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Abstract: While geometric registration has been studied in remote sensing community for many
decades, successful cases are rare, which register images allowing for local inconsistency deforma-
tion caused by topographic relief. Toward this end, a region-by-region registration combining the
feature-based and optical flow methods is proposed. The proposed framework establishes on the
calculation of pixel-wise displacement and mosaic of displacement fields. Concretely, the initial
displacement fields for a pair of images are calculated by the block-weighted projective model and
Brox optical flow estimation, respectively in the flat- and complex-terrain regions. The abnormal
displacements resulting from the sensitivity of optical flow in the land use or land cover changes,
are adaptively detected and corrected by the weighted Taylor expansion. Subsequently, the dis-
placement fields are mosaicked seamlessly for subsequent steps. Experimental results show that the
proposed method outperforms comparative algorithms, achieving the highest registration accuracy
qualitatively and quantitatively.

Keywords: complex terrain; feature-based; land cover or use changes; optical flow; region-by-region;
remote sensing images registration

1. Introduction

The spatial position consistency of the same objects in multiple images guarantees
the subsequent applications accuracy of remote sensing [1,2], medical imaging [3,4] and
computer vision fields [5,6]. It is usually enforced by the means of geometric registration,
which is a process of aligning different images of the same scene acquired at different times,
viewing angles, and/or sensors [7].

In particular, quite a few algorithms have been proposed over the past decades for
remote sensing images registration, broadly falling into two categories [8,9], i.e., the area-
based methods and the feature-based methods. The area-based methods register images
with their intensity information directly, whereas they are disabled to cope with large rota-
tion and scale changes [10]. Consequently, more attention has been paid to feature-based
methods [10–16]. The sensed image is aligned to the reference image by their signifi-
cant geometrical features rather than intensity information, including feature extraction,
feature matching, transformation model construction, coordinate transformation, and re-
sampling [14]. Taking the feature point extraction as an example, the scale-invariant feature
transform (SIFT) [17], the speeded-up robust feature (SURF) [18], and the extended SIFT
or SURF [15,16] are well-known operators. The exhaustive search method [17] and the
KD-tree matching algorithm are popular representatives of feature matching. The random
sample consensus (RANSAC) [19] or maximum likelihood estimation sample consensus
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(MLESAC) [20] is applied to purify the matched features [21], namely outliers elimination.
Successively, designing the geometric relationships for coordinate transformation, the
global transformation model is the traditional and typical representation [9], which usually
results in local misalignments for local and complicated deformations.

The local transformation model designs varied mapping functions for a whole image,
including piecewise linear mapping function (PLM) [22], weighted mean (WM), multi-
quadric (MQ) [23], thin-plate spline (TPS) [24], and two-stage local registration model
BWP-OIS [25]. The registration accuracy of the local model highly depends on the model-
ing type and is further determined by the distribution, number and position precision of
feature points [23]. Nevertheless, the feature point extraction of the complex-terrain image
is arduous due to the monotonous texture and degraded image quality. In addition, the
pixel correspondences between images destroyed by varied geometric deformations could
not be precisely acquired by current local models [26]. That is to say, it is difficult to achieve
high-precision registration in the complex-terrain region under the feature-based frame-
work although it performs well in most scenarios. To this end, a pixel-wise registration
method should be taken into consideration.

Optical flow estimation is a pixel-wise algorithm firstly introduced by Horn and
Schunch [27] in the field of computer vision for motion estimation. Afterwards, some
modified models are proposed for high-precision motion estimation of video images [28,29].
As the geometric deformation of the corresponding pixels in multiple remote sensing
images is similar to the object motions in successive frames, the optical flow algorithm was
available for remote sensing images registration. However, its applications are rare in the
remote sensing field. Only in recent years, the sparse optical flow algorithm is conducted
for multi-modal remote sensing images registration on a single scenario, which does not
need to process the abnormal displacements caused by land use or land cover (LULC)
changes [26,30,31].

Due to the large field of view, a remote sensing image generally covers a large scene,
containing the residential region, mountainous region, and agricultural region, etc. simul-
taneously. Different regions in the same scene involve locally varied geometric distortions
with the topographic relief, for example, the complicated deformation in the complex-
terrain region and locally consistent geometric distortion in the flat-terrain region. More-
over, LULC changes are frequent phenomena in multiple remote sensing images, which is
an obstacle for pixel-wise registration algorithms to some extent. For the aforementioned
two points, we propose a region-by-region registration combining feature-based and optical
flow algorithms for remote sensing image, which is based on the mosaic of their individual
displacement field. The main contributions of this paper include two aspects. One gives
a novel region-by-region registration framework achieving highly precise registration of
the whole scene considering the topographic relief. The other is to propose a correction
approach for abnormal optical flow field caused by the LULC changes, integrating the
adaptive detection and seamless correction by the weighted Taylor expansion.

The rest of this paper is organized as follows. The details of the proposed registration
method are introduced in Section 2. The experimental results and verification from the
visual and quantitative perspectives are provided in Section 3. Subsequently, the core
parameter analysis is performed in Section 4. Finally, our conclusions are summarized in
Section 5.

2. Methodology

Allowing for the varied geometric distortions from the topographic relief in different
regions of the remote sensing image, a novel region-by-region registration algorithm is
proposed, as shown in Figure 1. Firstly, the initial pixel-wise displacement fields are
calculated by the BWP model and the BOF estimation in the flat-terrain and complex-
terrain regions, respectively. Secondly, the abnormal displacements correction is conducted
by integrating the feature-based GP model for adaptive detection with the weighted Taylor
expansion for thorough modification. Afterwards, the displacement fields of flat- and
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complex-terrain regions are mosaicked to generate a seamless one. Ultimately, the aligned
image is obtained by the coordinate transformation and resampling.
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Figure 1. The flow-chart of the processed algorithm.

2.1. Initial Displacements Calculation

As mentioned above, remote sensing images to be registered are divided into a series
of flat- and complex-terrain parts in accordance with their topographic characteristics for
initial displacement calculation. Since the elevation data is the typical representation of
the terrain characteristics, among many sets of elevation data, considering the stability
and wide availability, the digital elevation model (DEM) of the optimized shuttle radar
topography mission (SRTM) was employed in our experiments. The local elevation differ-
ence (LED) indicating the terrain differences among the adjacent DEM cells in a specified
window, is screened as the criterion of region division. Herein, LED is calculated by the
elevation differences from the central cell to its eight neighbors.

LEDi = max(DEMi)−min(DEMi)

mask_LEDi =

{
1 LEDi > Tr
0 LEDi ≤ Tr

(1)

where DEMi represents the elevation in the i-th local window and LEDi is the local terrain
difference of the central pixel. mask_LEDi is the terrain mask, and it equals one when
LEDi is larger than the threshold Tr, otherwise zero. Tr is an integer ranging from five to
eight, which is empirically set as seven in the experiment. However, there are inevitable
fragmentary blobs, e.g., a small hole belonging to the complex-terrain region appears in
the flat-terrain region. The hole-filling algorithm [32] and the morphological expansion
approach [33,34] are utilized for terrain mask post-processing, where the expansion radius
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is set as ten. In this way, images are divided into different parts with two kinds of terrain
characteristics. The displacement fields of the flat- and complex-terrain regions will be
calculated by the feature-based BWP model and BOF estimation, respectively.

2.1.1. Displacements Calculation in the Flat-Terrain Region

In the flat-terrain region, the feature-based method is utilized to calculate the pixel-
wise displacements between the reference and sensed images. The feature points are
extracted by SIFT and matched by the nearest neighbor distance ratio (NNDR) algorithm
for transformation model construction [17]. As one of the local models, BWP is employed to
calculate the displacements [35] by dividing the image into blocks and designing block-wise
geometric relationships. Generally, if the transformed point in the sensed image coincides
with the original corresponding point in the reference image with the transformation

model H, it is rewritten as X′ × HX =
→
0 [14]. Linearizing the equation and the projective

transformation model h̃ of a specified block is estimated as follows [25].

h̃ = argmin
h

N

∑
i=1
‖wimih‖2 = argmin

h
‖WMh‖2 s.t.‖h‖ = 1 (2)

where N is the number of the matched feature points. m is the left part of the linearized

X′ × HX =
→
0 and M represents the stack of all m. wi is the weight of the specified

feature point calculated by the inverse distance weight (IDW) function, varying with
blocks. For each block, with the transformation model h̃, the pixel-wise displacement
oBWP = (uBWP, vBWP) is calculated:

oBWP = X · h̃− X (3)

2.1.2. Displacements Estimation in the Complex-Terrain Region

As for the displacement field estimation in the complex-terrain region, the classical
motion estimation method proposed by Brox et al. [36] is employed (namely BOF) and
rewritten as follows:

EData(uo f , vo f ) =
∫

Ω ψ(
∣∣∣Is(x + uo f , y + vo f )− Ir(x, y)

∣∣∣2)dz

+
∫

Ω ψ(γ
∣∣∣∇Is(x + uo f , y + vo f )−∇Ir(x, y)

∣∣∣2)dz + α
∫

Ω ψ(
∣∣∣∇uo f

∣∣∣2 + ∣∣∣∇vo f

∣∣∣2)dz
(4)

where oo f = (uo f , vo f ) is the displacement field, and (x, y) represents the coordinate in the
reference image. Is and Ir mean the intensity value in the specified location of the sensed
and reference image, respectively. ∇ = (∂x, ∂y)

T is the gradient. ψ(s2) =
√

s2 + ε2 is
modified L1 minimization. γ and α are the weights of gradient consistency and smoothness
terms, respectively.

2.2. Abnormal Displacements Correction

However, BOF is sensitive to occlusions, which is similar to the LULC changes of re-
mote sensing images, leading the abnormal displacements. These abnormal displacements
will successively result in the changed content of the aligned image. Therefore, they should
be corrected by the following algorithms.

2.2.1. Incorrect Displacements Detection

Generally, abnormal displacements appear in the region where the objects in the refer-
ence image could not be sought in the sensed image. In this situation, the displacements
are discontinuous and mutational compared to their surroundings, with large or small
magnitude as well as different directions. Since the feature-based global model obtains the
continuous and stabilized displacement field even around the region of LULC changes, it
is exactly used for detecting the abnormal displacements. By comparison with the displace-
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ments of the feature-based method, the abnormal displacements of BOF are adaptively
detected by a given threshold. Concretely, the feature points are extracted by SIFT. The
relationship between the reference and the sensed image assumes to be described by the
GP model Hp. Then the pixel-wise displacement op is generated by Equation (5) and the
mask for abnormal displacement is obtained in Equation (6).

op = HpX− X (5)

maski =

{
1 ∆oi(x) > Tmx&∆oi(y) > Tmy

0 otherwise
(6)

∆o =
∣∣∣oo f − op

∣∣∣ (7)

where ∆o = [∆o(x), ∆o(y)] represents the displacement differences in x and y directions.
Tmx and Tmy are the thresholds determined by the specified percentile of the ascending-
order ∆o. It is hard to detect abnormal displacements identical to the LULC changes. To
ensure the correction effect, the detected abnormal displacements are appropriately en-
larged than the actual size of LULC changes with the thresholds. Our experiments verified
that extra small-scale false abnormal displacements (in fact, they are normal displacements)
will not reduce the final registration accuracy. According to our experimental experience,
the available percentage range is [0.7, 0.9], which is set as 0.75 in the following experiments.

2.2.2. Incorrect Displacements Rectification

Guided by the mask from the detection result, the abnormal displacements will be
corrected by the weighted first-order Taylor expansion. As illustrated in Figure 2, the
abnormal displacements on the boundary are firstly recalculated, utilizing the neighboring
accurate displacements specified with a yellow dotted rectangle. The boundary gradually
propagates into the abnormal displacement region in white along the direction of arrows,
until it is corrected completely.

Remote Sens. 2021, 13, 1475 5 of 18 
 

 

2.2.1. Incorrect Displacements Detection  
Generally, abnormal displacements appear in the region where the objects in the ref-

erence image could not be sought in the sensed image. In this situation, the displacements 
are discontinuous and mutational compared to their surroundings, with large or small 
magnitude as well as different directions. Since the feature-based global model obtains 
the continuous and stabilized displacement field even around the region of LULC 
changes, it is exactly used for detecting the abnormal displacements. By comparison with 
the displacements of the feature-based method, the abnormal displacements of BOF are 
adaptively detected by a given threshold. Concretely, the feature points are extracted by 
SIFT. The relationship between the reference and the sensed image assumes to be de-
scribed by the GP model pH . Then the pixel-wise displacement po  is generated by Equa-
tion (5) and the mask for abnormal displacement is obtained in Equation (6). 

p po H X X= −  (5)

1   ( ) & ( )
0                  

i mx i my
i

o x T o y T
mask

otherwise
Δ > Δ >= 

  (6)

of po o oΔ = − (7)

where [ ( ),  ( )]o o x o yΔ = Δ Δ  represents the displacement differences in x  and y  direc-
tions. mxT  and myT  are the thresholds determined by the specified percentile of the as-
cending-order oΔ . It is hard to detect abnormal displacements identical to the LULC 
changes. To ensure the correction effect, the detected abnormal displacements are appro-
priately enlarged than the actual size of LULC changes with the thresholds. Our experi-
ments verified that extra small-scale false abnormal displacements (in fact, they are nor-
mal displacements) will not reduce the final registration accuracy. According to our ex-
perimental experience, the available percentage range is [0.7, 0.9], which is set as 0.75 in 
the following experiments.  

2.2.2. Incorrect Displacements Rectification  
Guided by the mask from the detection result, the abnormal displacements will be 

corrected by the weighted first-order Taylor expansion. As illustrated in Figure 2, the ab-
normal displacements on the boundary are firstly recalculated, utilizing the neighboring 
accurate displacements specified with a yellow dotted rectangle. The boundary gradually 
propagates into the abnormal displacement region in white along the direction of arrows, 
until it is corrected completely.  

 

Figure 2. Abnormal displacement correction. Figure 2. Abnormal displacement correction.

Concretely, supposing q is the position of an abnormal displacement, it will be cor-
rected with pi in its neighborhood <q. There is an assumption that the displacement
variation is locally small in <q [37,38], as shown in Figure 3. As seen, taking part of the
displacement field, owning 21 × 21 pixels, the displacement is displayed with yellow
arrow every 5 pixels. Except the abnormal displacements in the lower right corner, the
displacement variation is locally small in both magnitude and direction, which is consistent
with the continuous law of remote sensing image. Under this circumstance, the displace-
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ment in q (denoted as op
q ) could be written by the first-order Taylor series expansion in

Equation (8) [37,38].

op
q ≈ oo f (p) +∇oo f (p)(q− p) =

[
uo f (p)
vo f (p)

]
+

 ∂up
o f

∂x
∂up

o f
∂y

∂vp
o f

∂x
∂vp

o f
∂y

[ ∆x
∆y

]
(8)

where ∇oo f = (∇uo f ,∇vo f ) is the gradient of the displacement vector and contains x-

and y-direction gradient. (q− p) = (∆x, ∆y)T denotes the coordinate difference between
pixels q and p. The abnormal displacement of q (denoted as oCBOF(q)) is recalculated by
Equation (9).

oCBOF(q) =
∑p∈<q wp ·o

p
q

∑p∈<q wp

wp = wdis · wPC

(9)

where wp is a weighting function by the product of two essential factors. One is the
geometric distance wdis, and the other is the structural similarity wPC. wdis is calculated by
IDW, which means that the closer to the pixel q to be corrected, the greater the weight.

wdis =
1√

(xq − xp)
2 + (yq − yp)

2
(10)
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The neighboring pixels with similar structures from the same object possibly own
a similar displacement. The image structure extracted by the phase congruency [13], is
similar to the image gradient whereas it is insensitive to illumination and contrast changes.
The LULC changes in the sensed image will lead to incorrect weight. Therefore, structural
similarity is calculated in the reference image.

wPC =
1

|PC′(X(p′) + X(q)− X(p))− PC′(X(p′))| (11)

Equation (11) should not be calculated if the denominator is zero. X( ∼) represents the
coordinate of the specified pixel. PC′ means the phase congruency in the reference image.
Although the measure does not capture the exact structure similarity between q and p, the
structural similarity between q′ and p′ on the reference image gives an approximation.

To summarize, with the geometric distance term wdis, the effect from distant accu-
rate displacement decreases. Additionally, the structure similarity wPC approximates
anisotropic propagation of neighboring accurate displacement. To avoid a jump between
the corrected displacements and the original accurate displacements, the median filtering
is conducted for the ultimate adjustment. An example of abnormal displacement detection
and correction is shown in Figure 4. Figure 4a,b are the reference and sensed images. The
LULC changes are marked with a yellow round rectangle. It leads to abnormal displace-
ments estimation in Figure 4c, where the magnitude and direction of displacements are
inconsistent with their neighborhood. The abnormal displacements further change the
image content, comparing the region marked with a yellow round rectangle in Figure
4b,e. The abnormal displacements are detected and their corresponding mask is shown in
Figure 4d. The white pixels represent the abnormal displacements and the black means the
accurate ones. The abnormal displacements are corrected and shown in Figure 4f, where
the corrected displacements are similar to the displacements in their surrounding region.
Furthermore, the aligned image (see Figure 4g) is similar to the corresponding region in
the sensed image in Figure 4b. Thus, the corrected BOF method is effective for abnormal
displacement correction.
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Remote Sens. 2021, 13, 1475 8 of 18

2.3. Displacement Fields Mosaic

As mentioned previously, the proposed algorithm respectively calculates the displace-
ments of flat-terrain and complex-terrain regions. To generate a displacement field for the
entire image, the displacement fields from different regions should be mosaicked. Avoiding
the jump at the edge of different displacement fields, for example, a buffer is constructed
for two displacement fields, as shown in Figure 5, which is similar to image mosaic [39].
Outside the buffer, the displacements at the bottom and top come from the corrected
BOF and feature-based BWP, respectively. Inside the buffer, each pixel’s displacement is
a weighted combination of the two displacement fields. Without any loss of generality,
we choose a simple weighted standard: distance. For example, as shown in Figure 5, for
any pixel l(i, j) in the buffer, the distance d is the buffer size from the bottom border to
the top. The closer the pixel l(i, j) lies to the bottom of the buffer, the heavier the weight
of the displacement from the complex-terrain region is, and the lighter the weight of the
flat-terrain region displacement is; and vice versa.
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Concretely, supposing o f is the final mosaicked displacement field, it is calculated
as follows.

o f (i, j) =


oCBOF(i, j) (i, j) ∈ <c

wCBOF(i, j)× oCBOF(i, j) + wBWP(i, j)× oBWP(i, j) (i, j) ∈ (<c ∩ < f )
oBWP(i, j) (i, j) ∈ < f

(12)

where wCBOF and wBWP are the respective weights of displacement in the complex- and
flat-terrain part in the buffer. oCBOF is the displacement field from the complex-terrain
region. <c represents the complex-terrain region and < f is the flat-terrain region. It is
required that wCBOF(i, j) + wBWP(i, j) = 1 and 0 ≤ wCBOF(i, j), wBWP(i, j) ≤ 1. Therefore,
the weight could also be designed according to IDW. Supposing that the distance of any
pixel (i, j) in the buffer to the border closer to the complex-terrain region is denoted as
d(i,j)−c.

wCBOF(i, j) = 1− d(i,j)−c
d

wBWP(i, j) =
d(i,j)−c

d

(13)

According to these principles, the displacement in the buffer area transits smoothly
and a seamless displacement field is obtained. With the whole displacement field, the
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coordinates in the sensed image are directly transformed. After resampling, the aligned
image is obtained.

3. Experiments and Evaluations

In this section, four representative pairs of remote sensing images in Table 1 were
testified to evaluate the proposed algorithm qualitatively and quantitatively. Firstly, the
results of the proposed method were visually compared with those of three local transfor-
mation models under the feature-based framework and the original optical flow estimation,
i.e., PLM [22], TPS [24], BWP-OIS [25], and BOF [36]. PLM designs a series of local affine
transformation models for each triangle constructed by the extracted feature points [22].
TPS estimates the geometrical relationship between the reference and sensed image by a
systematic affine transformation model and a weighted radial basis function for considering
local distortion [24]. BWP-OIS locally registers images in a two-step process by integrating
the block-weighted projective transformation model and the outlier-insensitive model [25].
BOF registers the image by directly transforming the coordinates and resampling with
pixel-wise displacements calculated under the brightness consistency and the gradient
consistency [36]. Secondly, three assessment indicators were used for quantitative evalua-
tion in Section 3.2, including root-mean-square error (RMSE), normal mutual information
(NMI), and correlation coefficients (CC).

Table 1. Experimental data.

Tab Res. Time Sensor Characteristics (All Located in
China)

test-I 4 m
2016.05.06 GF2_PMS2 Near Jinan, a mixed region.
2016.02.07

test-II 4 m
2016.08.27 GF2_PMS2

Northeast of Beijing, mixed terrain
with clouds.2016.06.09

test-III 16 m
2017.08.10 GF1_WFV1

Northwestern of Zhengzhou,
mixed region.2017.09.20

test-IV 16 m
2018.04.18 GF1_WFV1

The urban area of Chongqing, most
are large topographic relief.2018.05.13

3.1. Visual Judgment

The registration results of the proposed algorithm are shown in Figure 6. As seen
from the original images in Figure 6a,b, they show a large radiation difference (“test-I”),
or are contaminated by uneven clouds (“test-II”), or include typical hybrid terrain region
(“test-III”), or cover the complicated terrain (“test-IV”). The terrain mask is calculated by
TR in Equation (1) and shown in Figure 6c. The white pixels represent the complex-terrain
region and the black ones mean the flat-terrain region. They are approximately consistent
with the visual observation and elevation data. Especially, since the test-IV images are
located in Chongqing, China, which is known as the "mountain city", most of the image
is in the complex-terrain region and they are white in the terrain mask. The overlapping
results of the original images in Figure 6d show blurs and ghosts, which indicates that
the geometrical deformation exists between reference and sensed images. By contrast, the
overlapping results of aligned images by the proposed algorithm in Figure 6e are visually
clear and distinctive. In other words, the experiments demonstrate the effectiveness of the
proposed algorithm.



Remote Sens. 2021, 13, 1475 10 of 18

Remote Sens. 2021, 13, 1475 10 of 18 
 

 

3.1. Visual Judgment 
The registration results of the proposed algorithm are shown in Figure 6. As seen 

from the original images in Figure 6a,b, they show a large radiation difference (“test-I”), 
or are contaminated by uneven clouds (“test-II”), or include typical hybrid terrain region 
(“test-III”), or cover the complicated terrain (“test-IV”). The terrain mask is calculated by 
TR in Equation (1) and shown in Figure 6c. The white pixels represent the complex-terrain 
region and the black ones mean the flat-terrain region. They are approximately consistent 
with the visual observation and elevation data. Especially, since the test-IV images are 
located in Chongqing, China, which is known as the "mountain city", most of the image is 
in the complex-terrain region and they are white in the terrain mask. The overlapping 
results of the original images in Figure 6d show blurs and ghosts, which indicates that the 
geometrical deformation exists between reference and sensed images. By contrast, the 
overlapping results of aligned images by the proposed algorithm in Figure 6e are visually 
clear and distinctive. In other words, the experiments demonstrate the effectiveness of the 
proposed algorithm.  

 
Figure 6. The registration results of the proposed method. From top to the bottom they correspond to test-I, test-II, test-III, and test-
IV, respectively. (a) Reference image, (b) sensed image, (c) terrain mask (white means the complex-terrain region, otherwise are flat-
terrain regions) the overlapping result of reference and (d) the sensed image, (e) the aligned image. 

Figure 6. The registration results of the proposed method. From top to the bottom they correspond to test-I, test-II, test-III,
and test-IV, respectively. (a) Reference image, (b) sensed image, (c) terrain mask (white means the complex-terrain region,
otherwise are flat-terrain regions) the overlapping result of reference and (d) the sensed image, (e) the aligned image.

Successively, the comparison results of the proposed algorithm and other comparative
methods are shown in Figure 7, which are the enlarged sub-regions of the red and green
dotted-rectangle regions in Figure 6a for fine comparisons. The vertical alignment is labeled
with red “A” and the horizontal alignment is marked with green “B”. The boundaries of
the reference and aligned images are available to judge the registration accuracy. The white
arrows and filled circles are auxiliary to indicate the displacements between the reference
and aligned image. The arrows depict the direction of misalignment and their lengths are
proportional to the amount of dislocation from the aligned image to the reference image.
The white filled circles represent the well-registered results.
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While focusing on the first comparison for “test-I” in Figure 7, row “A” shows the ver-
tical registration of different methods. The “Original” broken linear features mean a large
vertical deformation between the reference and sensed images. PLM and TPS eliminate
the most of vertical deformation, but not completely. BWP-OIS results in overcompensa-
tion [25] to the sensed image so that the opposite misalignment of the linear features is
introduced on the boundary. BOF and the proposed algorithm achieve highly accurate
registration, where the linear features are continuous and smooth at the same position. For
row “B”, though most of the horizontal displacements have been eliminated, the results of
PLM and TPS still have dislocations. BWP-OIS, BOF, and the proposed algorithm register
the sensed image well. However, the abnormal objects are introduced by BOF, which are
not visible in the aligned image of the proposed method, marked with the white dotted
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ellipses. Therefore, the proposed algorithm gives high registration accuracy and guarantees
the content against changes simultaneously.

The second comparison is for “test-II” in Figure 7. In Row “A”, the road at the bottom
and the edge of the second Chinese character on the top are used to judge the registration
result. The second Chinese character should be symmetrical, whereas its left and right
parts are asymmetries due to the vertical dislocation. Although PLM aligns the road
continuously and smoothly, the deformation of the second Chinese character is magnified.
TPS could not align the sensed image well to the reference image. The Chinese character is
aligned by BWP-OIS, but the road is not continuous. Fortunately, BOF and the proposed
algorithm obtain the well-aligned outcomes for the road and the second Chinese character.
However, the road on the result of BOF is changed. In “B” row, the road in the sensed
image is shifted a lot to right by PLM and TPS. The proposed algorithm, BOF, and BWP-OIS
provide the desired alignments. The only drawback is the content of the sensed image is
altered by BOF. Therefore, PLM and TPS fail to align the sensed image to the reference
image spatially. BWP-OIS gives desirable registration in the horizontal direction but not
in the vertical direction. BOF generates accurate alignments accompanied by abnormal
changes marked with white dotted ellipses. The proposed algorithm outperforms others in
alignment with accuracy or content fidelity.

The selected regions in “test-III” and “test-IV” in Figure 6 further verify the proposed
algorithm, as shown in Figure 7. For “test-III” in Figure 7, a similar phenomenon is
observed, where the proposed algorithm outperforms others both in the vertical and
horizontal directions. The phenomenon of the content change introduced by BOF is
removed by the proposed algorithm. For “test-IV” in Figure 7, the other three algorithms
excluding PLM provide the well-aligned outcomes in “A” row. In “B” row (test-IV), PLM
and TPS widen the dislocation, and BWP-OIS introduces the opposite misalignment of
the bridge. BOF and the proposed algorithm completely eliminate the deformation and
the bridge is connected smoothly and continuously. However, BOF changes the content
(labeled by a white dotted ellipse), and the proposed algorithm keeps the content of the
sensed image well. In conclusion, the proposed algorithm visually outperforms other
algorithms in all experiments. To further evaluate the proposed algorithm, the quantitative
evaluation is conducted.

3.2. Quantitative Evaluation

The quantitative evaluation with three indictors was further used for verifying the
visual judgment. On one hand, RMSE depicts the spatial registration accuracy. On the
other hand, NMI and CC judge the similarity between the aligned image and the reference
image according to their corresponding pixel values.

The RMSE focuses on evaluating the registration result by calculating the average
distance of the corresponding points in the reference and aligned image. As most literature
did, some distinct feature points from the corresponding reference and aligned images were
extracted manually to calculate their RMSE [7,40]. RMSE of the comparative algorithms is
listed in Table 2. The feature points for evaluation are extracted manually and the number
is listed in brackets. “Original” means the RMSE of the reference and sensed image before
registration. All the algorithms relieve the geometric distortion of the reference and sensed
image as shown in Table 2. TPS gives the largest RMSE among all registration algorithms.
BWP-OIS performs better than PLM in the last three experiments. The smallest RMSE
is obtained by the proposed algorithm and the suboptimal performance is given by BOF.
Since there are some abnormal objects and pseudo traces in the aligned image of BOF,
these anomalies change the shape or the original track of linear features in the aligned
image, causing lower registration accuracy. The proposed algorithm performs better than
the three feature-based algorithms, which means that it is more favorable for registering
complex-terrain regions. Furthermore, RMSE of the proposed algorithm is smaller than
that of BOF, indicating that the feature-based method owns the similar registration accuracy
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without being affected by the LULC changes in the flat-terrain region, and the proposed
algorithm copes with the LULC changes in the complex-terrain region well.

Table 2. RMSE (↓) of different algorithms in the experiments (by pixels).

Experiment Original PLM TPS BWP-OIS BOF Proposed

test-I (20) 41.10 4.21 5.14 4.59 0.61 0.43
test-II (20) 3.14 1.12 1.23 1.02 0.62 0.40
test-III (20) 3.54 0.62 0.98 0.41 0.35 0.26
test-IV (20) 2.69 0.86 1.47 0.74 0.29 0.28

To further evaluate the performance of the proposed method, we extract the complex-
terrain region of the aligned image and the corresponding part in the reference image. The
extracted ones of the above experiments are conducted to calculate the NMI and CC shown
in Figure 8a,b. NMI and CC are the similarity criteria, usually employing as the iteration
termination condition in the area-based registration algorithm. The NMI index measures
the statistical correlation of images, which is defined as follows:

NMI(Xre f , Xsen) =
H(Xre f ) + H(Xsen)

H(Xre f , Xsen)
(14)

where H(Xre f ) and H(Xsen) are the entropy of images Xre f and Xsen, respectively. H(Xre f , Xsen)
is the joint entropy of two images. Larger NMI correspond to a greater similarity between
two images. The CC value of images Xre f and Xsen is calculated as:

CC(Xre f , Xsen) =
σXre f Xsen√
σXre f σXsen

(15)

where σXre f Xsen denotes covariance between two images. σXre f and σXsen are the standard
deviations of two images, respectively. Since CC could range from −1 to 1, 1 indicates
perfect correlation.
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As shown, the proposed method achieves the largest NMI and CC in all the experi-
ments. The registration accuracy of PLM is close to that of BWP-OIS whereas the latter is
slightly superior in “test-III” and “test-IV” in Figure 8. The local mapping functions of PLM
are constructed by feature points, so its accuracy is limited by the precision of the feature
points extraction. On that account, BWP-OIS alleviates the situation by designing the
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transformation functions with all feature points in different weights. Therefore, BWP-OIS
performs better than PLM in most instances. Additionally, TPS gets the worst registration
accuracy in four experiments, which is suitable for images with dense and uniformly
distributed feature points [23]. It is difficult to extract feature points in the complex-terrain
region, especially points with uniform distribution. In addition, the registration accuracy
of BOF is comparable to the proposed method in the complex-terrain regions when eval-
uating with NMI and CC, which is similar to the RMSE result. In addition, it is worth
noting that there is a big jump on test-I. It is because there is a large deformation between
the reference and sensed images, resulting in the smaller NMI and CC compared with
those of the registration results. On the one hand, not only the local region rounded with
yellow rectangles of test-I in Figure 5 presents an obvious geometric dislocation; but the
RMSE of the test-I original images in Table 2 is larger than those of other experiments.
Hence, there is a big jump in Figure 8 of NMI and CC values on test-I. The proposed
method automatically registers images, including image division according to the terrain
characteristics, alignment of flat-terrain region with feature-based algorithm, the pixel-wise
displacement calculation of complex-terrain region with improved optical flow estimation.
The thresholds in these steps are determined with the experience of a large number of
experiments. The evaluation demonstrates that the proposed method performs well on
the mixed-terrain region compared with the conventional feature-based methods and
the original optical flow algorithm. To a certain extent, it also shows that the scheme of
region-by-region registration is feasible.

4. Discussions

The previous section validated the registration result of the proposed method. This
section focuses on core parameter analysis. The main parameter is the LED threshold Tr
for the terrain division, determining the algorithm utilized to register the local region of
images and further influencing the final registration accuracy.

Tr for terrain division determines that a pixel should be divided into the complex ter-
rain region or flat-terrain region, which further influences the overall registration accuracy.
To reveal the relationship, a series of experiments were conducted with different thresholds.
Without loss of generality, the aforementioned experimental data in Figure 6 is employed,
with the threshold varied from five to thirteen. The quantitative evaluation results of
the final registration with varied thresholds are shown in Table 3, with the evaluation
indicators of NMI and CC.

Table 3. Quantitative evaluation of ultimate registration with different Tr.

Image Indicator 5 6 7 8 9 10 11 12 13

test-I
NMI 1.0612 1.0612 1.0612 1.0599 1.0587 1.0570 1.0529 1.0492 1.0465

CC 0.8058 0.8057 0.8058 0.7992 0.7919 0.7831 0.7592 0.7388 0.7227

test-II
NMI 1.0272 1.0271 1.0272 1.0272 1.0271 1.0269 1.0268 1.0266 1.0265

CC 0.5256 0.5249 0.5261 0.5259 0.5250 0.5238 0.5227 0.5216 0.5203

test-III
NMI 1.1342 1.1341 1.1340 1.1347 1.1347 1.1346 1.1345 1.1346 1.1346

CC 0.9071 0.9071 0.9070 0.9064 0.9064 0.9063 0.9062 0.9063 0.9063

test-IV
NMI 1.0900 1.0900 1.0900 1.0900 1.0897 1.0895 1.0892 1.0889 1.0884

CC 0.8948 0.8948 0.8949 0.8948 0.8943 0.8939 0.8933 0.8925 0.8915

For the four groups of experiments, with the increase in the threshold, the two indica-
tors are at first small fluctuations, or even stable, and then decrease, showing the relatively
simple relationship. However, focusing on the quantitative evaluation of “test-III”, the
largest NMI is obtained when the LED threshold is set as eight whereas the best CC is
generated while Tr equals six. Except for the third experiment, they share the same phe-
nomenon, in that the optimal registration results are obtained while the LED threshold is set
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as seven. When the threshold is larger than seven, more pixels are put into the flat-terrain
region whereas the complex terrain is in practice, weakening the registration accuracy.
However, this does not mean that the smaller the threshold is, the higher the registration
accuracy will be, such as the third and fourth groups of the experiments. However, when
the available range of LED threshold is five to eight, the indicators do not show an obvious
difference, where the largest numerical difference is 0.0008. Under this circumstance, the
difference between the different registration results could not be caught by the eyes. After
the comprehensive consideration, the LED threshold was determined to be seven in the
experiments.

For conveniently applying this technique, taking test-III as an example, the terrain
masks generated by different thresholds are listed in Figure 9. The intention is to divide
the image to be registered into multiple local regions with flat- and complex-terrain char-
acteristics. That is to say, the heterogeneous features distributed in a topographic block
are not put into this block as far as possible. Therefore, the hole-filling algorithm and the
morphological expansion approach are utilized, as described in Section 2.1. Before the post-
processing of the terrain mask, the generated mask should provide an ideal foundation. The
threshold of LED for terrain division is set with the visual observation and the quantitative
evaluation of registration result. In Figure 9, the black indicates the complex-terrain region,
and white means the flat-terrain region. When the threshold is 5, there are heterogeneous
and small blobs both in the complex- and flat-terrain regions. While the threshold is 7,
there are relatively few heterogeneous blobs in the flat-terrain region (denoted in white),
and more white blobs in the complex-terrain region, compared with the first two masks.
When compared with the last six masks, the terrain division is relatively regular, namely
most flat-terrain pixels are in the white region and complex-terrain blobs are in black. The
conclusion is similar to Table 3. Not only test-III but three other experiments also give a
similar conclusion, which is not shown here. Therefore, after quantitative comparison and
qualitative observation of a large number of experiments, we provide the available range
of the threshold Tr in Section 2.1 and the best recommended threshold is seven.
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5. Conclusions

In this paper, we proposed a region-by-region registration combining feature-based
and optical flow methods for remote sensing images. The proposed method innovatively
makes use of the geometric deformation characteristic varied with regions caused by the
topographic relief, registering flat- and complex-terrain regions, respectively. Owing to
the pixel-wise displacement estimation of dense optical flow algorithm, the registration
accuracy in complex-terrain region is reinforced. Moreover, the adaptive detection and
weighted Taylor expansion enforced makes up for the defect of the abnormal displace-
ments in the LULC changed region, which is sensitive for dense optical flow estimation. In
other words, the feature-based method, dense optical flow estimation, adaptive detection
technique, and weighted Taylor expansion are all employed for high-precision pixel-wise
displacements, further for accurate registration. The accuracy of the complex-terrain region
determines the whole registration precision of images covering the mixed terrain, which
has attracted much attention in the proposed framework, and is realized by improving the
optical flow algorithm. As confirmed in the experiments, the proposed approach outper-
forms the conventional feature-based methods and the original optical flow algorithm, not
only qualitatively, but also quantitatively, from the aspects of visual observation, NMI, CC
and RMSE.

However, the proposed method is just an interesting first trial of mixed-terrain images
registration. The result is preliminary, and there is still room for improvement. For
instance, when the experiments are conducted on Matlab2018a settled on computer with
an Intel (R) Xeon (R) CPU E5-2650 v2 2.6GHz, the runtime of our experiments is 295.237s,
294.044s, 373.050s, and 143.808s respectively. It is time-consuming to register images by
the proposed algorithm, which exceeds the expected time of image registration in the
pre-processing stage, even real-time processing. Therefore, the time efficiency needs to be
improved with parallel processing on the C++ platform, particularly for the complex-terrain
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region alignment. Additionally, when registering two degraded images with optical flow
algorithm in the complex-terrain region, both images are simultaneously contaminated at
the same location and abnormal displacements could not be restored as the weight from
phase congruency for Taylor expansion calculating abnormally, which further changes the
aligned image content compared with sensed image. Moreover, more mixed-terrain images
from other sensors should be further tested in experiments for our proposed method. These
issues will be addressed in our future work.
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