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TRMM Precipitation Data Over Yangtze River
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Abstract— High-resolution precipitation products are
essential for accurate hydrological and meteorological
applications. To improve the spatial resolution and accuracy
of monthly satellite precipitation products, we developed a
new downscaling-calibration framework with three key steps:
1) coarse-resolution satellite precipitation data are downscaled
to 1-km resolution precipitation data with multivariate adaptive
regression spline (MARS) model; 2) residual correction is applied
to bridge the difference between the satellite precipitation data
and downscaled precipitation data; and 3) the geographical
differential analysis (GDA) calibration method is implemented to
improve accuracy by merging the residual-corrected data with
rain gauge data. In this study, geolocation variables (longitude
and latitude), a digital elevation model (DEM) data, daytime and
nighttime land surface temperatures, and four remote sensing
indices were used to downscale monthly Tropical Rainfall
Measuring Mission (TRMM) 3B43 precipitation datasets over
the Yangtze River Economic Belt. The downscaled results
showed that the MARS model can avoid “boxy artifact” and
pixel-level anomalies, which are often found in geographically
weighted regression (GWR) and random forest (RF) results.
According to the validation, the step of residual correction is not
necessary. With GDA calibration, the MARS-based estimated
results were more accurate than the results of the other methods
(i.e., GWR and RF) and original TRMM products. Therefore,
the developed MARS-based downscaling-calibration procedure
can improve not only the spatial resolution but also the quality
of the TRMM 3B43 products.

Index Terms— “Boxy artifact” anomalies, calibration, pixel-
level anomalies, precipitation, spatial downscaling, Tropical Rain-
fall Measuring Mission (TRMM) 3B43.

I. INTRODUCTION

PRECIPITATION is an essential component in meteorol-
ogy, ecology, and hydrology, as it is a major driving force
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in the global water cycle [1], [2]. High-spatial-resolution pre-
cipitation data are crucial inputs for ecological and hydrologi-
cal models. Traditional precipitation data are generally derived
from point measurements (rain gauges), but point-based mea-
surements cannot provide spatial precipitation information.
Gridded precipitation data are typically generated with spatial
interpolation methods based on point measurements. To obtain
high-spatial-resolution precipitation data, different algorithms
for the spatial interpolation of rain gauge data were pro-
posed [3], [4]. However, the sparse density of rain gauges
makes interpolation inaccurate and unrepresentative [5], [6],
especially in complex mountainous regions [7]. Weather radar
systems are also used to provide spatial precipitation informa-
tion, but the lack of radar-rainfall estimate validation restricts
its application for hydrologic modeling [8], [9]. Furthermore,
radar-rainfall estimates are affected by various sources of
uncertainties [10]. In addition, weather radar systems have a
limited range and are generally used to monitor extreme events
over a limited span of time, thereby making them less suitable
for long-term assessments [11].

Satellite remote sensing has become an important resource
for estimating gridded precipitation products at a global
scale [12]. Several satellite precipitation products are gen-
erated by the Global Precipitation Climatology Project
(GPCP) [13]–[15], the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks climate
data record (PERSIANN-CDR) [16], the Tropical Rainfall
Measuring Mission (TRMM) project [17], the Global Satellite
Mapping of Precipitation (GSMap) project [18], the Global
Precipitation Measuring (GPM) Core Observatory project [19],
and so on. However, such satellite-based products have an
approximate spatial resolution of 0.1◦ or lower [20]. The
spatial resolution of such products is too coarse to match
high-resolution requirements when applied to hydrological and
meteorological studies at the small-basin scale. Therefore,
numerous downscaling algorithms were developed to down-
scale satellite precipitation datasets.

Statistical downscaling methods have been widely used to
improve the spatial resolution of satellite-based precipitation
data. TRMM 3B43 products were downscaled from 0.25◦
to 1 km based on the assumption of an exponential rela-
tionship between precipitation and the normalized difference
vegetation index (NDVI) at the annual scale [11]. As the
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spatial patterns of precipitation are influenced by multiple
environmental variables, the multiple linear regression (MLR)
model was used to downscale TRMM data based on the
NDVI and digital elevation model (DEM) data [21]. The
MLR downscaling scheme was also used to downscale TRMM
3B43 products based on the relationship between precipita-
tion and related environmental factors, including orographical
variables and meteorological conditions [22]. In addition, the
geographical differential analysis (GDA) calibration procedure
was employed to downscale TRMM 3B43 products with
an exponential or quadratic downscaling regression model.
Calibrated 1-km monthly TRMM products show satisfac-
tory agreement with rain gauge data [23], [24]. The afore-
mentioned downscaling studies assumed that the relationship
between precipitation and explanatory variables is constant
in space. However, several studies indicated that the rela-
tionship between precipitation and land surface character-
istics is spatially varied [25], [26], which contradicts the
assumption of regression models. Geographically weighted
regression (GWR) is a regional regression method that is
widely used to establish the nonhomogeneous relationships
between a dependent variable and explanatory variables. Thus,
several studies used the GWR model to explore the spatially
heterogeneous relationship between precipitation and related
environmental factors (e.g., NDVI and DEM). The downscaled
results proved that the GWR-based model outperforms the
exponential, quadratic, and MLR models [25], [27]–[29].

Apart from the NDVI and DEM as the commonly used
factors related to precipitation, other studies have demonstrated
that the spatial patterns of precipitation are influenced by
other land surface characteristics. Many studies indicated
a strong positive correlation between precipitation and the
NDVI [30], [31]. As a result, the NDVI was used as one of
the key predictors of satellite precipitation data in numerous
downscaling studies [11], [21], [24]. As vegetation’s sensitivity
to precipitation is cumulative rather than instantaneous [32],
numerous studies demonstrated that the response of the NDVI
to rainfall typically lags by one to three months [33], [34],
especially in humid areas. Despite this finding, the enhanced
vegetation index (EVI) can improve the relatively poor empir-
ical relationship between precipitation and the saturated NDVI
in humid regions [35]. The downscaled results obtained by Shi
and Lei [33] showed that the performance of the EVI-based
model surpasses that of the NDVI-based model. Because
the normalized difference water index (NDWI) is sensitive
to vegetation liquid water content, Gao [36] and Ezzine
et al. [37] used the NDWI as a satisfactory predictor to
downscale TRMM 3B43 data. In addition, the land surface
water index (LSWI) was also used to monitor vegetation water
content, and Chandrasekar et al. [38] analyzed the relationship
between the LSWI and precipitation. Schultz and Halpert [39]
found that coupling land surface temperature (LST) with the
NDVI improved the precision and accuracy compared with
the use of the NDVI alone. Jing et al. [40] demonstrated
that introducing LSTs of both daytime and nighttime to the
downscaling model to complement the NDVI–precipitation
relationship and DEM–precipitation relationship is feasible.
Besides, the inclusion of geolocations (longitude and latitude)

can be beneficial to the performance of the downscaling
model because precipitation is spatially heterogeneous, and
the average variable importance values of geolocations were
higher than those of the other variables [40]. Precipitation
influences the soil water content; thus, considering the effects
of precipitation on soil moisture (SM) is essential [25], [41].
Many studies have found the vegetation temperature condition
index (VTCI) can monitor the SM status [42], [43]. As sum-
marized above, geolocation variables (longitude and latitude),
the DEM, daytime LST (LSTD) and nighttime LST (LSTN),
and four remote sensing indices (i.e., EVI, NDWI, LSWI, and
VTCI) were taken into account as land surface characteristics
in this study.

As for the spatial downscaling algorithms, machine learning
techniques perform better than traditional regression algo-
rithms (e.g., the exponential model, the polynomial model,
and the MLR model) due to their ability to deal with the
complex nonlinear relationships among variables [33], [40],
[44]–[46]. A variety of typical machine learning algorithms
were used to downscale satellite precipitation data [20], [33],
[40], [41], [44], [45], including the classification and regres-
sion tree (CART), k-nearest neighbor (k-NN), support vector
machine (SVM), random forest (RF), and Cubist [47] models.
The aforementioned machine learning methods have potential
application value for downscaling satellite precipitation prod-
ucts. The aforementioned statistical downscaling methods can
be classified into traditional regression methods and machine
learning methods.

The cumulative precipitation in areas with abundant precip-
itation is a natural spatially continuous variable at the annual
and monthly scales. Therefore, ideally, monthly and annual
downscaled rainfall fields should also be relatively smooth,
with no sharp changes. However, numerous studies show
that downscaled precipitation products encounter two types
of problems. The first problem is “boxy artifact” anomalies
caused by coarse pixel boundaries from the original TRMM
data [see Fig. 1(a) and (b)]. Large fluctuations around edges
are unlikely to occur in the real world [48]. The second
problem is pixel-level anomalies [41], [48]. For example,
in Fig. 1(c), the value of the center downscaled pixel is
nearly double the surrounding pixels, which is unrealistic in
the downscaled precipitation field [48]. This problem typ-
ically derives from two main sources. First, with various
high-resolution explanatory factors as inputs, downscaling
algorithms may become unstable and produce increased noise.
Second, numerous studies found that TRMM products contain
systematic anomalies for inland water bodies, which typi-
cally leads to overestimation [41], [49], [50]. Such types
of coarse-resolution systematic anomalies may also lead to
pixel-level anomalies in downscaled products.

Therefore, in this study, we used a new robust down-
scaling algorithm called the multivariate adaptive regression
spline (MARS) model to address the aforementioned problems
due to its characteristics of smoothness and regional modeling
with smooth nonlinear splines [51]. In addition, we devel-
oped an MARS-based downscaling-calibration procedure to
improve the spatial resolution and quality of monthly TRMM
3B43 data over the Yangtze River Economic Belt (YREB)
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Fig. 1. Example of (a) “boxy artifact” anomaly in downscaled TRMM by using GWR [41], (b) “boxy artifact” anomaly in downscaled TRMM by using
RF [45], and (c) pixel-level anomaly in downscaled TRMM [48].

for the period of 2006–2013. As two typical algorithms in
downscaled satellite-based precipitation products, GWR and
RF were compared with the MARS algorithm. The main
objectives of this study were to: 1) introduce a new regression
algorithm based on MARS to downscale coarse-resolution
satellite precipitation data at the monthly scale; 2) com-
pare the downscaled MARS-based results with the GWR-
and RF-based results; and 3) assess whether the downscaled
MARS-based results present the most reasonable patterns with
respect to spatial variation.

II. STUDY AREA AND DATASETS

A. Study Area

The YREB was selected as the study area (see Fig. 2), which
runs across Eastern China, Central China, and Western China,
covering coastal areas in the east and vast inland areas [52].
With an area of approximately 2 050 000 km2 and elevation
ranging from −48 to 6738 m, the climate in the YREB is
diverse due to its wide area and complex topography. The
YREB region experiences abundant rainfall, and the annual
precipitation of between 700 and 1800 mm increases from the
northwest to the southeast. Fig. 3 shows the average monthly
precipitation over the entire region based on TRMM 3B43 data
and ground observations for the period of 2006–2013. The
TRMM 3B43 data and the ground observations show a similar
trend. A significant increase in precipitation amounts can be
observed from January to July, but a significant decrease can
be seen from August to December.

B. TRMM Satellite Precipitation Dataset

The satellite precipitation dataset used in this study derived
from data from the TRMM, which is a joint mission launched
by NASA and the National Space Development Agency of
Japan in November 1997 [17]. The main instruments in
the TRMM are the TRMM microwave imager, precipita-
tion radar sensor, and the Visible and Infrared Radiometer
System [17]. TRMM precipitation data were widely used

in recent years due to the relatively large spatial cover-
age and availability of long-time series observations [53].
Consequently, many studies focused on downscaling TRMM
products. The latest version of the monthly TRMM 3B43 data,
that is, version 7, was chosen for this study [54]. The
TRMM 3B43 data are generated at a spatial resolution
of 0.25◦, covering between latitude 50◦ N and latitude 50◦
S. The dataset for the period of 2006–2013 was downloaded
from https://mirador.gsfc.nasa.gov. Moreover, all the monthly
TRMM data, which represents precipitation (mm/hour) inten-
sity, were converted to the cumulative amount of precipitation
(mm/month).

C. Remote Sensing Index Datasets

In this study, the EVI data were derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD13A3 product at a monthly 1-km resolution to replace
NDVI data. The EVI index is given by

EVI = G
ρnir − ρred

ρnir + C1 × ρred − C2 × ρblue + L
(1)

where ρ is atmospherically corrected or partially atmosphere
corrected surface reflectance, L is the canopy background
adjustment that addresses nonlinear, differential NIR, and red
radiant transfer through a canopy, and c1 and c2 are the
coefficients of the aerosol resistance term, which uses the blue
band to correct for aerosol influences in the red band [35].

The two water indices (NDWI and LSWI) were calculated
from the surface reflectance Terra MODIS MOD09A1 product
at an eight-day/500-m resolution, and the MOD09A1 data
were averaged to a monthly 1-km scale. The water indices
are given by

NDWI = ρnir − ρswir1

ρnir + ρswir1
(2)

LSWI = ρnir − ρswir2

ρnir + ρswir2
(3)

where ρnir, ρswir1, and ρswir2 denote band 2, band 5, and band 7
of the MOD09A1 product, respectively.
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Fig. 2. Location of the YREB; black dots indicate the location of rain gauges.

Fig. 3. Average monthly precipitation in the YREB for 2006–2013 from
TRMM 3B43 and rain gauge data.

The VTCI index was calculated based on the LST/EVI
feature space [42], [43]. The VTCI index is given by

VTCI = Tmax − Ts

Tmax − Tmin
(4)

where Ts is the observed LST for a given pixel whose EVI
value is EVIi , and Tmax and Tmin are the corresponding highest
and smallest LST that have the same EVIi value [43].

D. LST Data

The MOD11A1 product can provide daily LST informa-
tion, but missing pixels exist in large areas each day; thus,
ensuring seamless downscaled results is difficult [55], [56].
The Geospatial Data Cloud platform has composited the
MOD11A1 daily LST products to a monthly temporal scale
by the maximum value composite method. In this study,
LST datasets at a monthly 1-km resolution for LSTD
and LSTN were obtained from the Geospatial Data Cloud
(http://www.gscloud.cn/). The missing pixels were filled in the
monthly composite LST datasets.

E. Shuttle Radar Topography Mission (SRTM) DEM

The DEM data from the SRTM were generated by the
National Geospatial-Intelligence Agency and NASA at a

TABLE I

DATASETS USED IN THIS STUDY

3-arc-second resolution (90 m). The DEM data were obtained
from http://www.gscloud.cn and were upscaled to 1-km reso-
lution by pixel averaging, to match other auxiliary data.

F. Rain Gauge Data

For China, rain gauge data from international exchange
stations are included in the Global Precipitation Climatology
Center monitoring product and used for the bias correction
of TRMM products. In this study, 46 international exchange
stations in the YREB were excluded for the fair evalua-
tion of TRMM products [38], [56]. Quality-controlled data
from 234 automatic rain gauges covering the YREB (see
Fig. 2) were used to validate the accuracy of the downscaled
TRMM data. The rain gauge dataset was downloaded from
http://cdc.cma.gov.cn.

Table I summarizes all datasets that were used in this study,
including the TRMM 3b43 dataset, remote sensing datasets,
and rain gauge-based measurements.

III. METHODOLOGY

A. Multivariate Adaptive Regression Spline Model

MARS is a nonparametric regression technique [51]. As a
flexible regression algorithm, MARS is widely used in
science and engineering fields [57], [58]. Specifically, MARS
is used to temporally downscale daily rainfall to subdaily
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rainfall [59], [60]. However, to the best of our knowledge,
experiments have yet to be conducted on the MARS model
to spatially downscale satellite-based precipitation products.
In this study, the MARS algorithm was used to derive high-
spatial-resolution precipitation products.

The MARS algorithm includes the forward selection and
backward elimination. In the forward selection process, let be
N and P so that Z = (X, Y ) is our training dataset with
dim(Y ) = N and dim(X) = N × P . The MARS model has
the form of

Y =
M∑

m=0

am Bm(X)

=
M∑

m=0

am Bm(x1, . . . , x p)

= a0 +
M∑

m=1

am

Km∏
k=1

[C(xv(k,m) | skm , t−km , tkm , t+km )] (5)

where Y is the estimated precipitation and xi denotes the
auxiliary predictors, which includes longitude, latitude, EVI,
DEM, LSTD, LSTN, VTCI, LSWI, and NDWI. The MARS
algorithm has two forms of basis function (BF): the trun-
cated piecewise linear function and the cubic spline func-
tion. Friedman [51] pointed that the principal disadvantage
of piecewise linear curves is the discontinuity of the first
derivative (infinite second derivative) at each knot location.
This causes the curve to be cosmetically unappealing to some
extent. Therefore, the piecewise linear function was replaced
with a corresponding truncated cubic function for ensuring
continuous derivatives of the model (see Fig. 4). The truncated
cubic spline function was selected, with the form of

C(x |s = +1, t−, t, t+)

=
⎧⎨
⎩

0, x ≤ t−
p+(x − t−)2 + r+(x − t+)3, t− < x < t+
x − t, x ≥ t+

(6)

C(x |s = −1, t−, t, t+)

=
⎧⎨
⎩

−(x − t), x ≤ t−
p−(x − t+)2 + r−(x − t+)3, t− < x < t+
0, x ≥ t+

(7)

with t− < x < t+. In formulas (8)–(11), p+, r+, p−, and r−
were set, with the form of

p+ = (2t+ + t− − 3t)/(t+ − t−)2 (8)

r+ = (2t − t+ − t−)/(t+ − t−)3 (9)

p− = (3t − 2t− − t+)/(t− − t+)2 (10)

r− = (t− + t+ − 2t)/(t− − t+)3 (11)

to guarantee the continuity and continuous first derivatives of
C(x |s = ±1, t−, t, t+). Bm(X) is the mth truncated BF formed
with a univariate cubic spline function (Km = 1) or the tensor
products of univariate spline functions when the number of
splits Km > 1 and xv(k,m) labels the environment predictor, and
t−km , tkm , t+km represent the values of the knots. In addition,
skm takes the value of 1 or −1, which determines the direction
(left/right) of the split (i.e., the truncated direction), and am is

Fig. 4. Comparison of the left truncated linear function with central knot
t = 0.5 and the corresponding truncated spline function with central knot
t = 0.5 and side knots at t− = 0.2 and t+ = 0.7 [51].

the coefficient of the mth Bm(X), which can be estimated with
ordinary least squares by minimizing the loss function.

The solution of Bm(X) (0 ∼ M) can be divided into two
processes: forward selection and backward elimination. The
forward selection iteratively splits the training data and starts
with an initial BF set B0(x) = 1. Pairs of BFs are produced
at every loop iteration with the form of

B2I−1(x) = Bl(x)b(xv | p)

B2I−1(x) = Bl(x)b(xv | p) (12)

where Bl(X) is a BF produced by the last iteration and xv is an
independent variable. b(xv |.) is a pair of truncated functions p
and p. For every loop iteration, the new produced BF can be
identified as three parameters, including parent BF B(x), xv ,
and p. The object of the forward selection is to solve the three
parameters (l∗, v∗, p∗) via ordinary least squares by retaining
the largest decrease in training error

(l∗, v∗, p∗) = arg min
N∑

n=1

[
Y n −

2I−2∑
i=0

ai Bi(xn)a2I−1 Bl(xn)

× b(xvn|p)a2I Bl(xn)b(xvn|p)

]2

.

(13)

The solved three parameters (l∗, v∗, p∗) are saved and used
for the next iteration until the produced BFs reach the preset
maximum BFs number Mmax or satisfy the accuracy of the
forward selection.

The forward selection can result in an overfitted result with
an excessively large model. Thus, backward elimination was
incorporated to prune the overfitted model. The backward
elimination iteratively deletes the BFs that contribute the
smallest increase in the residual squared error at each stage.
The backward elimination is based on a lack-of-fit criterion
defined by generalized cross validation (GCV) to estimate the
best model Y of size λ, which is an approximation of the
leave-one-out cross-validation. The GCV criterion is given as
follows:

GCV(λ) =
∑N

i=1 (yi − Y (xi))
2(

1 − M(λ)
N

) (14)

where N is the number of BFs, M(λ) is the effective number
of parameters in the model, Y is the best estimated model,
and λ is the optimum number of model terms [51], [61].
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The MARS algorithm iteratively splits coarse TRMM pre-
cipitation data using truncated piecewise BF pairs produced by
additively considering one environmental variable at each loop
iteration. Consequently, the MARS model was used to divide
the YREB TRMM images into subregions, which were deter-
mined by the nonzero range of Bm(X) [see formulas (5)–(7)].

B. Brief Description of Geographically Weighted Regression
and Random Forest

The GWR model can be expressed as

Yi = β0(ui , vi ) +
m∑

k=1

βk(ui , vi )xik + εi (15)

where ui and vi are the longitude and latitude of location i ; Y
is the TRMM precipitation; xik are the kth explanatory variable
of location i ; β0(ui , vi ) and βk(ui , vi ) are the regression
coefficients of location i ; and εi is the residual. The solution
of the coefficients is given as follows:

β(ui , vi ) = (X T W (ui , vi )X)−1 X T W (ui , vi )Y (16)

where W (ui , vi ) is the weighting matrix obtained with kernel
functions, such as the Gaussian function and bisquare function,
and observations near the specific point have larger weighted
values. Selection criteria, such as the Akaike information
criterion (AIC), small-sample bias-corrected AIC, and cross
validation (CV), are used to estimate the kernel bandwidth.
Raster data have a uniform geographical distribution, and the
Gaussian function is universally used in GWR [27], [28].
In this study, the fixed Gaussian function was used as the
kernel function, and the CV was employed as the selection
criterion. Additional details on the GWR model can be found
in Brunsdon et al. [62].

RF is a popular ensemble learning method for classifica-
tion and regression, which constructs a multitude of CARTs
by randomly selecting subsets from an entire dataset. The
decision-making ability of the model depends on each CART
decision tree. The RF process can be divided into the following
steps.

1) M ntree (number of trees) sample sets are randomly
drawn from the original training dataset with replace-
ments, and each sample set is a bootstrap sample.

2) A regression tree is constructed for each bootstrap
sample. The RF model randomly trains each individual
tree on the M bootstrap samples of the training dataset.
For each split of the node based on the minimum Gini
value, Ntry variables are randomly selected.

3) The predicted data are estimated by averaging the pre-
dictions of the M regression trees, as follows:

f =
M∑

m=1

fm(x)

M
(17)

where fm(x) is the prediction of each regression tree.
4) The unsampled elements, which are called out-of-bag

(OOB) data, are used to estimate the prediction error,
which is called the OOB error (EOOB)

EOOB =
∑n

i=1 [Y (Xi ) − Yi ]2

n
(18)

where n is the number of OOB samples, Y (Xi) is the
prediction of the RF model at sample Xi , and Yi is
the target data. Two important parameters, that is, M
and Ntry, must be determined [40], [45]. The mean
squared error (MSE) was chosen as the loss function.
In this study, Ntry = √

N = 3 was set according to
Breiman [63]. To determine the optimal value of M ,
the dataset was first randomly split into training and test
datasets, containing 90% and 10%, respectively. Then,
the training dataset was used to train the RF model, and
the trained RF model was applied to the test datasets.
Finally, the RF algorithm was executed with the ntree
ranging from 600 to 1200; 1000 ntrees were determined
as the best parameter because of the minimum MSE
value for the test datasets [64]–[66]. Additional details
on the RF model can be found in Breiman [63].

C. MARS-Based Downscaling-Calibration Framework

The detailed process of the MARS-based downscaling-
calibration framework is given as follows.

1) Data Preprocessing: The significant relationship
between precipitation and auxiliary factors is interrupted
by regions covered with rivers, lakes, and snow. Pixels
covering water bodies were detected by referencing the
threshold of EVI < 0 or a constant DEM value. The
detected pixels were substituted by a low-pass filter
using an 11 × 11 moving window. The window size
selection was based on Lu et al. [67] and Xu et al. [25].

2) Data Aggregation: To acquire coarse-resolution auxil-
iary data, all the auxiliary data for each month were
resampled to a 0.25◦ resolution by averaging.

3) MARS Model Building at Coarse Spatial Resolution: In
the forward selection process, the three key parameters
to be determined are the form of the BFs and two
parameters related to the stopping criterion, that is,
the maximum BF number Mmax and stopping threshold.
The cubic spline function was selected as the form of
the BFs. The established model in this forward selection
process will gradually stabilize as Mmax increases. Mmax

was set to 120, and the threshold was set to the default
value of 1e−4 [68]. The forward selection process stops
when the number of added BFs reaches the maximum
number Mmax or when adding a new BF changes R2

of the training model to less than the threshold. In the
MARS backward elimination step, the GCV criterion
was used for pruning the model. The best BF number
and prediction model were determined with the mini-
mum GCV [68].

4) TRMM Downscaling: To generate the preliminary down-
scaled precipitation products at a 1-km resolution,
the MARS model established in step 3) at a 0.25◦
resolution was applied to all the environmental factors
at a 1-km resolution.

5) Residual Correction: In any model, differences will
inevitably exist between the original TRMM data and
downscaled precipitation products. To eliminate differ-
ences, residual correction was commonly adopted in
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Fig. 5. Flowchart of the MARS-based downscaling-calibration framework.

previous studies [11], [21], [24], [25], [40], 41]. First,
the predicted downscaled precipitation results obtained
in step 4) were aggregated at a 0.25◦ resolution. Second,
the residual images were obtained by subtracting the
aggregated results from the original TRMM data and
then interpolated them to a 1-km resolution with a
minimum curvature spline interpolator. Previous studies
demonstrated that the spline interpolator outperforms
other interpolators, such as inverse distance weight-
ing (IDW) and kriging [11], [24]. Finally, the corrected
downscaled results were obtained by adding the inter-
polated residual images to the estimated downscaled
images in step 4).

6) GDA Calibration: The GDA calibration method was
incorporated into the calibration of the downscaled
TRMM data [24], [33]. The main GDA steps are given
as follows.

a) The differences between the downscaled TRMM
data and rain gauge data were computed.

b) The point-based difference data were interpolated
to a 1-km resolution with the IDW method.

c) The 1-km difference map was added to the down-
scaled TRMM data to acquire the final calibrated
result.

The flowchart of the MARS-based downscaling-calibration
process is provided in Fig. 5, and the main steps for the GWR-
and RF-based downscaling-calibration processes are the same
as those for the MARS.

D. Validation

The meteorological station rainfall dataset was used to
evaluate the accuracy of the original TRMM products and
the downscaled precipitation products based on the different
models. In this study, to assess the calibrated TRMM products,

a tenfold CV method was employed to use all the rain gauge
data for the GDA calibration or verification. The rain gauge
data were randomly divided into ten equal sample sets. The
tenfold CV method was employed to randomly take nine
sample sets from the ten sample sets for the GDA calibration.
The remaining sample set was used to validate the calibrated
TRMM data. The validation step was repeated ten times
until all the rain gauge data were included in the validation.
In addition, a hand-out CV method was also used to evaluate
the estimated precipitation products. Three commonly used
criteria were chosen for the validation, that is, the coefficient
of determination (R2), the mean absolute error (MAE), and
the bias. These criteria are calculated as follows:

R2 =
[∑n

i=1 (Yi − Y )(Oi − O)
]2∑n

i=1 (Yi − Y )2
∑n

i=1 (Oi − O)2
(19)

MAE =
n∑

i=1

|Yi − Oi |
n

(20)

Bias =
∑n

i=1 Yi∑n
i=1 Oi

− 1 (21)

where Yi and Oi denote the TRMM precipitation data and rain
gauge precipitation data at location i , respectively.

IV. RESULTS

A. Downscaling and Calibration Results

In this study, we downscaled the monthly TRMM 3B43 data
for 2006–2013 over the YREB. Separate datasets for each
month comprised the TRMM precipitation data, and aggre-
gated auxiliary data were independently imported into the
MARS model. The wettest month in 2012, namely, July, was
selected as an example. The original TRMM data, the prelim-
inary downscaled TRMM data, the downscaled TRMM data
after residual correction, the downscaled TRMM data after
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Fig. 6. Comparison between (a) TRMM_Raw, (b) GWR_Raw, (c) RF_Raw, and (d) MARS_Raw over the YREB in July 2012.

Fig. 7. Comparison between (a) TRMM_Raw, (b) GWR_Raw, (c) RF_Raw, and (d) MARS_Raw for a subregion in the YREB in July 2012.

GDA calibration with residual correction, and the downscaled
TRMM data after GDA calibration without residual correc-
tion based on MARS model were labeled as TRMM_Raw,
MARS_Raw, MARS_Res, MARS_ResGda, and MARS_Gda,
respectively, and so were the other two models.

The coarse TRMM precipitation data over the YREB in
July 2012 was shown in Fig. 6(a). The preliminary down-
scaled results based on GWR, RF, and MARS were shown
in Fig. 6(b)–(d), respectively. The downscaled results [see
Fig. 6(b)–(d)] show more spatial information than Fig. 6(a).
A subregion was shown in Fig. 7 for an intuitive com-
parison. “Boxy artifacts” phenomenon can still be found in

some regions, such as the box region in Fig. 6 (refer to
Fig. 7). Apparently, Fig. 7(b) and (c) retains some borderlines
derived from coarse TRMM images, while the “boxy artifacts”
structures disappear in Fig. 7(d). It is essential to find out
the effects of residual correction and the GDA calibration
on downscaled results. Downscaled results after residual cor-
rection based on GWR, RF, and MARS were shown in
Fig. 8(b)–(d), respectively. All of the corrected results were
highly consistent with the original TRMM; thus, the residual
correction was an effective technique for rectifying informa-
tion distortion. The calibrated results with residual correction
were shown in Fig. 9. As shown in Fig. 9(b)–(d), the spatial
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Fig. 8. Comparison between (a) TRMM_Raw, (b) GWR_Res, (c) RF_Res, and (d) MARS_Res over the YREB in July 2012.

Fig. 9. Comparison between (a) TRMM_Raw, (b) GWR_ResGda, (c) RF_ResGda, and (d) MARS_ResGda over the YREB in July 2012.

pattern of the GDA-calibrated results was altered because the
gauge-based precipitation information was merged with the
residual-corrected data. In addition, the calibrated results with-
out residual correction were also provided in Fig. 10(b)–(d).
We found that the calibrated results with residual correction
were closer to the TRMM_Raw, and the differences between
the calibrated results with and without GDA calibration were
not so large.

B. Validation Results
The accuracy of the original TRMM data for each month

in 2006–2013 was first evaluated as a standard reference for
a comparison with the downscaled results. The assessment
results were displayed in Table II, which shows that the origi-
nal TRMM 3B43 products over the YREB were overestimated
(average bias = 8.38%). The values of the three comparison
metrics (i.e., R2, MAE, and bias) for the downscaled TRMM
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Fig. 10. Comparison between (a) TRMM_Raw, (b) GWR_Gda, (c) RF_Gda, and (d) MARS_Gda over the YREB in July 2012.

TABLE II

AVERAGED METRICS FOR THE ORIGINAL TRMM DATA, DOWNSCALED TRMM DATA, AND DOWNSCALED TRMM DATA WITH RESIDUAL CORRECTION
BASED ON THE THREE DIFFERENT ALGORITHMS, VALIDATED WITH THE RAIN GAUGE DATA EACH MONTH DURING 2006–2013

data with and without residual correction based on the three
models were also provided in Table II. The downscaled results
using MARS (R2 = 0.68 and MAE = 27.14) on average,
in general, performed better than GWR (R2 = 0.60 and
MAE = 30.52) and RF (R2 = 0.65 and RMSE = 28.76)
before residual correction, but the Bias (Bias = 8.66%)
based on MARS is greater than GWR (Bias = 8.25%) and
RF (Bias = 8.62%). In the further, we can find that the
downscaled TRMM based on those models is not accurate
than the original TRMM data (R2 = 0.68). After residual
correction, the accuracy of downscaling products based on

MARS (R2 = 0.69 and MAE = 26.65) was slightly improved
better than the original TRMM data (R2 = 0.68 and MAE =
26.75), but GWR (R2 = 0.61 and MAE = 27.14) and
RF (R2 = 0.66 and MAE = 27.71) still produced lower
accuracy than the original TRMM data in terms of R2 and
MAE. Besides, all the residual-corrected downscaling results
still have been largely overestimated. The values of the three
metrics for the residual-corrected TRMM data show only a
slight or no improvement with the residual correction step.

In the residual correction stage, the rain gauge information
was not merged with the residual-corrected products; thus,
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TABLE III

AVERAGED METRICS FOR CALIBRATED TRMM DATA WITH AND WITHOUT RESIDUAL CORRECTION BASED ON THE THREE DIFFERENT ALGO-
RITHMS VALIDATED BY TENFOLD CV METHOD EACH MONTH DURING 2006–2013

the GDA calibration step is essential to enhance the accuracy
of the downscaled TRMM products. In this study, the tenfold
CV method was repeated 100 times, and the averaged value
was taken as the final estimate. The monthly averaged valida-
tion results for the calibrated TRMM data with and without
residual correction based on the three models were provided
in Table III. Compared with the TRMM_Raw data, all the
calibrated results with residual correction (GWR_ResGda,
RF_ResGda, and MARS_ResGda) showed improved accuracy
with increased R2 and decreased MAE and Bias on average,
and the MARS model performed best among the three models
and, then, the RF model. When the residual correction step
was ignored, the accuracy of GWR_Gda data rapidly dropped
(R2 = 0.64 and MAE = 27.88), and the result of RF_Gda
data changed little, while the accuracy of MARS_Gda data
was further slightly improved with higher R2 (0.73–0.74) and
decreased MAE (23.48–23.28). Therefore, the GWR algorithm
is relatively not a stable downscaling approach. As for the
GWR and MARS, the residual correction step was invalid
for the improvement of accuracy. The proposed MARS-based
downscaling-calibration procedure can improve the spatial
resolution and quality of the TRMM 3B43 products with the
best performance results.

Apart from the tenfold CV method, the hand-out CV method
was also employed to test the effectiveness of GDA calibra-
tion; 90% of the total rain gauge stations (210 stations) were
exposed to the GDA calibration procedure, and the remaining
10% (24 stations) were used for validation purposes only.
Because downscaling and residual correction are difficult to
improve the TRMM accuracy, Table IV only displays the
accuracy of TRMM_raw and the validation results with GDA
calibration. From Table IV, the performances of the three
models were similar with the results validated by the tenfold
CV method. The MARS model outperformed the GWR and
RF, and the residual correction step was still not necessary for
the MARS-based downscaling approach.

V. DISCUSSION

A. Spatial Variations of Different Estimated TRMM Results

In Section IV, the study results showed that the GWR-
and RF-based downscaled TRMM data contained some “boxy
artifact” structures. In this study, a diagnostic method was
used to distinguish these structures. The coefficient of variation
(CV ) is a statistical measure of the dispersion of data points in
a data series. This index is defined as the ratio of the standard
deviation σ to the mean μ, CV = (σ/μ), which is a useful
statistic for comparing the degree of variation from one data
series to another even if the means (μ) differ from one another.
Therefore, the CV index was chosen as a quantitative index
to evaluate the degree of spatial variation for the different
downscaled TRMM products. In this study, CV was calculated
with a 5 × 5 moving window. A low CV value represented a
relatively smooth region, whereas a high CV value represented
a region with sharp changes. Therefore, the CV image can
reveal the “boxy artifact” structures in the estimated TRMM
image.

The CV results of the calibrated TRMM products with resid-
ual correction [a subregion in Fig. 9(b)–(d)] were displayed
in Fig. 11(b)–(d). In addition, the original TRMM data [see
Fig. 8(a)] were resampled to a 1-km resolution with the
unchanged pixel values by nearest-neighbor interpolation, and
the CV image for this resampled TRMM data was also
calculated [see Fig. 11(a)]. The CV results shown in Fig. 11(a)
contained regular stripes around the borders of the original
TRMM pixels, whereas the results shown in Figs. 11(b)–(c)
contained some visible stripes. Fig. 11(d) indicates that the
boxy artifacts disappeared completely. Thus, the GWR- and
RF-based downscaling methods can not completely avoid
the visible differences, and the steps of residual correction
and GDA calibration were invalid for the removal of “boxy
artifact” structures as well, but the MARS-based method can
totally remove the “boxy artifact” structures.
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TABLE IV

AVERAGED METRICS FOR THE ORIGINAL TRMM DATA, CALIBRATED TRMM DATA WITH AND WITHOUT RESIDUAL CORRECTION BASED ON THE
DIFFERENT ALGORITHMS VALIDATED BY THE HAND-OUT CV METHOD EACH MONTH DURING 2006–2013

Fig. 11. Comparison between CV images of (a) resampled TRMM 3B43 precipitation data for a local area in the YREB in July 2012 and corresponding
(b) GWR_ResGda, (c) RF_ResGda, and (d) MARS_ResGda.

Fig. 12. Corresponding 5 × 5 matrices for (a) GWR_ResGda data, (b) RF_ResGda data, and (c) MARS_ResGda data with the maximum CV value for a
local area in the YREB in July 2012.

To assess the pixel-level anomalies, the maximum value
in a 5 × 5 window was calculated with Fig. 9(b)–(d). The
three corresponding 5 × 5 matrices in Fig. 9(b)–(d) were
displayed in Fig. 12(a)–(c). Fig. 12(a) shows that the pixel

values change dramatically within a 1-km distance, which
contradicts the basic assumption in this study. The element
values of Fig. 12(b) and (c) demonstrated the rationality
of the downscaled precipitation fields obtained with RF or
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TABLE V

DIFFERENCES BETWEEN THE THREE DOWNSCALING ALGORITHMS

Fig. 13. Systematic anomalies in the original TRMM data covering Erhai
Lake, Dianchi Lake, Yangzonghai Lake, Fuxian Lake, and Xingyun Lake in
October 2012.

MARS due to the acceptable differences in rainfall amounts.
In summary, the downscaled results obtained with GWR
and RF contained some unrealistic “boxy artifact” structures.
Moreover, the large difference in the GWR-based downscaled
rainfall field was unacceptable, but the MARS method can
completely overcome the two deficiencies.

Table V lists the differences between the three downscaling
algorithms. As for the GWR downscaling algorithm, the esti-
mation of the regression coefficients is obtained by the coarse
TRMM data pixel by pixel at a 0.25◦ resolution (as shown
in Table V), which caused the unsmooth characteristic in

Fig. 14. Ratio of average values of anomalies to surrounding TRMM pixels
each month in 2006–2013.

formula (15). Some boxy artifacts in GWR-based downscaled
TRMM have resulted from the “unsmooth” multiple regression
models. The splitting mechanism of the RF model divides
the coarse TRMM pixels into multiple clusters and constructs
each regression tree for each corresponding TRMM cluster (as
shown in Table V). The recursive partitioning regression mod-
els (e.g., CART and RF) are piecewise constant and sharply
discontinuous at split boundaries [40]. Thus, the estimated
1-km resolution TRMM data based on RF were also lacking
in smoothness.

As a regression tree generalization, the difference between
the MARS and other regression trees (e.g., CART and RF)
is that the “hard” binary splits are replaced by “smooth”
BFs [69]. The MARS model divided the entire study area
into several subregions with the selected BFs. The scope of
each subregion was determined by the effective domain of the
associated BF (as shown in Table V) when the BF is not equal
to 0 but not constricted by the boundaries of the coarse TRMM
pixels. The high-resolution precipitation in each subregion was
then estimated by each independent cubic spline function.
It is clear that the characteristic of each independent cubic
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Fig. 15. Comparison between (a) TRMM_Raw, (b) GWR_Raw, (c) RF_Raw, and (d) MARS_Raw over the YREB in October 2012.

BF was smooth in each independent subregion. In addition,
the cubic spline BFs had continuous derivatives at the splitting
knots to ensure the smoothness of the entire study area [see
formulas (8)–(11)] [48]. Therefore, MARS is a highly adaptive
and flexible algorithm for simulating precipitation distribution
at a fine scale.

B. Denoising Effect of MARS-Based Downscaling Model

In this study, we found that systematic anomalies in the
original TRMM products over the YREB existed in numerous
months in 2006–2013. These overestimated outliers in the
TRMM data were in the location of various lakes, including
Erhai Lake, Dianchi Lake, Yangzonghai Lake, Fuxian Lake,
and Xingyun Lake. Fig. 13 displays the outliers in the original
TRMM data in October 2012 as an example. Assessing the
outliers by comparing them with neighboring TRMM pixels
is feasible despite the absence of rain gauges in the location of
the outliers. The ratios of the average values of the anomalies
(for Dianchi Lake, Yangzonghai Lake, Fuxian Lake, and
Xingyun Lake) to the average values of the eight neighbors
adjacent to the outliers in 2006–2013 are shown in Fig. 14.
The ratio of 7.63 in October 2012 confirmed the obvious
overestimation of the anomalous pixels.

To assess the ability of the different models to cope with the
systematic anomalies in the TRMM data, Fig. 15 exemplifies
the different downscaled results to evaluate the robustness
of each model. Fig. 15(b) and (c) indicates that the down-
scaling models using GWR and RF were prone to causing
pixel-level anomalies at a 1-km resolution. GWR is a local
regression algorithm that generates regression coefficients by
searching adjacent data to estimate a multiple regression
model [see formula (15)] for each point. For the anom-
alous TRMM pixels, the closer adjacent anomalous pixels

are weighted greater than the adjacent normal TRMM pixels;
thus, GWR is invalid for the noise reduction of TRMM
anomalies. In areas with water bodies, the pixel values
of the anomalous TRMM data and auxiliary environmental
data at a 1-km resolution changed sharply. RF leads to
pixel-level anomalies in areas with systematic anomalies in
the original TRMM products, as it produces discontinuous
output with an uneven response surface [70]. Inversely, the
high-resolution precipitation estimation based on MARS was
computed using smooth spline functions. Thus, the downscaled
result was less sensitive to the original pixels with sharp
variance.

To compare the downscaled results in Fig. 15 more clearly,
Fig. 16 further displays the downscaling results of the TRMM
anomalies in Fig. 13 over the region marked with ②. Fig.
16 demonstrates the proposed method outperformed the other
two methods in noise reduction. The values of the original
TRMM_Raw data ranged from 4.31 to 169.93 [see Fig. 16(a)],
whereas the MARS_Raw data ranged from 1.89 to 54.55
[see Fig. 16(d)]. By contrast, the GWR_Raw and RF_Raw
data retained overestimated values, which ranged from 0 to
245.12 [see Fig. 16(b)] and 11.23 to 107.91 [see Fig. 16(c)],
respectively. The GWR- and RF-based downscaled results
were obviously influenced by the TRMM anomalies, but the
downscaled TRMM was improved by the use of MARS, with
its effective noise reduction capability. After applying the GDA
calibration, the calibration results with and without residual
correction were displayed in Fig. 17(a)–(c) and (d)–(f), respec-
tively. We can find the step of residual correction added the
noise from the TRMM_Raw data into the GWR_ResGda,
GWR_ResGda, and GWR_ResGda data [41]. When ignoring
the residual correction step and taking advantage of the
noise reduction ability of the MARS model, the MARS-based
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Fig. 16. Comparison between (a) TRMM_Raw data with systematic anomalies in October 2012 and corresponding (b) GWR_Raw, (c) RF_Raw, and
(d) MARS_Raw.

Fig. 17. Comparison between (a) GWR_ResGda, (b) RF_ResGda, (c) MARS_ResGda, (d) GWR_Gda, (e) RF_Gda, and (f) MARS_Gda in October 2012.

downscaling-calibration procedure can achieve the noise-free
result [see Fig.17(f)].

C. Importance of Variables

To explore the contribution of the variables to precipitation,
the relative variable importance can be estimated with analysis
of variance (ANOVA) decomposition criteria provided by the
MARS method. To assess the variable importance, we selected
the “nSubsets” criteria, which count the number of subsets
including the variable. The larger the number of subsets
containing the variable, the more important the variable.

Fig. 18(a) shows the results of the variable importance
estimation for each environmental factor. Longitude and lat-
itude provided significant contributions to the MARS model.
Conversely, the EVI provided no contribution to the MARS
model for July 2012. To prove the rationality of the built
MARS model for July 2012, the correlation coefficients (CCs)
between precipitation and each environmental variable were
shown in Fig. 18(b). The MARS model deleting the EVI factor,
as its relationship with precipitation (CC = 0.03) was the
weakest in July 2012 over the YREB, is reasonable because the
time-lagged vegetation index demonstrated poor explanatory

Fig. 18. Radar charts of (a) selected nSubsets of each environmental variable
and (b) CCs between precipitation and environmental variables in July 2012.

power for precipitation in several months. It should be noted
that the orders of the importance and correlation of variables
are not necessarily identical (e.g., LSWI) because of the
different calculation approaches.

Fig. 19(a) displays the selected numbers for each factor
in the MARS models and average variable importance for
96 months in 2006–2013. Fig. 19(b) indicated that each
MARS model selected longitude, latitude, and the DEM.
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Fig. 19. Radar charts of (a) selected numbers of each environmental variable
in the MARS model for all months and (b) average importance of each
environmental variable in the MARS model for all months.

Meanwhile, the average variable importance values of the
two geolocation variables were higher than those of the other
factors, followed by the DEM, LSTD, and VTCI, which can
be attributed to the spatial heterogeneity of precipitation [27]
and is consistent with the conclusion of Jing et al. [40]. The
EVI and LSTN indices showed similar average importance
values (approximately 0.08). However, the two water indices
(i.e., LSWI and NDWI), with the lowest average importance
values, were excluded in many months, which implied that
water indices were not indispensable factors when explaining
the precipitation over the YREB. Therefore, the MARS model
has the advantage of being able to detect effective variables
related to monthly precipitation, which can avoid certain rela-
tively ineffective variables being added to the model, thereby
allowing it to achieve the best precipitation estimation results
in this study.

D. Advantages and Limitations of Proposed MARS-Based
Downscaling Scheme

Numerous studies highlighted the accuracy of monthly
downscaled precipitation products. However, few studies
focused on the details of spatial variation in the down-
scaled rainfall field. Although Verlinde [48] pointed out the
irrationality of “boxy artifact” anomalies in monthly down-
scaled precipitation products, these phenomena were neglected
in many of the aforementioned studies. In this study, we paid
attention to the spatial variation characteristics of the down-
scaled products and developed an MARS-based downscaling
framework. The downscaled results proved that the MARS
model can effectively avoid the “boxy artifact” phenomenon
through its characteristics of local modeling and smoothness.
In addition, the MARS model can adaptively select the effec-
tive variables in each specific month, whereas the performance
of the other models, such as the GWR model, will degrade
rapidly if unnecessary variables are considered.

The estimation of TRMM results based on the MARS
model achieved an improved spatial resolution and higher
accuracy compared with the original TRMM data. However,
this downscaling-calibration scheme has several limitations,
which may cause uncertainties in the downscaled results.
The TRMM datasets over areas where precipitation was
interrupted by human factors (e.g., agriculture and build-
ings) or natural factors (e.g., water bodies and snow) could
not be downscaled directly using the MARS model. Aux-

Fig. 20. Change curve of GCV in the forward selection and backward
elimination processes.

iliary data preprocessing was performed to estimate such
areas by averaging the surrounding pixels, which may cause
some uncertainties in the areas. Furthermore, the proposed
MARS-based downscaling-calibration procedure can only be
applied to basins with gauge measurements. The inconsistency
between the original TRMM data and rain gauge data may
enlarge the difference between the downscaled TRMM data
and real precipitation data when the GDA calibration is applied
over several months.

VI. CONCLUSION

In this study, a new downscaling-calibration procedure
based on the MARS model is developed to estimate
satellite-based TRMM 3B43 monthly precipitation data over
the YREB from 0.25◦ to 1 km. The MARS model flexibly
separates the study area into subregions and constructs the
relationship between precipitation and explanatory variables
over each subregion by using the smooth spline function.
As a result, the MARS model can successfully avoid “boxy
artifact” anomalies in the downscaled TRMM data, which are
common problems in several widely used regression models
(e.g., polynomial regression and GWR) and other regression
tree models (e.g., CART and RF). With the satisfactory
generalization ability of the MARS model, the downscaled
TRMM data obtained with the MARS model show the most
reasonable spatial distribution patterns and the best denoising
results. However, pixel-level anomalies occur in the GWR-
and RF-based downscaled results. The performance of the
downscaled products based on the different downscaling
algorithms is validated using ground observations from rain
gauges. The MARS model demonstrates the best estimation
performance, but the validation accuracy shows that the resid-
ual correction step is invalid for improving the quality of
the downscaled TRMM data and even produces noise data
from system anomalies in the original TRMM data. Thus,
the residual correction step should not be considered in the
downscaling-calibration framework. After the GDA calibration
step, the calibrated downscaled TRMM data based on MARS
are more accurate than the original TRMM data with the effect
of noise reduction, whereas the results based on GWR and
RF models show lower accuracy. Therefore, the MARS-based
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downscaling-calibration procedure is a promising approach
for satellite precipitation downscaling research. Through the
backward elimination pruning step, the MARS model can
select the most effective variables in each month. In this study,
the three variables of longitude, latitude, and the DEM are
selected by all the MARS models and, thus, can be considered
as essential predictors of precipitation over the YREB. The
variable importance of the geographic variables is higher than
that of the other variables in the MARS model, and the
two water indices (i.e., LSWI and NDWI) provide the least
contribution to precipitation.

In future works, we will attempt to further enhance the
quality of satellite-based downscaled precipitation products.
First, the combination of satellite precipitation datasets and
hydrological models for downscaling is worth exploring,
which can be extended to small-basin-scale precipitation
downscaling. Second, a highly robust calibration method
should be developed to improve the calibration accuracy of
low-quality TRMM data. Third, the MARS model shows
considerable potential in generating high-temporal-resolution
precipitation data. Therefore, exploring the MARS-based
downscaling framework or other techniques to obtain high-
temporal-resolution (daily or subdaily) satellite-based precip-
itation datasets would be worthwhile.

APPENDIX

The process of establishing the MARS model for
July 2012 was shown in the following. Fig. 20 illustrates the
curve of the GCV value of the established MARS model as
the selected BF numbers changed. The GCV value decreased
rapidly as the BF numbers increased from 1 to 78 and then
decreased slowly as the BF numbers changed from 78 to 120.
The forward selection process stopped when 120 preset BFs
were added to the model. After the backward elimination
process, in this example, 78 cubic BFs were selected based
on the minimum GCV value. To test the stability of this
established MARS model, a tenfold CV strategy was used
to perform an in-depth assessment of the robustness of this
model. All the TRMM precipitation samples and aggregated
auxiliary data for July 2012 were randomly divided into ten
equal sample sets. The idea was to take nine sample sets from
the ten sample sets to establish the MARS model based on the
GCV criterion. This step was repeated ten times. The selected
BF numbers for the ten MARS models were 71, 77, 77, 72,
74, 81, 76, 70, 79, and 77. The selected BF numbers are all
close to 78, which confirmed that the proposed MARS model
was adequately robust to choose the best BF numbers based
on the GCV criterion.
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