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Abstract— Solar-induced chlorophyll fluorescence (SIF) is an
intuitive and accurate way to measure vegetation photosynthe-
sis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has
shown great potential in estimating terrestrial gross primary
production (GPP), but the discontinuous spatial coverage limits
its application. Although some researchers have reconstructed
OCO-2 SIF data, few have considered the uneven spatial and tem-
poral distribution of the swath-distributed data, which can induce
large uncertainties. In this article, we propose a spatiotemporal
constrained light gradient boosting machine model (ST-LGBM)
to reconstruct a contiguous OCO-2 SIF product (eight days,
0.05°), considering the data distribution characteristics. Two
spatial and temporal constraining factors are introduced to utilize
the relationships between the swath-distributed OCO-2 samples,
combining the geographical regularity and vegetation pheno-
logical characteristics. The results indicate that the ST-LGBM
method can improve the reconstruction accuracy in the missing
data areas (R?> = 0.79), with an increment of 0.05 in R2.
The declined accuracy of the traditional light gradient boosting
machine (LightGBM) method in the missing data areas is well
alleviated in our results. The real-data comparison with TRO-
POspheric Monitoring Instrument (TROPOMI) SIF observations
also shows that the results of the ST-LGBM method can achieve a
much better consistency, in both spatial distribution and temporal
variation. The sensitivity analysis also shows that the ST-LGBM
can support stable results when using various input combinations
or different machine learning models. This approach represents
an innovative way to reconstruct a more accurate globally
continuous OCO-2 SIF product and also provides references to
reconstruct other data with a similar distribution.
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I. INTRODUCTION

HOTOSYNTHESIS, which is the fundamental and intri-

cate physiological process of vegetation, is one of the
key factors of the global carbon cycle [1]. Gross primary
productivity (GPP), which is the amount of organic carbon
fixed by plants per unit of time, represents the photosynthetic
carbon uptake of the terrestrial ecosystem [2]. Previous studies
have made considerable efforts to quantify terrestrial GPP, and
a large number of models have been developed, including data-
driven models [3], process-based models [4], and light-use
efficiency models [5]. Although these models can acquire mul-
tiscale GPP simulations with varied accuracy when combined
with remote sensing technology, they are usually impacted
by model complexity, parameter uncertainty, and assumption
differences [6]. Solar-induced chlorophyll fluorescence (SIF),
which is the phenomenon of energy released in a long-wave
manner during photosynthesis [7], is a new way to study
terrestrial plants. Several studies over the last decade have
reported a strong relationship between GPP and SIF, showing
the great potential of SIF to estimate GPP with a high degree
of accuracy [8], [9].

Numerous hyperspectral satellites have been launched into
space over the last decades, making large-scale and global SIF
inversion possible. Several SIF products have been released
with different spatial and temporal resolutions, such as the
products produced by the Scanning Imaging Absorption Spec-
troMeter for Atmospheric ChartogrphY (SCIAMACHY) [10],
the Global Ozone Monitoring Experiment-2 (GOME-2) [11],
the Greenhouse Gases Observing SATellite (GOSAT) [10], the
Orbiting Carbon Observatory-2 (OCO-2) [12], and the TRO-
POspheric Monitoring Instrument (TROPOMI) [13]. These
products have been widely used to monitor vegetation photo-
synthesis at different scales [14], [15], based on their various
application scenarios and requirements. Among the differ-
ent products, the SCTAMACHY (30 x 240 km), GOME-2
(40 x 80 km), and GOSAT (10 km) products, which are early
SIF products, can provide long-term coverage. However, they
cannot meet the needs of vegetation research at a regional scale
because they are limited by the coarse resolution and huge
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data uncertainties. The TROPOMI instrument on board the
Sentinel-5 Precursor satellite, which was launched in October
2017, is the newest instrument that can acquire finer observa-
tions, with a minimum footprint of 5.5 x 3.5 km? and a daily
revisit cycle. Nevertheless, it cannot support vegetation moni-
toring over a long time scale [16]. The OCO-2 satellite, which
was launched in July 2014, is the first specialized satellite to
study atmospheric carbon dioxide from space. Several studies
have reported a high correlation between OCO-2 SIF and eddy
covariance (EC) GPP [17]. The OCO-2 satellite provides a
small spatial footprint that can match the EC flux towers
better [18]. Specifically, the spectrometer used for SIF retrieval
provides eight independent cross-track spectra, whose spatial
resolution (i.e., footprint size) is 1.29 x 2.25 km? at nadir and
covers an approximately 10-km-wide swath altogether [19].
The data collection characteristics of OCO-2 promise a high
data density with a finer resolution [20] and a better signal-
to-noise ratio (SNR) [12]. In addition, the Orbiting Carbon
Observatory-3 (OCO-3) instrument on board the International
Space Station completed its in-orbit checkout in 2019 [21]
and continues to provide SIF observations. By using the same
core grating spectrometer and applying the same techniques as
OCO-2, but with improvements in many areas [21], OCO-3
can be regarded as a supplement and augment to the OCO-2
data record [22]. All of the above indicates the great potential
of OCO-2 SIF retrieval in global carbon cycle study [23].

However, limited by the discontinuous and sparse sampling
strategy, the OCO-2 SIF product also has a fatal deficiency
with regard to its spatiotemporal coverage, which cannot be
ignored. Although the footprint of OCO-2 SIF retrieval is
less than 2.25-km downtrack, there are massive gaps between
adjacent swaths, due to the 16-day revisit cycle and sparse
sampling strategy. The huge gaps mean that the results of
OCO-2 SIF retrieval are often aggregated to 1° x 1° monthly
datasets, losing the high spatial resolution and data density.
In order to solve this problem, several reconstruction studies
have been completed in recent years to make better use of
the OCO-2 SIF product [24], [25], [26], with the aim being
to reconstruct the swath-distributed OCO-2 samples into a
continuous spatiotemporal distribution. Different continuous
products with higher spatiotemporal resolutions have been
generated, such as CSIF [25] (0.05°, four days) and GOSIF
[26] (0.05°, eight days), which have significantly improved
the data availability. These products are usually reconstructed
using a data-driven method, combined with remote sensing
vegetation indices or reflectance bands and other auxiliary
data. Due to the advantages in spatial and temporal continuity
and resolution, these reconstructed products have been widely
used in vegetation-related studies, including GPP estima-
tion [27], phenology analyses [28], vegetation stress detection
[29], and carbon cycle studies [30].

Although these previous OCO-2 reconstruction works have
obtained reasonable accuracies, one issue has been ignored,
which can induce large uncertainties, that is, none of the
previous studies have considered the uneven spatiotemporal
distribution of the OCO-2 observations. The sparse sampling
strategy of the OCO-2 instrument typically leads to severe
gaps in the data, i.e., each swath only contains 2-3 pixels,
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but the gap between two adjacent swaths covers more than
60 pixels even if aggregated to 0.05°, eight-day gridded data.
Hence, there may be no data observed in many regions all
year round. In this condition, huge uncertainties exist in these
gaps [12], [17], [23] because the relationship trained by the
samples from limited orbits may not be suitable for these
regions without observations. Furthermore, the uncertainties
caused by the uneven sample distribution have not been
validated and eliminated. Therefore, there is an urgent need
to complete the following two tasks. On the one hand, the
prediction accuracy in the areas without valid observations
needs to be carefully validated, in both the model training
process and the real comparison process. In the model training
process, the previous works have selected samples randomly
to test, without building a validation method specifically for
the missing data areas, which can result in overestimated
prediction accuracy in the missing data areas. Therefore, it is
necessary to evaluate the accuracy in the areas without valid
observations, in order to obtain a more objective evaluation
of the SIF reconstruction accuracy. In the real comparison
process, previous works have only used the coarse-resolution
GOME-2 product with a spatial resolution of 0.5°, with which
it is difficult to prove the reliability of the spatial details in
the reconstruction results. However, the TROPOMI instrument
with a spatial resolution of 0.05° can provide ideal true data
as the validation product, to assess the spatial and temporal
variation of the reconstructed OCO-2 data. On the other hand,
a new approach is urgently needed to meet the needs of
improving the reconstruction accuracy and data availability
in the areas without valid observations. The previous works
have attempted to improve the prediction accuracy based on
the overall samples; however, none of them have considered
prediction accuracy improvement in the missing data areas as
the focus. It is, therefore, necessary to make full use of the
limited samples and further explore the relationship between
the observations, as the swath-distributed sparse OCO-2 SIF
retrievals are the only data that can be used as a reference.

In this article, in order to address the abovementioned
issues, we present a new spatial and temporal constrained
data-driven method to reconstruct the OCO-2 SIF product,
considering the spatial and temporal characteristics of the data.
The aims of this study were: 1) to develop a spatiotemporal
constrained machine learning method to reconstruct OCO-2
SIF with a high degree of accuracy while considering the
spatial and temporal characteristics of the data; 2) to evaluate
the reconstruction uncertainties in the areas without valid
observations; and 3) to compare the performance of differ-
ent remote sensing inputs and machine learning models and
generate a superior global contiguous 0.05°, eight-day gridded
SIF product.

II. METHOD

In this study, the light gradient boosting machine (Light-
GBM) framework was chosen as the main learning model to
reconstruct the OCO-2 SIF data. A spatiotemporal constrained
Light-GBM model (ST-LGBM) was further developed by
designing two spatial and temporal mechanism factors to
further utilize the spatial and temporal correlation of the
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The schematics of the ST-LGBM used to reconstruct SIF
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Fig. 1.

swath-distributed samples. The overall framework of the pro-
posed ST-LGBM model is shown in Fig. 1.

A. LightGBM Model

Machine learning algorithms have been widely used in the
SIF product generation and have been used to downscale low-
resolution GOME-2 data into high-resolution data [31], [32],
[33] and to reconstruct discrete OCO-2 data into continuous
data [24], [25], [26]. The LightGBM model [34], which is
a relatively new and efficient tree model, was selected to
reconstruct the OCO-2 SIF data in this study. The LightGBM
model was developed based on XGBoost [35], which is an
implementation of the gradient boosting decision tree (GBDT)
algorithm [36], using K additive functions to predict the
output. For a given input dataset with n data instances, the
predicted output of the ith instance is expressed as

K
Si=d@)=Y filx), fieF (1)

k=1
where x; is the data instance, F is the function space of the
regression trees, and each f; is an independent regression tree.
The objective function of the LightGBM model is

L@) =D 1Giy)+ > Qf) )
i k

where [ is the loss function, adopting the root-mean-square
error (RMSE) in this case; y; is the target value; and Q(f) is
the regularization term, which is expressed as

1
Q(f)=yT+ Eznwnz 3)

where 7T is the number of leaf nodes and w is the leaf weights,
which are calculated by summing the score of all the leaves.

Schematics of the ST-LGBM model used to reconstruct the SIF data.
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representing the first- and second-order gradients on the loss
function, respectively. The LightGBM model shares the same
analytical solution to the objective function as XGBoost but
differs from XGBoost in terms of the split finding algorithm
and tree growth strategy, adopting a histogram-based algorithm
and a leafwise strategy.

The LightGBM model improves the efficiency of XGBoost
through two key techniques: mutually exclusive feature
bundling (EFB) and gradient-based one-side sampling
(GOSS), as shown in Fig. 1. The EFB bundles mutually
reduce the number of features utilizing the sparsity of the
high-dimensional data, by computing the minimum sum of
the nondeterministic polynomial (NP). However, this process
requires completing all possible NP cases with a huge calcu-
lation, which is called an NP-hard problem [37]. In order to
solve this problem, EFB converts the problem of determining
what to bundle into a graph coloring problem and uses a
greedy algorithm to solve it. It then adds offsets to the original
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features, which can be bundled to ensure that the new features
can be identified. It can avoid unnecessary computation for
zero feature values, so it takes up very little memory. The
GOSS filters the data instances according to the data gradient,
to reduce the size of the input samples. It first selects a
specific proportion (i.e., a x 100%) of the top data instances
sorted by the absolute value of the gradient and then randomly
selects b x 100% in the rest of the data instances and assigns
a (100 — a)/b x 100% weight to each instance. The GOSS
can strike a great balance between accuracy and efficiency by
reducing the samples with a small gradient, without changing
the data distribution. Due to the high fitting speed, low memory
usage, and optimized accuracy, the LightGBM model has been
widely used in classification and prediction problems in many
fields, even though it has not been open source for a long
time [38].

The previous studies based on machine learning algorithms
attempted to link the discrete [24], [25], [26] data to be
processed with the continuous explanatory variables for the
model training and then applied the trained model to generate
a global product. In this case, the relationship between the
discrete SIF and explanatory variables is learned using the
LightGBM model and is finally applied to the continuous
explanatory variables to obtain the continuous SIF data.
According to the basic idea, the relationship is established
as

SIF = f(NIRv, VPD, AT, PAR, Landc) (7

where SIF is the original OCO-2 SIF. NIRv, VPD, AT, PAR,
and Landc are the explanatory variables, representing the
near-infrared vegetation index (NIRv), vapor pressure deficit
(VPD), air temperature (AT), photosynthetic active radiation
(PAR), and land cover for convenience, respectively. Among
the variables, SIF is discrete, and NIRv, VPD, AT, PAR, and
Landc are all continuous. Among them, NIRv approximates
the reflected proportion by vegetation at the NIR band [39],
which indicates the canopy structure and plays an important
role in satellite SIF [40], [41].

B. Improved ST-LGBM Model

The methods based on the LightGBM model can only learn
the relationship between the pairwise OCO-2 samples and
explanatory data in the same time and space. However, the
information from other OCO-2 samples in the spatial and
temporal neighborhoods can also provide a core reference
for the reconstruction, which is ignored in the LightGBM
model. Specifically, in this case, an ST-LGBM is proposed to
better use the information from the OCO-2 data in the spatial
and temporal neighborhoods. In this situation, two spatial
and temporal factors, considering the uneven distribution of
the data samples, are designed and input into the LightGBM
model as constraints, which are referred to as SIFs and
SIFt. The spatiotemporal factors are calculated based on the
OCO-2 original observations to further utilize the information
from the swath-distributed samples, improve the reconstruction
accuracy in the missing data areas, and input into the model as
two additional explanatory variables. Rather than simply using
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Fig. 2. Schematic of spatial factor extraction: (a), (d), and (g) distribution of
SIF and NIRv, where the green pixels or swaths represent the SIF observations
and the blue color in (d)—(g) represents the NIRv; (b) similar pixels only
selected by distance for two target pixel marked as stars in red and yellow
and (h) corresponding spatial factor is shown; (c) similar pixels selected by
our method; (e) and (f) selected pixels are shown for the two target pixels;
and (i) spatial factor result.

inverse distance weighting used in previous studies [42], which
have already improved the accuracy in atmospheric contami-
nation [43], [44], hydrological [45], [46], climate forecast [47],
[48], [49], [50], similar pixels, and vegetation phenology are
introduced to further improve the spatiotemporal factors.
Since the original observations of OCO-2 are distributed
in swaths, the nearest pixels selected solely based on the
geographical distance [51] are always distributed in the same
swath, as shown in Fig. 2(b). However, this may limit the
reconstruction accuracy because the information from other
swaths is not considered. An obvious dividing line, as shown
in Fig. 2(h), may occur between two swaths in the mapping
results because they use different swath pixels. In order to
solve the above problems, we propose the idea of similar pixels
and use the solid linear correlation between the SIF signal and
the NIRv to extract the spatial factor. Since the NIRv is highly
correlated with the SIF [52], the NIRv difference can be used
to represent the similarity of the SIF. As a result, we sort
the nearby pixels of the target pixel in adaptive window size,
with an initial window size of 20 x 20, and then increased by
20 and limited to 90 x 90. The 30 pixels with the smallest
NIRv differences are selected as similar pixels. Thus, the
selected similar pixels should show the greatest similarity to
the target pixels, compared to those with the shortest distance,
and they should distribute in different swaths, as shown in
Fig. 2(c). In this way, the dividing line in the calculated spatial
factors also disappears, as shown in Fig. 2(i). In order to more
reasonably use the information of these similar pixels, the
spatial factor of the target point is calculated by the weighted
sum of these similar pixels, based on the NIRv difference and
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Fig. 3. Schematic of temporal factor extraction: the red points represent the
target point, the yellow points in (a) represent the selected points in previous
work, and the green points in (b) represent the selected points based on the
vegetation phenology.

the geographic distance, according to the following equation:

SN ws; x wANIRv; x SIF; x m

N
i ws; x wANIRv; x m

SIFs = (8)
where i refers to the serial number of the similar points;
N refers to the sum of the selected similar pixels, which
in this case is 30; ws refers to the weight of the distance;
wANIRv refers to the weight of the NIRv difference; SIF is
the aggregated OCO-2 SIF observation; and m is the number
of the observations in the ith pixel

1
ws; = d_slz 9)
where ds refers to the spatial distance.
wANIRv; = (10)

d ANIRv;

where wANIRv refers to the NIRv difference.

The temporal factor is calculated based on the concept that
the information from the nearby time can act as a significant
reference for the target time [53]. Unlike the previous study
[42] that calculated the temporal factor using the data from
the prior days [as shown in Fig. 3(a)], we further revised
this by considering the phenological changes and seasonal
similarity in vegetation, which has been successfully used
in the field of vegetation index reconstruction to achieve
better results [54], [55]. Due to the phenological vegetation
growth, the vegetation growth in the nearby time phases could
be quite different from that in the target time. In contrast,
the information from the same season of different years can
provide valid information, because of the similar growth status.
Based on this, we consider the phenological characteristics of
vegetation to extract the temporal factor, as shown in Fig. 3(b).
The temporal factor is extracted using the spatial factor in the
same vegetation growth period from all the years of available
OCO-2 SIF retrievals, which is expressed as follows:

SIFt; year,
n—1 N
_ Zm:l SIst,yearm X Why + Em:n-&-l SIst:yearm X Wiy
- n—1 N
Em:l Wi, + Em:n-&-l Wi

Y

where j refers to the point number; year, is the current year;
year,, is one of the remaining years used as a reference;
N refers to the total number of reference years, which is 7 in

this case, i.e., from 2014 to 2020; SIFs; ye,, refers to the SIFs

4413817

value of point j in year,,; and wt,, is the weight of the SIFs,
which is calculated by

1
P
(yearm — yearn)
The schematics of the ST-LGBM model are presented in

Fig. 1. The relationship that we expect to learn is improved
as

12)

Why =

SIF = f(NIRv, VPD, AT, PAR, Landc, SIFs, SIFt) (13)

where SIFs and SIFt are the spatial and temporal factors
constraining the training process, respectively, and the other
variables are the same as those in (7). The nulls in the
spatiotemporal factors are filled using the temporal filtering
method.

In addition to the LightGBM model, a deep belief network
(DBN), artificial neural network (ANN), and a cubist regres-
sion tree, which are from three different machine learning
method types, were also used to prove the applicability of the
spatial and temporal constraints in the experiments conducted
in this study.

III. DATA FOR EXPERIMENT
A. OCO-2 SIF Data

The daily-corrected SIF data (V10r) were obtained from the
NASA Goddard Earth Science Data and Information Services
Center [12] (https://disk.gsfc.nasa.gov/datasets/). Data from
2015 to 2018 were used in the model training process, and
data from September 2014 to December 2019 were recon-
structed to produce the spatiotemporally continuous product.
It can be found that the sample is dense at low latitudes and
sparse at high latitudes, with a larger coverage in 2015 as
shown in Fig. S1 (see the Supplementary Material). Only the
daily-corrected SIF retrieval at 757 nm was used in this study
because it has been shown that SIF at 757 nm has a higher
correlation with EC GPP and thus has greater potential in
carbon cycle-related applications [56]. Only the nadir mode
was used among the three provided observation modes (nadir,
target, and glint) since the viewing zenith angle (VZA) for the
nadir mode is close to 0° but varies for the glint and target
modes in both time and space [57].

The new version OCO-2 SIF data (V10r) was applied in this
study, which superseded the older version (V8r) in November
2020. The new version has added two more data filter fields
and improved the bias/offset correction by selecting barren
surfaces, based on a more scientific method [58], ensuring
the data quality and simplifying the data filter process. Only
the retrievals with the quality flag equal to 0 and nadir
as the observation mode were selected and aggregated to
0.05° x 0.05° grid cells conducted when there were more than
five footprints for each eight-day period. For all the pixels, the
aggregation was 0.05° x 0.05° grid, to minimize the uncer-
tainty, according to the suggestion of Frankenberg et al. [12].

B. Explanatory Variable Selection

Five variables were selected as explanatory variables, based
on photosynthetic intensity determinants and the previous

Authorized licensed use limited to: Wuhan University. Downloaded on November 16,2022 at 13:22:03 UTC from IEEE Xplore. Restrictions apply.



4413817

works [24], [25], [26], [56], [59], which can be divided into
meteorological data and remote sensing data. The meteo-
rological data were the PAR, VPD, and AT. All the data
were obtained from the ModernEra Retrospective Analysis
for Research and Applications, version 2 (MERRA-2, daily,
0.5° x 0.625°) reanalysis data. These meteorological data
were first resampled into 0.05° x 0.05° and then aggregated
to an eight-day scale before training, in order to keep the same
resolution as the target SIF product.

The remote sensing products were land cover and NIRv
data. The land-cover product was the Moderate Resolution
Imaging Spectroradiometer (MODIS) Land Cover Type prod-
uct (MCDI12Cl1, annual, 0.05°), which is referred to here
as Landc for convenience. The NIRv data were extracted
from the MODIS bidirectional reflectance distribution func-
tion (BRDF)-corrected reflectance product (MCD43C4 daily,
0.05°). The process of extracting the eight-day NIRv was
calculating the daily NIRv based on (14) [60] and then
aggregating the daily NIRv into an eight-day scale through
the maximum synthesis method

_ PNIR — PRED
PNIR + PRED

where pNir represents the near-infrared reflectance and prgp
represents the red reflectance. In addition, the seven origi-
nal MODIS reflectance bands, together with the three other
most widely used vegetation indices—the normalized differ-
ence vegetation index (NDVI), enhanced vegetation index
(EVI), and the leaf area index (LAI)—were also obtained
as remote sensing drove data for comparison. The LAI
product (eight days, 0.05°) was obtained from the National
Earth System Science Data Sharing Infrastructure of China
(http://www.geodata.cn). The other vegetation indices were all
derived and calculated from the MCD43C4 product, using the
same aggregation method that was used for the EVL

NIRV = pNir (14)

C. Validation Data

To verify the accuracy of the reconstruction processes,
we compared the reconstruction results with the SIF product
from TROPOMI. The TROPOMI SIF product, which is only
available after 2018, is spatially continuous, with a relatively
fine resolution. We used the TROPOMI SIF product produced
by Kohler et al. [13] (ftp://fluo.gps.caltech.edu/data/tropomi/),
which is ungridded retrievals at 740 nm. The data are filtered
with the thresholds of 0.8 for cloud fraction, 60° for view
zenith angle, 70° for solar zenith angle, and 120° for phase
angle, and the grids are averaged from more than five sound-
ings. In this study, the data from the TROPOMI product in
2018 were used to validate the consistency and distribution of
the reconstructed product. Comparisons were conducted using
both the eight-day data and the annual synthesis data.

IV. EXPERIMENT AND RESULTS
A. Simulated Evaluation Results

Simulated experiments were carried out by separating the
OCO-2 SIF observations into a training set and a test set, using
different ways to separate the two kinds of datasets.
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TABLE I

VALIDATION RESULTS ON THE RANDOMLY SELECTED SAMPLES FOR THE
LIGHTGBM AND ST-LGBM MODELS

LightGBM ST-LGBM

Training set Test set Training set Test set

R* RMSE* R* RMSE* R* RMSE* R?* RMSE?
2015 0.82 0.07 0.81 0.07 0.84 0.06 0.83 0.07
2016 0.82 0.07 0.81 0.07 0.84 0.06 0.83 0.07
2017 0.82 0.07 0.81 0.07 0.84 0.06 0.82 0.07
2018 0.82 0.07 0.81 0.07 0.84 0.06 0.83 0.07
average  0.82 0.07 0.81 0.07 0.84 0.06 0.83 0.07

a: the unit is Wmum™'sr!

1) Validation on the Randomly Selected Samples: The ten-
fold cross-validation technique is applied to validate the model
performance on randomly selected samples [61], i.e., randomly
selecting 10% of the samples as the test set, with the others
as the training set, and the average accuracy of the ten loops
was calculated. The results show that the ST-LGBM model
can increase prediction accuracy. As presented in Table I,
the accuracy of the LightGBM model results is 0.82 for
the training set and 0.81 for the test set, with an RMSE of
0.07 W-m=2 . um~" - sr™!. When adopting the ST-LGBM
method, the prediction statistics are R* for the training set
(0.84) and test set (0.83) and the RMSE for the training set
(0.06 W-m~2- um~"-sr~!) and test set (0.07 W-m~2. yum~".
st~ !). The accuracy of the training and test set evenly increases
by 0.02, while the RMSE of the training set also decreases by
0.01 W-m=2. gm~! . sr! after adding the spatiotemporal
factors. Fig. 4 shows the scatter plots of the test set based
on all of the data for 2015-2018 as the sample. Overall, the
ST-LGBM model improves the prediction accuracy, in both
the quantity validation and scatter distribution. R?> between
the predicted SIF and observed SIF increases from 0.81 to
0.83 after adding the spatial and temporal constraints, with the
same improvement in the regression slope, and the intercept
also decreased by 0.01. The prediction results perform better
in the high-/low-value part with a wider value range when
adopting the ST-LGBM method, with fewer samples having
a large range of observed value and prediction value close
to zero. It is also apparent that the scatter plot between the
predicted SIF and observed SIF is closer to the regression line
after adding the spatiotemporal factors.

2) Validation on the Region Without Training Samples:
The validation on the randomly selected samples can only
evaluate the model’s predictive ability, whereas the extrapola-
tion problems and uncertainties caused by the uneven sample
distribution cannot be evaluated. Based on this, validation
on the region without training samples, which is aimed at
testing the model performance on the samples out of the
training sample space, is conducted according to the idea of
randomly selecting some swaths as the test set and using the
other swaths as the training set. As shown in Fig. 5, the
global scope was divided into 23 regions to extract swaths for
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validation on the region without training samples, according form a region similar to the size of the data gaps without

to the mean distance between two adjacent swaths, which can

valid observations. The division of the regions is beneficial
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TABLE 1I

VALIDATION RESULTS ON THE REGIONS WITHOUT TRAINING SAMPLES
FOR THE LIGHTGBM AND ST-LGBM MODELS

LightGBM ST-LGBM
Training set Test set Training set Test set
R> RMSE* R* RMSE* R* RMSE* R* RMSE?®
2015 0.83 0.07 0.69 0.08 0.83 0.07 0.74 0.08
2016 0.82 0.07 0.76 0.08 0.83 0.07 0.80 0.07
2017 0.82 0.07 0.76 0.08 0.83 0.07 0.80 0.07
2018 0.82 0.07 0.75 0.08 0.83 0.07 0.80 0.07
average  0.82 0.07 0.74 0.08 0.83 0.07 0.79 0.07

a: the unit is Wmum'sr!

to the batch operation of multiscene images by reducing the
manual correction process and can equalize the sample sizes
of the training and test sets. The 2015057 data were selected to
represent the average number of swaths, and the background
was the land-cover type in 2015. All the swaths in the specific
region (shown as the dark blue region) were selected as the test
set (shown as the yellow swaths), and the other swaths made
up the training set (shown as the red swaths), to simulate the
test set ability in the areas without valid observations.

The results show that the accuracy is significantly decreased
in the areas without valid observations, while the spatial
and temporal constraints can clearly improve the predictive
ability of the model and reduce the uncertainty in the areas
without valid observations. As shown in Tables I and II,
although the training accuracy of the validation on the region
without training samples is similar to that of the validation
on the randomly selected samples, a significant decline can
be observed in the accuracy of the test set in the validation
on the region without training samples in all four years when
using the LightGBM model. R? for the test set decreases from
0.81 to 0.74, which is a difference of 0.07. At the same time,
when using the ST-LGBM model, R? for the test set only
decreases by 0.04 when compared with the validation results
on the randomly selected samples, from 0.83 to 0.79, which

b

2345678 91011121314151617 18192021222

Max NIRv in 2015

B

-0.05 0.65

R? between the observed and predicted SIF for (a) LightGBM model and (b) ST-LGBM model. The background is the max NIRv in 2015.

is much less than the decrease in the results when using the
LightGBM model. The comparison between the two validation
methods indicates that the prediction accuracy is overestimated
through validation on the randomly selected samples, leading
to huge uncertainties in the prediction results in the areas
without valid observations. In contrast, the spatiotemporal
constraints imposed on the LightGBM model (i.e., the spatial
and temporal factors) can reduce the prediction uncertainty in
the missing data areas. According to Table II, when comparing
the average accuracy of the validation on the region without
training samples, R? increases from 0.82 to 0.83 in the training
set and from 0.74 to 0.79 in the test set after adding the
spatiotemporal constraints. The accuracy for the test set is
improved by 0.05, which is much more than 0.01 for the
training set, indicating that the spatiotemporal constraints can
reduce the uncertainty in the areas without valid observations.

Swaths in every region were successively selected as the
test set for validation through the validation on the region
without training samples. R* for the test set was calculated
and is displayed in the region position in Fig. 6, taking
0.1/0.05 as the grading of the layered coloring, with the max
NIRv distribution in 2015 as the background. The results
show that the prediction accuracy in areas with small sample
size improves significantly when using the ST-LGBM model.
Fig. 6(a) shows the distribution of R? when using the Light-
GBM model, which ranges from 0.29 to 0.82. When using
the LightGBM model, R? in the areas with small sample size
(i.e., regions 1-4, 23) is relatively low, due to the fact that
there is less related information from other swaths providing
a reference in the training process. In contrast, the regions
with a large sample size (i.e., regions 5-8 and 11-21) have
a closer relationship with the neighborhood, so the prediction
accuracy is relatively high because the other swaths on the
same continent and with the same characteristics provide a
reference. After adding the spatial and temporal constraints to
the LightGBM model, R? for the ST-LGBM model with the
test set is generally improved, i.e., every strip is improved to
a greater or lesser degree, as shown in Fig. 6(b). R? improves
to the range of 0.36-0.86 after adopting the ST-LGBM model,
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Fig. 7. Comparison between the annual average data from the TROPOMI SIF product and the predicted SIF obtained using the LightGBM (a) and ST-LGBM
(b) models. The black line represents the regression line, and the red line represents the 1:1 line in the scatter plot.

with a maximum difference of 0.08 and an average of 0.05.
In summary, it can be concluded that the spatial and temporal
constraints reduce the uncertainties and solve the extrapolation
problems out of the training sample space to a certain extent.

B. Real-Data Comparison With TROPOMI Data

A real-data comparison was conducted based on real data
from the TROPOMI SIF product, including quantitative analy-
sis and qualitative comparison.

1) Quantitative Comparison: R’ between the TROPOMI
product and the reconstructed result was extracted for the
quantitative comparison. The annual average SIF for the
2018 data was aggregated and plotted in scatter plots to
reduce the error caused by sensor differences, as shown in
Fig. 7, while the scatter between the original OCO-2 SIF and
TROPOMI SIF is shown in Fig. S2(a), see the Supplemen-
tary Material. The results show that the ST-LGBM method
can improve the spatial consistency of the reconstruction
results with TROPOMI data and reduce the proportion of
overestimations or underestimations of samples. Fig. 7 shows
that the reconstruction results obtained using ST-LGBM are
more accurate than those obtained using LightGBM in RZ.
In Fig. 7(a), R?> between the TROPOMI product and the
predictions obtained using the LightGBM model is 0.89, with
overestimations or underestimations when TROPOMI SIF with
a large value range while predicted as zeros. In contrast, R>
between the TROPOMI product and the predictions obtained
using the ST-LGBM model increased to 0.91, with a more
concentrated near the regression line distribution, and the
number of overestimation and underestimation samples is also
alleviated.

To further understand the temporal variations in spatial
correlation, R? between the TROPOMI SIF product and
the three kinds of OCO-2 SIF signals (i.e., the original
observations and the predictions obtained using LightGBM/
ST-LGBM) was calculated per scene throughout 2018, and the

R? time series is shown in Fig. 8. The results show that the
reconstruction product reduces the impact of the data quality
and distribution and maintains or even improves the correlation
between the multisource remote sensing SIF data. R* between
the OCO-2 observation and TROPOMI is time-varying for
the number, quality, and distribution of observations varied
with time. The reconstruction process balanced the uneven
amount and distribution of OCO-2 original observations so
that there is a relatively high and stable correlation coefficient
with TROPOMI SIF. The relatively low R? between two SIF
retrievals is due to the relatively low data quality in early
2018 and the relatively fewer data samples and concentrated
distribution at the end of 2018. The trends of R? between
TROPOMI SIF and the reconstruction results are roughly
consistent with the original OCO-2 SIF observations except
for the scenes with very few valid observations such as
49 and 313, suggesting that the relationship between the
two datasets does not change after the data reconstruction.
There are sudden drops in the original OCO-2 observations,
due to the difference in the data amount and distribution,
such as the drop between days 305 and 321. Meanwhile, R?
obtained with the reconstructed product is smoother than that
of the original observations, especially from days 305 to 321,
indicating that the reconstruction reduces the impact of sample
size and distribution. In most scenes, the reconstructed result
obtained using the LightGBM model has a higher consistency
with the TROPOMI SIF than the OCO-2 observations, with
a maximum difference of 0.36, while there are also six
scenes whose R? is lower than the OCO-2 observations, with
a maximum difference of 0.05. This phenomenon suggests
that the reconstruction process using the LightGBM model
improves the consistency between the SIF from two datasets in
general, and however, there is no guarantee that the correlation
between the two datasets will be maintained in all cases when
using the LightGBM model. When adopting the ST-LGBM
model, R? is always higher than the original OCO-2 retrieval,
with an improvement of 0.13 on average and a maximum
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improvement of 0.42. This indicates that adding the spa-
tiotemporal constraints to the LightGBM model maintains the
correlation between the multisource remote sensing SIF data.
Compared with the reconstructed results obtained using the
LightGBM model, the ST-LGBM model improves R”, with a
range from 0.01 to 0.09 and an average improvement of 0.04.
The main improvement is in the winter, i.e., day after 300,
for there are few observations in the high latitude areas in the
Northern Hemisphere, providing little reference to the model
training process. While the spatiotemporal factors can get valid
information from the spatiotemporal distribution of SIF data,
this improves prediction accuracy. Note that the TROPOMI
product is the SIF at 740 nm and the reconstructed results are
the SIF at 757 nm, and the independent random error leads to
the relatively low R2.

R? increases in both situations after adding the spatial
and temporal constraints, even though the errors have been
reduced during the annual averaging process, suggesting that
the ST-LGBM model steadily improves the consistency with
SIF data from a different sensor.

2) Qualitative Comparison: For the OCO-2 SIF retrievals
distributed in swaths, which provide no spatial patterns for
SIF, a spatial distribution comparison of the reconstructed SIF
is particularly important. The four kinds of SIF signals for
2018, i.e., predicted SIF obtained using the two models, 1°
OCO-2 SIF, and TROPOMI SIF, were aggregated into the
annual maximum and mean values. The comparison between
the reconstructed SIF, OCO-2 original SIF, and TROPOMI SIF
is shown in Figs. 9 and 10.

The spatial patterns of the four kinds of SIF products show
similar distributions, but there is a significant underestimation
phenomenon in the areas with a relatively high SIF value
when using the LightGBM model, which is alleviated when
using the ST-LGBM model. Fig. 9(1) shows that the dis-
tribution of the maximum and minimum values is roughly

the same in the three global maps; however, the prediction
obtained using the LightGBM model is lower than in the
other three maps in the areas with a high SIF value, in many
areas, especially in the Northern Hemisphere, North America,
Europe, Africa, China, and Southeast Asia. Machine learning
models are known to have extrapolation problems, especially
for high- or low-value regions. The reconstruction results
also faced extrapolation problems of Northern Russia and
dryland in the west U.S. and northwest China due to the
fewer samples in these areas, as shown in Fig. S1, see the
Supplementary Material, while the spatiotemporal constraints
can alleviate the problems, making the reconstruction SIF
more similar with the original OCO-2 SIF. Three typical
regions are selected and shown in Fig. 9(2)—(4), located in
Europe, North America, and part of China. The three regions
are all in the high latitude northern hemisphere, resulting
in vegetation growth and fluorescence emission seasonally
varying. The SIF value was higher in the vegetation growth
season, while almost close to zero in the non-growing season.
From Fig. 9(b), the reconstructed SIF obtained using the
LightGBM model is faced extrapolation problems and is sig-
nificantly underestimated in the three high-value regions, while
the underestimation phenomenon is alleviated after adding the
spatiotemporal constraints, as shown in Fig. 9(c). Compared
to the two predicted products, the predicted results using ST-
LGBM are generally higher in the high value of the three areas.
It can be seen that the spatial patterns of reconstruction data
using ST-LGBM are more similar to the TROPOMI product
and the original OCO-2 SIF product than those obtained
using the LightGBM model, due to the underestimation being
alleviated. The underestimation using the LightGBM model
can be attributed to fewer high-value samples in the sam-
ple space. Meanwhile, the spatiotemporal factors, calculated
based on the real SIF observations, participate in the training
process, thereby providing reference and constraints to the
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the LightGBM model. (c) Predicted SIF value pattern obtained using the ST-LGBM model. (d) TROPOMI SIF. Considering the different types of data, the
three kinds of OCO-2 SIF signals use the same absolute hierarchical notation system, while the TROPOMI SIF displays a stretched effect to obtain a more
saturated effect. Row (1) displays the global pattern, row (2) displays Europe, row (3) displays North America, and row (4) displays part of China.

reconstruction process. When using the ST-LGBM model, the
prediction results are more similar to the spatial pattern of the
TROPOMI and original OCO-2 products.

Since the mean value pattern is averaged over the whole
year, the extrema will tend toward the median values. As a
result, the maximum synthesis method has a stronger expres-
siveness for overestimation. According to Fig. 10, the same
conclusion can be drawn from the annual maximum SIF
distribution as the mean SIF distribution.

C. Sensitivity Analysis for the Explanatory Variables

To analyze the sensitivity of the explanatory variables,
we compared the accuracy of the training set when removing
a certain explanatory variable. The results obtained using both
models are included in the analysis. Note that, this experiment
is designed only to compare the sensitivity of input data using
the same method, rather than to compare the contribution of
input data between different methods.

As shown in Table III, after removing a certain explanatory
variable, there is a sudden drop in R? when using the Light-
GBM model, whereas R? stays relatively stable when any
variable is removed when using the ST-LGBM model. In the
reconstruction experiment using the LightGBM model, NIRv
is the most sensitive explanatory variable in the five inputs.
R? decreases from 0.82 to 0.60 when removing the NIRv,

TABLE III
Rz, RMSE, AND R? REDUCTION AFTER REMOVING ONE VARIABLE

Variable 3 RMSE Wm2pm~1sr™1) R reduction
removed LightGBM  ST-LGBM LightGBM ST-LGBM LightGBM  ST-LGBM
AT 0.81 0.84 0.07 0.06 0.01 0
NIRv 0.60 0.83 0.10 0.07 0.22 0.01
Landc 0.81 0.84 0.07 0.06 0.01 0
PAR 0.80 0.84 0.07 0.07 0.02 0
VPD 0.81 0.84 0.07 0.06 0.01 0
SIFs / 0.83 / 0.07 / 0.01
SIFt / 0.84 / 0.06 / 0
None 0.82 0.84 0.07 0.06 / /

with a difference of 0.22, and the RMSE increases from
0.07 to 0.10 W - m~2 - um~! - sr~!, with a difference of
0.03 W-m~2. um~" . sr~!. The AT, Landc, and VPD are the
least sensitive of the five explanatory variables, the removal of
which only reduces R? by 0.01, without changing the RMSE.
The PAR also has little effect, and when removed, R? is
reduced by 0.02. In comparison, the most sensitive variable is
NIRv and SIFs when using the ST-LGBM model, which, when
removed, decreases R? from 0.84 to 0.83, without changing
the RMSE. The other variables have nearly no impact on the
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Fig. 10. Annual maximum value distribution for the four types of SIF data. (a) 1° OCO-2 SIF aggregated directly. (b) Predicted SIF value pattern obtained
using the LightGBM model. (c) Predicted SIF value pattern obtained using the ST-LGBM model. (d) TROPOMI SIF. Among the different types of data, the
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a more saturated effect. Row (1) displays the global pattern, row (2) displays Europe, row (3) displays North America, and row (4) displays part of China.

reconstruction results, and after these variables are removed,
both R? and RMSE do not change.

This indicates the spatial factor can roughly represent the
information expressed by NIRv and keep the model stable
even if the NIRv is missing. The spatial and temporal con-
straints represent the useful information from variables, reduce
the variable sensitivity, improve the prediction robustness
of the model, and further guarantee the prediction accuracy
in the case of missing variables or noise.

D. Applicability Analysis

Applicability analyses are designed to evaluate the gen-
eralizability of the proposed spatial and temporal con-
straints, including comparing different remote sensing inputs
or machine learning models.

1) Impacts of Different Remote Sensing Inputs: To evaluate
the applicability of the spatial and temporal constraints in dif-
ferent remote sensing inputs, we compared the results obtained
with seven MODIS reflectance bands and four vegetation
indices (i.e., EVI, NDVI, LAI, and NIRv) with the other
explanatory variables (i.e., VPD, PAR, AT, and Landc) as
inputs. Since validation on the region without training samples
can more accurately reflect the predictive ability of the model,
only validation on the region without training samples was

TABLE IV

VALIDATION RESULTS ON THE REGION WITHOUT TRAINING SAMPLES
FOR DIFFERENT REMOTE SENSING INPUTS

Remote LightGBM ST-LGBM
sensing Training set Testing set Training set Testing set
input R? RMSE* R®* RMSE* R* RMSE* R®* RMSE?
Reflectance  0.84 0.07 0.66 008 086 006 072 0.07
NIRv 0.83 0.06 0.69  0.08 085 0.06  0.73  0.07
NDVI 0.80 0.08 0.63  0.09 085 0.06  0.72  0.07
LAI 0.75 0.08 053  0.10 085 0.06  0.71 0.08
EVI 0.84 0.06 068 0.08 08 006 072 0.07

a: the unit is W™ um™'sr™'

used to compare the different inputs. Only the data from
2015 were used because the sample coverage is largest in
2015, as shown in Fig. S1 (see the Supplementary Material),
and the results are similar in the four years, as mentioned
above.

As shown in Table IV, the spatial and temporal constraints
can improve the predictive ability of the reconstruction model
and provide relatively stable results when using different
remote sensing inputs. In addition, the NIRv performs the
best in the OCO-2 SIF reconstruction task. The training set
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R? of the five remote sensing input combinations is 0.84
for reflectance and EVI, 0.83 for NIRv, 0.80 for NDVI, and
0.75 for LAL and the test set R? is 0.69 for NIRv, 0.68
for EVI, 0.66 for reflectance, 0.63 for NDVI, and 0.53 for
LAI The accuracy obtained using the LightGBM model shows
a sudden drop in the missing data areas, no matter which
input is selected, and the performance is EVI > NIRv >
reflectance > NDVI > LAI After adding the spatial and
temporal constraints to the LightGBM model, the accuracy
obtained using the ST-LGBM model shows the same trends:
the R? for the training set is 0.86 for reflectance and EVI,
and 0.85 for the NIRv and NDVI, and LAI, and R? for
the test set is 0.73 for NIRv, 0.72 for reflectance, EVI, and
NDVI, and 0.71 for LAI. The spatio-temporal constraints
increase the R? for the test set by 0.04 for NIRv and EVI,
0.06 for reflectance, 0.09 for NDVI, and 0.18 for LAI. The
worse the result obtained using the LightGBM model, the
more improved the result is after adding the spatiotemporal
constraints that the impacts of different remote sensing inputs
are weakened by the spatiotemporal constraints, which agrees
with the conclusion drawn in Section IV-C. Although the
spatiotemporal constraints improve the performance of all the
remote sensing inputs, the NIRv still obtains the best results.

A deeper comparison between EVI, NIRv, seven MODIS
reflectance bands, and the NIR band is shown in Table S I
(validation results based on the randomly selected samples)
and Table S II (validation results on the region without training
samples), see the Supplementary Material. Both EVI and NIRv
are used to extract spatial and temporal factors, the NIRv-
based factors are only used combined with NIRv, and the other
inputs are all used with EVI-based factors. NIRv and NIRv-
based spatiotemporal factors are finally selected to reconstruct
SIF since the combination has the best performance for the
reconstruction task in the validation on the region without
training samples.

2) Impacts of Different Machine Learning Models: In order
to further confirm the applicability of the proposed spatiotem-
poral constraints, we also compared the results obtained using
other machine learning algorithms. Three models from three
different machine learning categories (deep learning models,
neural networks, and tree models) were selected for compari-
son, i.e., DBN, ANN, and Cubist, as shown in Table V.

Table V shows that the spatial and temporal constraints can
improve the accuracy for the regions without valid observant-
ions, and when changing the reconstruction model, the spa-
tiotemporal constraints remain effective, but among all the
models, the LightGBM model performs the best. As can be
seen in Table V, in the validation on the randomly selected
samples, R? for the test set is 0.79 (DBN), 0.77 (ANN), 0.80
(Cubist), and 0.82 (LightGBM). After adding the spatiotempo-
ral constraints, R? for the test set is 0.82 (DBN), 0.81 (ANN),
0.82 (Cubist), and 0.84 (LightGBM). R? of these models is
improved by 0.03 (DBN), 0.02 (Cubist), 0.04 (ANN), and
0.02 (LightGBM). In the validation on the region without
training samples, R? for the test set is 0.69 for all the models,
and when using the spatial and temporal constrained learning
method, R? for the test set is increased to 0.73 for DBN, ANN,
and Cubist, and 0.74 for LightGBM, which are improvements
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TABLE V

R? AND RMSE COMPARISON WHEN USING DIFFERENT MACHINE
LEARNING MODELS IN A SIMULATED EXPERIMENT

Validation on the randomly Validation on the region without

selected samples training samples

Model

Training set Test set Training set Test set

R? RMSE®* R?
LightGBM 0.82 0.07 0.81 0.07 0.83 0.07 0.69 0.08
ST-LGBM 0.84 0.06 0.83 0.07 0.83 0.07 0.74 0.07

RMSE? R? RMSE? R? RMSE?

DBN 0.79 0.07 0.79 0.07 0.79 0.07 0.69 0.08
ST-DBN 0.82 0.07 0.82 0.07 0.83 0.07 0.73 0.07
ANN 0.77 0.08 0.77 0.08 0.78 0.07 0.69 0.08
ST-ANN 0.81 0.07 0.81 0.07 0.82 0.07 0.73 0.07
Cubist 0.80 0.07 0.80 0.07 0.81 0.07 0.69 0.08

ST-Cubist 0.82 0.07 0.82 0.07 0.83 0.07 0.73 0.07

a: the unit is Wm™um™'sr™'

of 0.04 (DBN, ANN, and Cubist) and 0.05 (LightGBM).
No matter which learning model is selected, the results are
roughly the same: the accuracy for the missing data areas drops
significantly, but the spatiotemporal constraints can alleviate
the decrease. Overall, the ST-LGBM model performs the best
in the OCO-2 SIF reconstruction process.

V. DISCUSSION

The OCO-2 SIF retrieval has a fine footprint and can fit
EC flux tower GPP well, making it one of the satellite SIF
products with the most potential among the current products.
Nevertheless, the spatial discontinuity (i.e., the gaps between
adjacent swaths are 30 times more than the width of the
swaths) limits the application of the product. Against this back-
ground, we propose a reconstruction method coupling a geoe-
cological mechanism (i.e., spatial and temporal factors) and
a machine learning model (i.e., LightGBM), to improve the
reconstruction accuracy by considering the data distribution
and vegetation growth cycle. The spatiotemporal constraints
improve the reconstruction accuracy in the areas without
valid observations (Table II and Fig. 6), reduce the model
overestimation and underestimation (Figs. 7, 9, and 10), and
increase the correlation with the TROPOMI SIF product in
both quality (Figs. 9 and 10) and quantity (Figs. 7 and 8), with-
out additional data input. The spatially continuous SIF product
with a 0.05°, eight-day resolution covering a time series from
September 2014 to December 2019 is freely available at
http://rs-pop.whu.edu.cn/#/. The advantages mentioned above
reduce product uncertainty and improve product applicability,
leading to the product having great potential in many fields,
such as agriculture, forestry, climate change, and carbon cycle
studies.

There are big uncertainties in the reconstruction results
obtained using the traditional machine learning methods in
areas without valid observations (Table II and Fig. 6), limiting
the application of the reconstructed products. The reconstruc-
tion accuracy in the missing data areas decreases significantly,
as shown in the validation results on the region without
training samples and the spatial distribution comparison. In the
validation on the region without training samples, the regions
with a small sample size have a relatively low R’ because
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of the reduction in the related information from the other
swaths of the more complex SIF signal. There is also an
underestimation phenomenon in the areas with high SIF val-
ues, due to the sample distribution in the sample space and
lack of geoecological mechanism constraint. In summary, the
uncertainties in the missing data areas are due to the fact that
the implicit relationship between the swath-distributed data is
not mined and applied in the learning process so the models
have relatively low portability. Therefore, a new approach is
urgently needed in the reconstruction task.

The coupling of the mechanism and machine learning
method has shown an advantage, due to the complementary
strengths of the two processes [62]: the mechanism benefits
from the relatively stable model, rigorous logic, and explicable
results; and the machine learning model benefits from the
high efficiency, strong expansibility, and the fact that no prior
knowledge is required. The coupling of a mechanism and
machine learning method has been widely used in the remote
sensing field, including atmospheric [42] and hydrological
[45] remote sensing. However, there have been relatively few
studies of vegetation based on remote sensing, especially in
the SIF product generation. Due to the convenience of the
machine learning models and the complexity of the vegetation
process mechanism, most of the SIF product generation studies
have been based only on machine learning models [24], [25],
[26], [31], [32]. Although previous works have generated an
SIF product using a geoecological mechanism [63], we are not
aware of any studies that have attempted to integrate a geoeco-
logical mechanism and machine learning. The spatiotemporal
factors considered in this study are a preliminary attempt to
combine the geoecological mechanism and machine learning,
with the aim being to combine the respective advantages of
the two processes, to make up for their shortcomings. The
spatial factor is the average weighted by the points with the
smallest NIRv difference with the target point, according to
the two weights (i.e., the NIRv difference and geographical
distance). The spatial factor mines the vegetation similarity
information provided by the pixels with a similar vegetation
index value and geographical similarity, based on Tobler’s
first law [51]. The temporal factor introduces the vegetation
phenology, using the spatial factor over the years to calculate
this, i.e., all of the spatial factors are averagely weighted
using the temporal distance. The spatiotemporal factors are
calculated from the SIF values of the spatial and temporal
neighbors, reflecting the true level of SIF and providing the
geographic and biophysical constraints for machine learning,
which can improve accuracy and reduce overestimation.

Since there already are some works that tried to reconstruct
the OCO-2 SIF and get continuous products, it is important
to compare our results with them. Actually, the result of
LightGBM in this article is exactly the training method similar
to the previous studies [25], [26], and the comparison between
ST-LGBM and LightGBM is a fair comparison to prove the
advantage of our proposed spatial and temporal constraints that
are training using the same model with and without spatial
and temporal factors. A similar accuracy can also be obtained
between LightGBM and previous products when compared
with TROPOMI SIF (Figs. 7 and S2 see the Supplementary
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Material). The ST-LGBM can further improve the correlation
between reconstruction SIF and TROPOMI SIF and get a
product with a more detailed spatial distribution (Fig. S3, see
the Supplementary Material). The direct comparison between
our ST-LGBM and previous products would be impacted by
many factors such as different models and inputted explanatory
variables. From the literature, previous works are all only
validated on the randomly selected samples with R? around
0.79, our method can improve the accuracy by about 0.04.
We believe that our product can also perform much better
when validating on the area without samples, just like com-
pared with LightGBM, because combining the spatiotempo-
ral constraints and the machine learning model can provide
a reference in the areas without valid observations. When
applying the reconstructed SIF product to monitor specific
drought events, the results further support that the ST-LGBM
can respond better to drought events than using LightGBM
(Figs. S4 and S5, see the Supplementary Material), in the
period with large interannual variations in the SIF value.

Further work needs to be conducted in the four following
aspects. First, much could be done in the mechanism constraint
construction process, such as synthesizing multisource SIF
data. The mechanism constraints in this study were constructed
based only on the original OCO-2 product, without considering
the multisource SIF information from other datasets that are
spatially continuous, such as TROPOMI or GOME-2. Second,
only the effect of remote sensing data was compared in this
study, and other meteorological products or parameters, such
as soil moisture, evapotranspiration, or land surface temper-
ature (LST), could be considered in the follow-up research.
Third, although the reconstruction process can improve the
spatial resolution of the OCO-2 SIF product from 1° to 0.05°,
the resolution is still not sufficient for small-scale vegetation
research. This study mainly verified the effectiveness of the
approach of coupling a geoecological mechanism and machine
learning so that the product was only reconstructed at the
same resolution as the previous works [24], [25], [26]. Further
research could attempt to reconstruct the SIF product into a
finer resolution using input data with a higher resolution [33],
[64], such as 1 km. Finally, many recent studies have shown
that the SIF at the photosystem level should be reconstructed at
the canopy level to gain a stronger correlation with GPP [65].
However, the reconstruction process in this study was the same
as in the previous works [24], [25], [26], i.e., the original
OCO-2 SIF retrieval was used, without correcting the canopy
level. A comparison between an SIF product with or without
canopy-level correction would be worthwhile. Many correction
algorithms have been developed in previous research [66],
which could be directly used in the reconstructed SIF product
in follow-up research.

VI. CONCLUSION

In this study, OCO-2 SIF retrievals were reconstructed using
a spatial and temporal constrained LightGBM model (ST-
LGBM), and a global 0.05°, eight-day resolution SIF product
with high accuracy was generated. The improved spatial and
temporal factors were designed to utilize the relationships
from the limited data samples by introducing similar pixels
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and

vegetation phenology, which were input into the Light-

GBM model as spatial and temporal constraints. Simulated
experiments, including validation on the randomly selected
samples and validation on the region without training samples,
and a real-data comparison with the TROPOMI product, were
conducted to evaluate the reconstruction accuracy. The main
conclusions are given as follows.

1)

2)

3)

The comparison between the two validation methods of
simulation experiments indicated enormous uncertainty
in the areas without valid SIF observations. R> was
0.82 for the training set and 0.81 for the test set when
validating on the randomly selected samples, while R?
for the test set dropped to 0.74 and the training set
accuracy remained the same when validating on the
region without training samples. The prediction accuracy
in areas with a small sample size significantly decreased
because there was less related information from the other
swaths providing references in the training process.
The spatial and temporal constraints can improve the
prediction accuracy, improve the robustness of the
OCO-2 reconstruction results, and reduce the variable
sensitivity. The ST-LGBM model reduces the influence
of the data quality and distribution on the reconstruction
process and solves the problem of model prediction
in the missing data areas, to a certain extent. The
consistency with the SIF data from a different sensor was
also improved in the qualitative and quantitative compar-
ison, by alleviating the underestimation by adopting the
ST-LGBM model.

The sensitivity and applicability analyses showed that
the spatial and temporal constraints can support rela-
tively stable results when using various input combina-
tions or different machine learning models. The spatial
and temporal factors reduce the model sensitivity to
the other inputs and can obtain stable results when
using different input combinations or different machine
learning models.
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