomly selected samples, a significant decline can529

be observed in the accuracy of the test set in the validation530

on the region without training samples in all four years when531

using the LightGBM model. R2 for the test set decreases from532

0.81 to 0.74, which is a difference of 0.07. At the same time,533

when using the ST-LGBM model, R2 for the test set only534

decreases by 0.04 when compared with the validation results535

on the randomly selected samples, from 0.83 to 0.79, which536

is much less than the decrease in the results when using the 537

LightGBM model. The comparison between the two validation 538

methods indicates that the prediction accuracy is overestimated 539

through validation on the randomly selected samples, leading 540

to huge uncertainties in the prediction results in the areas 541

without valid observations. In contrast, the spatiotemporal 542

constraints imposed on the LightGBM model (i.e., the spatial 543

and temporal factors) can reduce the prediction uncertainty in 544

the missing data areas. According to Table II, when comparing 545

the average accuracy of the validation on the region without 546

training samples, R2 increases from 0.82 to 0.83 in the training 547

set and from 0.74 to 0.79 in the test set after adding the 548

spatiotemporal constraints. The accuracy for the test set is 549

improved by 0.05, which is much more than 0.01 for the 550

training set, indicating that the spatiotemporal constraints can 551

reduce the uncertainty in the areas without valid observations. 552

Swaths in every region were successively selected as the 553

test set for validation through the validation on the region 554

without training samples. R2 for the test set was calculated 555

and is displayed in the region position in Fig. 6, taking 556

0.1/0.05 as the grading of the layered coloring, with the max 557

NIRv distribution in 2015 as the background. The results 558

show that the prediction accuracy in areas with small sample 559

size improves significantly when using the ST-LGBM model. 560

Fig. 6(a) shows the distribution of R2 when using the Light- 561

GBM model, which ranges from 0.29 to 0.82. When using 562

the LightGBM model, R2 in the areas with small sample size 563

(i.e., regions 1–4, 23) is relatively low, due to the fact that 564

there is less related information from other swaths providing 565

a reference in the training process. In contrast, the regions 566

with a large sample size (i.e., regions 5–8 and 11–21) have 567

a closer relationship with the neighborhood, so the prediction 568

accuracy is relatively high because the other swaths on the 569

same continent and with the same characteristics provide a 570

reference. After adding the spatial and temporal constraints to 571

the LightGBM model, R2 for the ST-LGBM model with the 572

test set is generally improved, i.e., every strip is improved to 573

a greater or lesser degree, as shown in Fig. 6(b). R2 improves 574

to the range of 0.36–0.86 after adopting the ST-LGBM model, 575
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Fig. 7. Comparison between the annual average data from the TROPOMI SIF product and the predicted SIF obtained using the LightGBM (a) and ST-LGBM
(b) models. The black line represents the regression line, and the red line represents the 1:1 line in the scatter plot.

with a maximum difference of 0.08 and an average of 0.05.576

In summary, it can be concluded that the spatial and temporal577

constraints reduce the uncertainties and solve the extrapolation578

problems out of the training sample space to a certain extent.579

B. Real-Data Comparison With TROPOMI Data580

A real-data comparison was conducted based on real data581

from the TROPOMI SIF product, including quantitative analy-582

sis and qualitative comparison.583

1) Quantitative Comparison: R2 between the TROPOMI584

product and the reconstructed result was extracted for the585

quantitative comparison. The annual average SIF for the586

2018 data was aggregated and plotted in scatter plots to587

reduce the error caused by sensor differences, as shown in588

Fig. 7, while the scatter between the original OCO-2 SIF and589

TROPOMI SIF is shown in Fig. S2(a), see the Supplemen-590

tary Material. The results show that the ST-LGBM method591

can improve the spatial consistency of the reconstruction592

results with TROPOMI data and reduce the proportion of593

overestimations or underestimations of samples. Fig. 7 shows594

that the reconstruction results obtained using ST-LGBM are595

more accurate than those obtained using LightGBM in R2.596

In Fig. 7(a), R2 between the TROPOMI product and the597

predictions obtained using the LightGBM model is 0.89, with598

overestimations or underestimations when TROPOMI SIF with599

a large value range while predicted as zeros. In contrast, R2
600

between the TROPOMI product and the predictions obtained601

using the ST-LGBM model increased to 0.91, with a more602

concentrated near the regression line distribution, and the603

number of overestimation and underestimation samples is also604

alleviated.605

To further understand the temporal variations in spatial606

correlation, R2 between the TROPOMI SIF product and607

the three kinds of OCO-2 SIF signals (i.e., the original608

observations and the predictions obtained using LightGBM/609

ST-LGBM) was calculated per scene throughout 2018, and the610

R2 time series is shown in Fig. 8. The results show that the 611

reconstruction product reduces the impact of the data quality 612

and distribution and maintains or even improves the correlation 613

between the multisource remote sensing SIF data. R2 between 614

the OCO-2 observation and TROPOMI is time-varying for 615

the number, quality, and distribution of observations varied 616

with time. The reconstruction process balanced the uneven 617

amount and distribution of OCO-2 original observations so 618

that there is a relatively high and stable correlation coefficient 619

with TROPOMI SIF. The relatively low R2 between two SIF 620

retrievals is due to the relatively low data quality in early 621

2018 and the relatively fewer data samples and concentrated 622

distribution at the end of 2018. The trends of R2 between 623

TROPOMI SIF and the reconstruction results are roughly 624

consistent with the original OCO-2 SIF observations except 625

for the scenes with very few valid observations such as 626

49 and 313, suggesting that the relationship between the 627

two datasets does not change after the data reconstruction. 628

There are sudden drops in the original OCO-2 observations, 629

due to the difference in the data amount and distribution, 630

such as the drop between days 305 and 321. Meanwhile, R2
631

obtained with the reconstructed product is smoother than that 632

of the original observations, especially from days 305 to 321, 633

indicating that the reconstruction reduces the impact of sample 634

size and distribution. In most scenes, the reconstructed result 635

obtained using the LightGBM model has a higher consistency 636

with the TROPOMI SIF than the OCO-2 observations, with 637

a maximum difference of 0.36, while there are also six 638

scenes whose R2 is lower than the OCO-2 observations, with 639

a maximum difference of 0.05. This phenomenon suggests 640

that the reconstruction process using the LightGBM model 641

improves the consistency between the SIF from two datasets in 642

general, and however, there is no guarantee that the correlation 643

between the two datasets will be maintained in all cases when 644

using the LightGBM model. When adopting the ST-LGBM 645

model, R2 is always higher than the original OCO-2 retrieval, 646

with an improvement of 0.13 on average and a maximum 647
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Fig. 8. R2 time series between the TROPOMI SIF product and the observed SIF signal and the reconstructed SIF obtained using the LightGBM/ST-LGBM
model for 2018. The orange bar chart on the subaxis represents the sample size of the original OCO-2 observations in each scene.

improvement of 0.42. This indicates that adding the spa-648

tiotemporal constraints to the LightGBM model maintains the649

correlation between the multisource remote sensing SIF data.650

Compared with the reconstructed results obtained using the651

LightGBM model, the ST-LGBM model improves R2, with a652

range from 0.01 to 0.09 and an average improvement of 0.04.653

The main improvement is in the winter, i.e., day after 300,654

for there are few observations in the high latitude areas in the655

Northern Hemisphere, providing little reference to the model656

training process. While the spatiotemporal factors can get valid657

information from the spatiotemporal distribution of SIF data,658

this improves prediction accuracy. Note that the TROPOMI659

product is the SIF at 740 nm and the reconstructed results are660

the SIF at 757 nm, and the independent random error leads to661

the relatively low R2.662

R2 increases in both situations after adding the spatial663

and temporal constraints, even though the errors have been664

reduced during the annual averaging process, suggesting that665

the ST-LGBM model steadily improves the consistency with666

SIF data from a different sensor.667

2) Qualitative Comparison: For the OCO-2 SIF retrievals668

distributed in swaths, which provide no spatial patterns for669

SIF, a spatial distribution comparison of the reconstructed SIF670

is particularly important. The four kinds of SIF signals for671

2018, i.e., predicted SIF obtained using the two models, 1◦
672

OCO-2 SIF, and TROPOMI SIF, were aggregated into the673

annual maximum and mean values. The comparison between674

the reconstructed SIF, OCO-2 original SIF, and TROPOMI SIF675

is shown in Figs. 9 and 10.676

The spatial patterns of the four kinds of SIF products show677

similar distributions, but there is a significant underestimation678

phenomenon in the areas with a relatively high SIF value679

when using the LightGBM model, which is alleviated when680

using the ST-LGBM model. Fig. 9(1) shows that the dis-681

tribution of the maximum and minimum values is roughly682

the same in the three global maps; however, the prediction 683

obtained using the LightGBM model is lower than in the 684

other three maps in the areas with a high SIF value, in many 685

areas, especially in the Northern Hemisphere, North America, 686

Europe, Africa, China, and Southeast Asia. Machine learning 687

models are known to have extrapolation problems, especially 688

for high- or low-value regions. The reconstruction results 689

also faced extrapolation problems of Northern Russia and 690

dryland in the west U.S. and northwest China due to the 691

fewer samples in these areas, as shown in Fig. S1, see the 692

Supplementary Material, while the spatiotemporal constraints 693

can alleviate the problems, making the reconstruction SIF 694

more similar with the original OCO-2 SIF. Three typical 695

regions are selected and shown in Fig. 9(2)–(4), located in 696

Europe, North America, and part of China. The three regions 697

are all in the high latitude northern hemisphere, resulting 698

in vegetation growth and fluorescence emission seasonally 699

varying. The SIF value was higher in the vegetation growth 700

season, while almost close to zero in the non-growing season. 701

From Fig. 9(b), the reconstructed SIF obtained using the 702

LightGBM model is faced extrapolation problems and is sig- 703

nificantly underestimated in the three high-value regions, while 704

the underestimation phenomenon is alleviated after adding the 705

spatiotemporal constraints, as shown in Fig. 9(c). Compared 706

to the two predicted products, the predicted results using ST- 707

LGBM are generally higher in the high value of the three areas. 708

It can be seen that the spatial patterns of reconstruction data 709

using ST-LGBM are more similar to the TROPOMI product 710

and the original OCO-2 SIF product than those obtained 711

using the LightGBM model, due to the underestimation being 712

alleviated. The underestimation using the LightGBM model 713

can be attributed to fewer high-value samples in the sam- 714

ple space. Meanwhile, the spatiotemporal factors, calculated 715

based on the real SIF observations, participate in the training 716

process, thereby providing reference and constraints to the 717
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Fig. 9. Annual mean value distribution of the four types of SIF data. (a) 1◦ OCO-2 SIF aggregated directly. (b) Predicted SIF value pattern obtained using
the LightGBM model. (c) Predicted SIF value pattern obtained using the ST-LGBM model. (d) TROPOMI SIF. Considering the different types of data, the
three kinds of OCO-2 SIF signals use the same absolute hierarchical notation system, while the TROPOMI SIF displays a stretched effect to obtain a more
saturated effect. Row (1) displays the global pattern, row (2) displays Europe, row (3) displays North America, and row (4) displays part of China.

reconstruction process. When using the ST-LGBM model, the718

prediction results are more similar to the spatial pattern of the719

TROPOMI and original OCO-2 products.720

Since the mean value pattern is averaged over the whole721

year, the extrema will tend toward the median values. As a722

result, the maximum synthesis method has a stronger expres-723

siveness for overestimation. According to Fig. 10, the same724

conclusion can be drawn from the annual maximum SIF725

distribution as the mean SIF distribution.726

C. Sensitivity Analysis for the Explanatory Variables727

To analyze the sensitivity of the explanatory variables,728

we compared the accuracy of the training set when removing729

a certain explanatory variable. The results obtained using both730

models are included in the analysis. Note that, this experiment731

is designed only to compare the sensitivity of input data using732

the same method, rather than to compare the contribution of733

input data between different methods.734

As shown in Table III, after removing a certain explanatory735

variable, there is a sudden drop in R2 when using the Light-736

GBM model, whereas R2 stays relatively stable when any737

variable is removed when using the ST-LGBM model. In the738

reconstruction experiment using the LightGBM model, NIRv739

is the most sensitive explanatory variable in the five inputs.740

R2 decreases from 0.82 to 0.60 when removing the NIRv,741

TABLE III

R2, RMSE, AND R2 REDUCTION AFTER REMOVING ONE VARIABLE

with a difference of 0.22, and the RMSE increases from 742

0.07 to 0.10 W · m−2 · μm−1 · sr−1, with a difference of 743

0.03 W · m−2 · μm−1 · sr−1. The AT, Landc, and VPD are the 744

least sensitive of the five explanatory variables, the removal of 745

which only reduces R2 by 0.01, without changing the RMSE. 746

The PAR also has little effect, and when removed, R2 is 747

reduced by 0.02. In comparison, the most sensitive variable is 748

NIRv and SIFs when using the ST-LGBM model, which, when 749

removed, decreases R2 from 0.84 to 0.83, without changing 750

the RMSE. The other variables have nearly no impact on the 751
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Fig. 10. Annual maximum value distribution for the four types of SIF data. (a) 1◦ OCO-2 SIF aggregated directly. (b) Predicted SIF value pattern obtained
using the LightGBM model. (c) Predicted SIF value pattern obtained using the ST-LGBM model. (d) TROPOMI SIF. Among the different types of data, the
three kinds of OCO-2 SIF signals use the same absolute hierarchical notation system, while the TROPOMI SIF displays a stretched effect in order to obtain
a more saturated effect. Row (1) displays the global pattern, row (2) displays Europe, row (3) displays North America, and row (4) displays part of China.

reconstruction results, and after these variables are removed,752

both R2 and RMSE do not change.753

This indicates the spatial factor can roughly represent the754

information expressed by NIRv and keep the model stable755

even if the NIRv is missing. The spatial and temporal con-756

straints represent the useful information from variables, reduce757

the variable sensitivity, improve the prediction robustness758

of the model, and further guarantee the prediction accuracy759

in the case of missing variables or noise.760

D. Applicability Analysis761

Applicability analyses are designed to evaluate the gen-762

eralizability of the proposed spatial and temporal con-763

straints, including comparing different remote sensing inputs764

or machine learning models.765

1) Impacts of Different Remote Sensing Inputs: To evaluate766

the applicability of the spatial and temporal constraints in dif-767

ferent remote sensing inputs, we compared the results obtained768

with seven MODIS reflectance bands and four vegetation769

indices (i.e., EVI, NDVI, LAI, and NIRv) with the other770

explanatory variables (i.e., VPD, PAR, AT, and Landc) as771

inputs. Since validation on the region without training samples772

can more accurately reflect the predictive ability of the model,773

only validation on the region without training samples was774

TABLE IV

VALIDATION RESULTS ON THE REGION WITHOUT TRAINING SAMPLES

FOR DIFFERENT REMOTE SENSING INPUTS

used to compare the different inputs. Only the data from 775

2015 were used because the sample coverage is largest in 776

2015, as shown in Fig. S1 (see the Supplementary Material), 777

and the results are similar in the four years, as mentioned 778

above. 779

As shown in Table IV, the spatial and temporal constraints 780

can improve the predictive ability of the reconstruction model 781

and provide relatively stable results when using different 782

remote sensing inputs. In addition, the NIRv performs the 783

best in the OCO-2 SIF reconstruction task. The training set 784
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R2 of the five remote sensing input combinations is 0.84785

for reflectance and EVI, 0.83 for NIRv, 0.80 for NDVI, and786

0.75 for LAI, and the test set R2 is 0.69 for NIRv, 0.68787

for EVI, 0.66 for reflectance, 0.63 for NDVI, and 0.53 for788

LAI. The accuracy obtained using the LightGBM model shows789

a sudden drop in the missing data areas, no matter which790

input is selected, and the performance is EVI > NIRv >791

reflectance > NDVI > LAI. After adding the spatial and792

temporal constraints to the LightGBM model, the accuracy793

obtained using the ST-LGBM model shows the same trends:794

the R2 for the training set is 0.86 for reflectance and EVI,795

and 0.85 for the NIRv and NDVI, and LAI, and R2 for796

the test set is 0.73 for NIRv, 0.72 for reflectance, EVI, and797

NDVI, and 0.71 for LAI. The spatio-temporal constraints798

increase the R2 for the test set by 0.04 for NIRv and EVI,799

0.06 for reflectance, 0.09 for NDVI, and 0.18 for LAI. The800

worse the result obtained using the LightGBM model, the801

more improved the result is after adding the spatiotemporal802

constraints that the impacts of different remote sensing inputs803

are weakened by the spatiotemporal constraints, which agrees804

with the conclusion drawn in Section IV-C. Although the805

spatiotemporal constraints improve the performance of all the806

remote sensing inputs, the NIRv still obtains the best results.807

A deeper comparison between EVI, NIRv, seven MODIS808

reflectance bands, and the NIR band is shown in Table S I809

(validation results based on the randomly selected samples)810

and Table S II (validation results on the region without training811

samples), see the Supplementary Material. Both EVI and NIRv812

are used to extract spatial and temporal factors, the NIRv-813

based factors are only used combined with NIRv, and the other814

inputs are all used with EVI-based factors. NIRv and NIRv-815

based spatiotemporal factors are finally selected to reconstruct816

SIF since the combination has the best performance for the817

reconstruction task in the validation on the region without818

training samples.819

2) Impacts of Different Machine Learning Models: In order820

to further confirm the applicability of the proposed spatiotem-821

poral constraints, we also compared the results obtained using822

other machine learning algorithms. Three models from three823

different machine learning categories (deep learning models,824

neural networks, and tree models) were selected for compari-825

son, i.e., DBN, ANN, and Cubist, as shown in Table V.826

Table V shows that the spatial and temporal constraints can827

improve the accuracy for the regions without valid observant-828

ions, and when changing the reconstruction model, the spa-829

tiotemporal constraints remain effective, but among all the830

models, the LightGBM model performs the best. As can be831

seen in Table V, in the validation on the randomly selected832

samples, R2 for the test set is 0.79 (DBN), 0.77 (ANN), 0.80833

(Cubist), and 0.82 (LightGBM). After adding the spatiotempo-834

ral constraints, R2 for the test set is 0.82 (DBN), 0.81 (ANN),835

0.82 (Cubist), and 0.84 (LightGBM). R2 of these models is836

improved by 0.03 (DBN), 0.02 (Cubist), 0.04 (ANN), and837

0.02 (LightGBM). In the validation on the region without838

training samples, R2 for the test set is 0.69 for all the models,839

and when using the spatial and temporal constrained learning840

method, R2 for the test set is increased to 0.73 for DBN, ANN,841

and Cubist, and 0.74 for LightGBM, which are improvements842

TABLE V

R2 AND RMSE COMPARISON WHEN USING DIFFERENT MACHINE

LEARNING MODELS IN A SIMULATED EXPERIMENT

of 0.04 (DBN, ANN, and Cubist) and 0.05 (LightGBM). 843

No matter which learning model is selected, the results are 844

roughly the same: the accuracy for the missing data areas drops 845

significantly, but the spatiotemporal constraints can alleviate 846

the decrease. Overall, the ST-LGBM model performs the best 847

in the OCO-2 SIF reconstruction process. 848

V. DISCUSSION 849

The OCO-2 SIF retrieval has a fine footprint and can fit 850

EC flux tower GPP well, making it one of the satellite SIF 851

products with the most potential among the current products. 852

Nevertheless, the spatial discontinuity (i.e., the gaps between 853

adjacent swaths are 30 times more than the width of the 854

swaths) limits the application of the product. Against this back- 855

ground, we propose a reconstruction method coupling a geoe- 856

cological mechanism (i.e., spatial and temporal factors) and 857

a machine learning model (i.e., LightGBM), to improve the 858

reconstruction accuracy by considering the data distribution 859

and vegetation growth cycle. The spatiotemporal constraints 860

improve the reconstruction accuracy in the areas without 861

valid observations (Table II and Fig. 6), reduce the model 862

overestimation and underestimation (Figs. 7, 9, and 10), and 863

increase the correlation with the TROPOMI SIF product in 864

both quality (Figs. 9 and 10) and quantity (Figs. 7 and 8), with- 865

out additional data input. The spatially continuous SIF product 866

with a 0.05◦, eight-day resolution covering a time series from 867

September 2014 to December 2019 is freely available at 868

http://rs-pop.whu.edu.cn/#/. The advantages mentioned above 869

reduce product uncertainty and improve product applicability, 870

leading to the product having great potential in many fields, 871

such as agriculture, forestry, climate change, and carbon cycle 872

studies. 873

There are big uncertainties in the reconstruction results 874

obtained using the traditional machine learning methods in 875

areas without valid observations (Table II and Fig. 6), limiting 876

the application of the reconstructed products. The reconstruc- 877

tion accuracy in the missing data areas decreases significantly, 878

as shown in the validation results on the region without 879

training samples and the spatial distribution comparison. In the 880

validation on the region without training samples, the regions 881

with a small sample size have a relatively low R2 because 882
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of the reduction in the related information from the other883

swaths of the more complex SIF signal. There is also an884

underestimation phenomenon in the areas with high SIF val-885

ues, due to the sample distribution in the sample space and886

lack of geoecological mechanism constraint. In summary, the887

uncertainties in the missing data areas are due to the fact that888

the implicit relationship between the swath-distributed data is889

not mined and applied in the learning process so the models890

have relatively low portability. Therefore, a new approach is891

urgently needed in the reconstruction task.892

The coupling of the mechanism and machine learning893

method has shown an advantage, due to the complementary894

strengths of the two processes [62]: the mechanism benefits895

from the relatively stable model, rigorous logic, and explicable896

results; and the machine learning model benefits from the897

high efficiency, strong expansibility, and the fact that no prior898

knowledge is required. The coupling of a mechanism and899

machine learning method has been widely used in the remote900

sensing field, including atmospheric [42] and hydrological901

[45] remote sensing. However, there have been relatively few902

studies of vegetation based on remote sensing, especially in903

the SIF product generation. Due to the convenience of the904

machine learning models and the complexity of the vegetation905

process mechanism, most of the SIF product generation studies906

have been based only on machine learning models [24], [25],907

[26], [31], [32]. Although previous works have generated an908

SIF product using a geoecological mechanism [63], we are not909

aware of any studies that have attempted to integrate a geoeco-910

logical mechanism and machine learning. The spatiotemporal911

factors considered in this study are a preliminary attempt to912

combine the geoecological mechanism and machine learning,913

with the aim being to combine the respective advantages of914

the two processes, to make up for their shortcomings. The915

spatial factor is the average weighted by the points with the916

smallest NIRv difference with the target point, according to917

the two weights (i.e., the NIRv difference and geographical918

distance). The spatial factor mines the vegetation similarity919

information provided by the pixels with a similar vegetation920

index value and geographical similarity, based on Tobler’s921

first law [51]. The temporal factor introduces the vegetation922

phenology, using the spatial factor over the years to calculate923

this, i.e., all of the spatial factors are averagely weighted924

using the temporal distance. The spatiotemporal factors are925

calculated from the SIF values of the spatial and temporal926

neighbors, reflecting the true level of SIF and providing the927

geographic and biophysical constraints for machine learning,928

which can improve accuracy and reduce overestimation.929

Since there already are some works that tried to reconstruct930

the OCO-2 SIF and get continuous products, it is important931

to compare our results with them. Actually, the result of932

LightGBM in this article is exactly the training method similar933

to the previous studies [25], [26], and the comparison between934

ST-LGBM and LightGBM is a fair comparison to prove the935

advantage of our proposed spatial and temporal constraints that936

are training using the same model with and without spatial937

and temporal factors. A similar accuracy can also be obtained938

between LightGBM and previous products when compared939

with TROPOMI SIF (Figs. 7 and S2 see the Supplementary940

Material). The ST-LGBM can further improve the correlation 941

between reconstruction SIF and TROPOMI SIF and get a 942

product with a more detailed spatial distribution (Fig. S3, see 943

the Supplementary Material). The direct comparison between 944

our ST-LGBM and previous products would be impacted by 945

many factors such as different models and inputted explanatory 946

variables. From the literature, previous works are all only 947

validated on the randomly selected samples with R2 around 948

0.79, our method can improve the accuracy by about 0.04. 949

We believe that our product can also perform much better 950

when validating on the area without samples, just like com- 951

pared with LightGBM, because combining the spatiotempo- 952

ral constraints and the machine learning model can provide 953

a reference in the areas without valid observations. When 954

applying the reconstructed SIF product to monitor specific 955

drought events, the results further support that the ST-LGBM 956

can respond better to drought events than using LightGBM 957

(Figs. S4 and S5, see the Supplementary Material), in the 958

period with large interannual variations in the SIF value. 959

Further work needs to be conducted in the four following 960

aspects. First, much could be done in the mechanism constraint 961

construction process, such as synthesizing multisource SIF 962

data. The mechanism constraints in this study were constructed 963

based only on the original OCO-2 product, without considering 964

the multisource SIF information from other datasets that are 965

spatially continuous, such as TROPOMI or GOME-2. Second, 966

only the effect of remote sensing data was compared in this 967

study, and other meteorological products or parameters, such 968

as soil moisture, evapotranspiration, or land surface temper- 969

ature (LST), could be considered in the follow-up research. 970

Third, although the reconstruction process can improve the 971

spatial resolution of the OCO-2 SIF product from 1◦ to 0.05◦, 972

the resolution is still not sufficient for small-scale vegetation 973

research. This study mainly verified the effectiveness of the 974

approach of coupling a geoecological mechanism and machine 975

learning so that the product was only reconstructed at the 976

same resolution as the previous works [24], [25], [26]. Further 977

research could attempt to reconstruct the SIF product into a 978

finer resolution using input data with a higher resolution [33], 979

[64], such as 1 km. Finally, many recent studies have shown 980

that the SIF at the photosystem level should be reconstructed at 981

the canopy level to gain a stronger correlation with GPP [65]. 982

However, the reconstruction process in this study was the same 983

as in the previous works [24], [25], [26], i.e., the original 984

OCO-2 SIF retrieval was used, without correcting the canopy 985

level. A comparison between an SIF product with or without 986

canopy-level correction would be worthwhile. Many correction 987

algorithms have been developed in previous research [66], 988

which could be directly used in the reconstructed SIF product 989

in follow-up research. 990

VI. CONCLUSION 991

In this study, OCO-2 SIF retrievals were reconstructed using 992

a spatial and temporal constrained LightGBM model (ST- 993

LGBM), and a global 0.05◦, eight-day resolution SIF product 994

with high accuracy was generated. The improved spatial and 995

temporal factors were designed to utilize the relationships 996

from the limited data samples by introducing similar pixels 997
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and vegetation phenology, which were input into the Light-998

GBM model as spatial and temporal constraints. Simulated999

experiments, including validation on the randomly selected1000

samples and validation on the region without training samples,1001

and a real-data comparison with the TROPOMI product, were1002

conducted to evaluate the reconstruction accuracy. The main1003

conclusions are given as follows.1004

1) The comparison between the two validation methods of1005

simulation experiments indicated enormous uncertainty1006

in the areas without valid SIF observations. R2 was1007

0.82 for the training set and 0.81 for the test set when1008

validating on the randomly selected samples, while R2
1009

for the test set dropped to 0.74 and the training set1010

accuracy remained the same when validating on the1011

region without training samples. The prediction accuracy1012

in areas with a small sample size significantly decreased1013

because there was less related information from the other1014

swaths providing references in the training process.1015

2) The spatial and temporal constraints can improve the1016

prediction accuracy, improve the robustness of the1017

OCO-2 reconstruction results, and reduce the variable1018

sensitivity. The ST-LGBM model reduces the influence1019

of the data quality and distribution on the reconstruction1020

process and solves the problem of model prediction1021

in the missing data areas, to a certain extent. The1022

consistency with the SIF data from a different sensor was1023

also improved in the qualitative and quantitative compar-1024

ison, by alleviating the underestimation by adopting the1025

ST-LGBM model.1026

3) The sensitivity and applicability analyses showed that1027

the spatial and temporal constraints can support rela-1028

tively stable results when using various input combina-1029

tions or different machine learning models. The spatial1030

and temporal factors reduce the model sensitivity to1031

the other inputs and can obtain stable results when1032

using different input combinations or different machine1033

learning models.1034
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