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Abstract— In the task of change detection (CD), high-resolution
remote sensing images (HRSIs) can provide rich ground object
information. However, the interference from noise and com-
plex background information can also bring some challenges
to CD. In recent years, deep learning methods represented
by convolutional neural networks (CNNs) have achieved good
CD results. However, the existing methods have difficulty in
detecting the detailed change information of the ground objects
effectively. The imbalance of positive and negative samples can
also seriously affect the CD results. In this letter, to solve the
above problems, we propose a method based on a multiscale fully
convolutional neural network (MFCN), which uses multiscale
convolution kernels to extract the detailed features of the ground
object features. A loss function combining weighted binary
cross-entropy (WBCE) loss and dice coefficient loss is also
proposed, so that the model can be trained from unbalanced
samples. The proposed method was compared with six state-of-
the-art CD methods on the DigitalGlobe dataset. The experiments
showed that the proposed method can achieve a higher F1-score,
and the detection effect of the detailed changes was better than
that of the other methods.

Index Terms— Change detection (CD), combined loss function,
high-resolution remote sensing images (HRSIs), multiscale fully
convolutional neural network (MFCN).

I. INTRODUCTION

CHANGE detection (CD) is the process of identifying
differences in the state of an object or phenomenon by

observing it at different times [1]. It is widely applied in land
cover, urban expansion, natural resource monitoring, disaster
monitoring, and military fields. With the rapid development
of remote sensing technology, high-resolution remote sensing
images (HRSIs) are now being widely used in CD. HRSIs
can provide more detailed ground object information, but
due to the limitations of the imaging conditions, interference
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caused by noise and background information also appears,
which undoubtedly increases the difficulty of the ground object
information processing.

In this letter, existing CD methods are roughly classified
into traditional methods and learning-based methods. The
traditional methods include algebra-based methods [2], [3],
transformation-based methods [4]–[6], and advanced mod-
els [7]–[9]. The algebra-based methods use basic mathe-
matical calculations like image differencing, image ratioing,
and change vector analysis (CVA) to obtain a change map,
and obtain the CD result through threshold segmentation.
The transformation-based methods are principal component
analysis (PCA) and tasseled cap transformation (TCT), which
reduce the redundant information by performing a certain
transformation on the original multitemporal remote sensing
images, and then implement CD by analyzing the key infor-
mation. The main idea behind the advanced CD models is the
conversion of the image reflectance to physical parameters.
In general, the traditional CD methods are usually easy to
implement and understand, but their threshold selection relies
on researcher’s experience, and they cannot provide complete
change matrices. Under these circumstances, the traditional
CD methods have difficulty in extracting robust features from
the complex ground object information of HRSIs.

In recent years, because of their excellent feature learning
and expression capabilities, many scholars have attempted to
introduce deep learning methods to the CD task, especially
the methods represented by convolutional neural networks
(CNNs). For example, a pixel-level street view change detec-
tion network (CDNet) was proposed by Alcantarilla et al. [10].
Based on a common U-net architecture, this method can
detect change information, but the accuracy is not satisfac-
tory. In [11], the three methods of FC-EF, FC-Siam-conc,
and FC-Siam-diff were proposed. FC-EF is an early fusion
network based on the U-net framework, which uses skip
connections to combine high- and low-level features for
joint learning. In order to learn the similar features between
the original bitemporal images, FC-Siam-conc introduces a
Siamese neural network into FC-EF. For emphasizing the
difference features from FC-Siam-conc, after calculating the
difference of the same layer features of the Siamese network,
FC-Siam-diff uses skip connections to guide the network
to learn the difference characteristics between the bitem-
poral images. These methods are not very effective when
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Fig. 1. Illustration of the proposed CD method.

used in high resolution, especially when detecting detailed
features.

In summary, most of the existing CD methods are not
ideal for HRSI CD. In order to solve this problem, an end-
to-end CD method for HRSIs based on a multiscale fully
convolutional neural network (MFCN) framework is proposed.
The main contributions of this letter are as follows. Firstly, the
multiscale convolutional architecture is used to improve the
model’s detection ability in small changed features such as
roads. Secondly, by combining weighted binary cross-entropy
(WBCE) loss and dice coefficient loss, the network’s training
efficiency on unbalanced samples is improved.

The rest of this letter is organized as follows. Section II
introduces the basic principles of the proposed method, includ-
ing the design of the network framework and the loss function.
Section III describes the experiments conducted in this study.
Finally, we draw our conclusions in Section IV.

II. METHOD

Fig. 1 shows the overall architecture of the proposed
method, which is based on an end-to-end framework of a
fully convolutional network. A multiscale convolution module
with parallel branch structure is utilized to learn features of
different scales. In the network training process, the combined
loss function is used to alleviate the negative impact of the
class imbalance on the CD results.

A. Fully CNN Framework

CNNs are usually connected with several fully connected
layers after the convolutional layers, and the feature map
generated by the convolutional layers is mapped into a
fixed-length feature vector. The classic CNN structure is suit-
able for image-level classification and regression tasks, where
a numerical probability description of the entire input image is
required. Unlike CNNs, fully convolutional networks (FCNs)
are obtained by replacing the last fully connected layer in
the CNN with convolutional layers. A deconvolution layer
is then used to up-sample the feature map obtained by the
last convolutional layer to restore it to the same size as the

input image, so that a prediction can be generated for each
pixel while preserving the space in the original input image
information. Pixel-by-pixel classification is then performed on
the up-sampled feature map. Finally, a map that has been
labeled pixel by pixel is output.

In this letter, we propose a CD framework based on an FCN.
The model can be divided into two main parts, one of which is
the encoding structure, and the other is the decoding structure.
At the beginning, bitemporal images are stacked in the channel
dimension and input into the network for the following training
process. In the encoding part, the convolutional layers and
the max pooling layers are used to learn different levels of
the input feature. After the feature map passes through the
max pooling layer, its length and width will be reduced to
half of the original and its feature dimensionality will be
doubled. Then, in the decoding part, the convolutional layers
and the deconvolution layers are used to perform more abstract
feature learning and gradually restore the size of the feature
map to the size of the input image. After passing through the
deconvolution layer, the feature map’s length and width will
become twice of the original and its feature dimensionality
will be reduced by half. Skip connections are utilized between
the encoding and decoding structures to combine the deep and
shallow features for joint feature learning. At the end of the
network structure, a softmax function is used to output the
probability of each pixel being changed or unchanged. Finally,
the class with the highest probability is selected to be the
predicted class of the pixel.

B. Multiscale Convolution Module
Ordinary neural networks usually use convolutional layers

with a filter size of 3 × 3 for feature learning. In order
to learn multiscale features of the HRSI, and inspired by
Szegedy et al. [12], we propose a parallel multibranch struc-
ture, which is called the multiscale convolution module.
As shown in Fig. 2, this module is composed of four parallel
branches, which are convolution kernels with the size of 1 ×
1, 3 × 3, 5 × 5, and the max pooling layer with the size of 3 ×
3. Among the different branches, the 1 × 1 convolution branch
mainly learns pixel-level features. The 3 × 3 convolution
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Fig. 2. Structure of the multiscale convolution module.

branch performs feature learning in the neighborhood. The
5 × 5 convolution branch performs feature learning in a
larger receptive field. Finally, the last 3 × 3 max pooling
layer focuses on the learning of salient features. Crucially, the
1 × 1 convolution used at the beginning of each branch is a
bottleneck design. It mainly controls the number of parameters
by compressing data in the channel dimensionality. Finally, all
four branches are merged to obtain a general feature.

C. Loss Design

The class imbalance of the positive and negative samples
is a common problem in CD. In fact, the number of negative
samples (unchanged pixels) nearly always exceeds the number
of positive samples (changed pixels). Therefore, in the process
of neural network training, the network will learn more
information about the negative samples that are not really
of concern while neglecting the learning of positive samples.
To solve this problem, a combined loss function composed of
WBCE loss and dice coefficient loss is proposed to guide the
network training process.

1) WBCE Los: WBCE loss is based on binary cross-entropy
(BCE) loss, which is a measure of the difference between two
probability distributions of a given random variable or event
set. It is widely used in image classification and semantic
segmentation tasks. CD is often regarded as a pixel-level
binary classification problem, so binary cross-entropy loss can
be directly used in CD tasks. The calculation formula for
binary cross-entropy loss is as follows:

LBCE = −
N∑

i=0

y(i)logŷ(i) + (
1 − y(i)

)
log

(
1 − ŷ(i)

)
(1)

where y(i) is the i th pixel ground-truth label, which has a
value of 0 or 1, and ŷ(i) is the probability of the i th pixel
being predicted as changed or unchanged. In the process of
classifying the i th pixel into changed or unchanged based
on bitemporal images, the number of changed pixels will
be much smaller than that of unchanged pixels. The model
tends to directly classify pixels into the unchanged type, which
seriously affects the CD result. To solve this problem, WBCE
loss is obtained by weighting the binary cross-entropy loss.

The calculation formula is as follows:

LWBCE = −
N∑

i=0

βy(i)logŷ(i) + (
1 − y(i)

)
log

(
1 − ŷ(i)

)
(2)

where β is the proportion of negative samples in the total
sample. The purpose is that, when the number of samples is
unbalanced, the model can better take the learning of positive
samples into account and obtain a better CD effect.

2) Dice Coefficient Loss: Dice coefficient loss is a function
used to measure the similarity of different variable sets, so it
is commonly utilized to calculate the similarity between pixels
of two sample sets. The calculation formula is as follows:

LDice = 1 − 2y(i) ŷ(i)/(y(i) + ŷ(i)). (3)

Dice coefficient loss is often used when the samples are
extremely unbalanced. However, if it is used in a general
situation, it can make the training unstable.

3) Combined Loss:

Lc = LWBCE + λLDice (4)

where λ is a parameter that balances LWBCE and LDice.

III. EXPERIMENTS

This section is divided into two main parts. In Section III-A,
the HRSI CD dataset [13] and the optimization method
are introduced. In Section III-B, the quantitative evaluation
metrics are presented, followed by comparisons between the
proposed method and the six state-of-the-art CD methods
proposed in [10], [11], [14], and [15]. We also describe the
experiments conducted on the choice of loss function and
the ablation experiments conducted with regard to the data
augmentation.

A. Implementation Details
1) Dataset Description: DigitalGlobe is a real remote sens-

ing dataset built by Lebedev et al. [13] in 2018, for which
the raw data were obtained from Google Earth. The dataset
has strong seasonal variation, and its spatial resolution varies
from 3 to 100 cm. The DigitalGlobe dataset contains a large
number of different types and scales of changed features, such
as cars, buildings, roads, and different land-cover types, which
are quite challenging for the CD task. The dataset consists
of 16 000 sets of images with a size of 256 × 256, including
10 000 sets of training data, 3000 sets of verification data, and
3000 sets of test data.

2) Optimization: The proposed method was implemented
with TensorFlow as the backend, which was powered by a
workstation with an Intel(R) Core (TM) i7-9700K CPU at
3.6 GHz, 32 GB of RAM, and a single NVIDIA GeForce
RTX 2080 Ti GPU. During the training process, the Adam
optimizer with a learning rate of 0.004 was applied. Based on
the GPU memory, the batch size was set to 40 for 100 000
iterations, and the learning rate was reduced by 0.5 after every
2500 iterations. As the proposed architecture is an FCN-based
model, it is easy to train the model in an end-to-end manner
for an arbitrary size of input image.
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TABLE I

QUANTITATIVE EVALUATION OF THE DIFFERENT APPROACHES

B. Results and Evaluation

1) Evaluation Metrics: In order to evaluate the perfor-
mance of the proposed method, the method was evaluated by
comparing the prediction result with the ground-truth labels,
and five evaluation metrics were calculated. The evaluation
metrics are the precision (P), recall (R), F1-score (F1), overall
accuracy (OA), and mIoU. In the CD task, a high precision rate
represents a low false detection rate, while a high recall rate
means a low missed detection rate. The F1, OA, and mIoU are
metrics that can reflect the comprehensive performance of the
method, where the higher the score, the better the performance.
The formulas for these five metrics are as follows:

P = TP/(TP + FP) (5)

R = TP/(TP + FN) (6)

F1 = 2PR/(P + R) (7)

OA = (TN + TP)/(TN + FN + FP + TP) (8)

mIoU = (TP/(FN + FP + TP) + TN/(FP + FN + TN))/2
(9)

where TP is the number of pixels that was correctly classified
as changed, TN is the number of pixels that was correctly
classified as unchanged, FP is the number of pixels that was
classified as changed but was not actually changed, and FN
is the number of pixels that was mistakenly classified as
unchanged.

2) Comparison of the Proposed Method and the Six Other
State-of-the-Art CD Methods: The proposed method was com-
pared with the six other state-of-the-art CD networks proposed
in [10], [11], [14], and [15] as listed in Table I. From Table I,
it can be seen that the proposed method surpasses the six com-
parison methods in all five metrics and exceeds FC-Siam-diff
by 0.5%, 11.3%, 6.6%, 1.4%, and 6% in P , R, F1, OA, and
mIoU, respectively. By taking advantage of the combined loss
function, as shown in Figs. 3 and 4, the proposed method
can detect changed samples effectively when the positive
and negative samples are extremely imbalanced. For instance,
the changed roads and linear objects in areas 1 and 2 can be
detected, while the comparison methods cannot detect these
changed features effectively. Furthermore, Figs. 5 and 6 show
that when the sample distribution is relatively balanced, both
the proposed method and the comparison methods can better
implement CD. However, due to the proper adoption of the
multiscale convolution module, in the detection of the outlines
and details of the ground object features in areas 3 and 4, the
proposed method shows a much better performance.

3) Experiment With Different Loss Functions: In this sec-
tion, we evaluate the effect on the model of using BCE loss,

Fig. 3. Visual comparison of the CD results obtained using the different
approaches for area 1. (a) Image T1. (b) Image T2. (c) Ground-truth
map. (d) PCA-k-means. (e) SFA. (f) CDNet. (g) FC-EF. (h) FC-Siam-conc.
(i) FC-Siam-diff. (j) Proposed method. The changed parts are marked in white,
while the unchanged parts are in black.

Fig. 4. Visual comparison of the CD results obtained using the different
approaches for area 2. (a) Image T1. (b) Image T2. (c) Ground-truth
map. (d) PCA-k-means. (e) SFA. (f) CDNet. (g) FC-EF. (h) FC-Siam-conc.
(i) FC-Siam-diff. (j) Proposed method. The changed parts are marked in white,
while the unchanged parts are in black.

Fig. 5. Visual comparison of the CD results obtained using the different
approaches for area 3. (a) Image T1. (b) Image T2. (c) Ground-truth
map. (d) PCA-k-means. (e) SFA. (f) CDNet. (g) FC-EF. (h) FC-Siam-conc.
(i) FC-Siam-diff. (j) Proposed method. The changed parts are marked in white,
while the unchanged parts are in black.

TABLE II

QUANTITATIVE EVALUATION OF THE DIFFERENT LOSS FUNCTIONS

focal loss, WBCE loss, and the proposed combined loss. It can
be found from Table II that the proposed model achieves the
best effect when the combined loss is used, and the worst
effect is seen when only the binary cross-entropy loss is
used.
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Fig. 6. Visual comparison of the CD results obtained using the different
approaches for area 4. (a) Image T1. (b) Image T2. (c) Ground-truth
map. (d) PCA-k-means. (e) SFA. (f) CDNet. (g) FC-EF. (h) FC-Siam-conc.
(i) FC-Siam-diff. (j) Proposed method. The changed parts are marked in white,
while the unchanged parts are in black.

TABLE III

QUANTITATIVE EVALUATION OF THE DIFFERENT λ

Fig. 7. Effect of data augmentation on the accuracy of our method.

4) Effect of λ on the Accuracy of Our Method: The parame-
ter λ in the combined loss function is essential to balance the
WBCE loss and the dice coefficient loss. In order to verify the
sensitivity of λ, we varied its value from 0 to 1 and obtained
results shown in Table III. When λ was set to 0.75, the effect of
the method was the worst. While λ was set to 0.5, the accuracy
of all metrics achieved the highest, indicating that when λ is
0.5, the experiment can achieve the best effect.

5) Effect of the Data Augmentation Strategies: Because
the proposed method requires a large amount of data for
parameter learning, and to prevent the model from overfitting,
the 10 000 sets of training data were augmented in this exper-
iment. Specifically, the images were randomly flipped up and
down, and left and right. In addition, the hue, brightness, and
saturation of the images were randomly augmented. Random
rotations of 90◦, 180◦, and 270◦ were also applied. It can be
seen from Fig. 7 that, after the data augmentation, the results of
the proposed model are improved by 1.5%, 8.1%, 5.1%, 1.1%,

and 4.7% in the five metrics of P , R, F1, OA, and mIoU,
respectively. Therefore, it can be concluded that the data
augmentation strategies used in this experiment are meaningful
for the proposed method.

IV. CONCLUSION

In this letter, we have presented a CD method based on an
FCN framework. By adding multiscale convolution modules to
learn features of different scales, the effect of HRSI CD can be
improved. The combination of WBCE loss and dice coefficient
loss can relieve the negative impact of sample imbalance
on the detection results. Experiments on the DigitalGlobe
dataset fully verified that the proposed method is superior
to the six other state-of-the-art CD methods. The proposed
method is a supervised learning method, which relies on lots
of ground-truth samples to train the model. In our future work,
we will attempt to perform CD with fewer samples and also
without ground-truth samples.
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