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 
Abstract—Satellite images have been widely used for urban 

heat island (UHI) monitoring in recent studies, among which the 
summer UHI has attracted more attention. However, the studies 
based on high spatial resolution images have to use single-day 
land surface temperature (LST) to analyze the summer UHI, due 
to the low temporal resolution, which is not representative of the 
summer and leads to incomparability in the time series. The 
studies based on low spatial resolution images can generate a time 
series of representative LSTs for summer (e.g. summer mean 
LSTs), due to the high temporal resolution, but these LSTs lack 
sufficient spatial details for a refined analysis. To fill these gaps, 
we propose to integrate the respective advantages of the above 
approaches to generate a comparable and fine-scale LST time 
series with a high spatiotemporal resolution. By normalizing the 
LSTs between the different satellite images via robust fitting with 
Huber’s M-estimator and moment matching, the comparability is 
ensured. Furthermore, the high spatial resolution and high 
temporal resolution are combined via the spatiotemporal fusion. 
Overall, we propose a procedure to produce a comparable time 
series of annual and fine-scale summer mean LSTs, which can 
serve as a basis for elaborate analysis of the thermal environment. 
 

Index Terms—Summer mean land surface temperature, land 
surface temperature normalization, spatiotemporal fusion, 
remote sensing.  

I. INTRODUCTION 

NDER the circumstance of global climate change [1-4], 
there is a need for us to establish the evolution of the 
thermal environment. If the history of the thermal 

environment can be interpreted, it may help us take action in the 
present day. Land surface temperature (LST), which is a result 
of surface-atmosphere interactions and energy budget 
considerations [5-7], is a key parameter for the monitoring of 
the thermal environment[8]. In particular, thermal phenomenon 
(e.g. urban heat island (UHI) ) is likely to be more significant in 
summer [9, 10]. Thus, to thoroughly establish both the past and  

 
 

 
the present of the thermal environment, a long-term and 
fine-scale series of summer LST is required for an elaborate 
analysis [11, 12]. 

Given the wall-to-wall coverage of the land surface and the 
continuous operation[13], remotely sensed data have been 
widely used for long-term summer LST monitoring. Based on 
the spatial resolution of the satellite data used to monitor 
long-term LST, the current researches can be roughly classified 
into two categories. Some of the studies have taken high spatial 
resolution (high-resolution) images as the experimental data 
(e.g. Landsat). Such studies generally present their research 
results every few years. For example, every ten years, Qiao et al 
investigated the spatiotemporal dynamics of summer LST in 
Beijing in China[14]; every eight years from 1984 to 2014, 
Yang et al. reported the summer LST changes in Changchun in 
China[15]; in 1985, 1992, 2001, 2008 and 2017, Weng et al. 
described the UHI pattern in Babol in Iran; and every two years 
from 1997 to 2008[16], Li et al. monitor the patterns of the UHI 
in Shanghai in China [17]. The reason for such discontinuous 
monitoring lies in the low temporal resolution of the 
high-resolution images. As the high-resolution images have a 
relatively long revisit cycle, few observations can be obtained 
over the whole of the summer (except for the tropics). 
Furthermore, as a result of cloud or haze, it is likely that only 
one image or even no images may be available for the whole of 
the summer period. Hence, researchers have to select a single 
image to represent the whole of the summer for several years. 
However, the weather and soil conditions of the selected 
images are unlikely to remain the same for different years [18], 
so that the selected single-day LST cannot be recognized as 
representative LST for the summer, which leads to 
incomparability between the different summers.  

The other category of studies takes coarse spatial resolution 
(coarse-resolution) images (e.g. Moderate-resolution Imaging 
Spectroradiometer (MODIS)) as the experimental data. These 
studies can generate a summer mean LST (SMLST) for the 
whole of the summer for each year, due to the high temporal 
resolution [19-24]. For instance, Imhoff et al. [21] and Zhang et 
al. [20] described the summer UHI effect in American cities 
from 2003 to 2005; and Peng et al. generated summer UHI for 
419 cities worldwide for a longer time series from 2003 to 2008. 
In these studies, the continuous time series for LST in each 
summer serve as the basis for the mean LST of the whole of the 
summer[22]. The SMLST is representative enough so that the 
LST is comparable for different summers. However, the spatial 
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resolution is too coarse to carry out more refined analysis (e.g. 
detailed distribution for the UHI effect). In summary, the 
inadequacy of the two categories lies in the trade-off between 
the spatial and temporal resolutions [25-28].  

Therefore, it can be concluded that a single category of 
satellite images is not able to meet the demands of comparable 
and fine-scale time series for summer LST. An effective 
framework combining the comparability, high temporal 
resolution, and the high spatial resolution is thus required. To 
solve this problem, the spatiotemporal fusion technique is 
considered as a cost-effective way by blending observations 
from multiple sensors with different advantages or 
characteristics [29-31]. A number of studies have already 
focused on producing a high spatial and temporal LST time 
series by conducting spatiotemporal data fusion. For example, 
Shen et al. generated a long-term and fine-scale summer LST 
series for Wuhan in China by spatiotemporal fusion and image 
recovery, and were thus able to carry out a refined analysis of 
the UHI pattern evolution and LST changes with regard to land 
cover [25]; and Herrero-Huerta et al. generated a monthly and 
fine-scale LST series by spatiotemporal fusion so that a detailed 
UHI distribution could be established for each season [32]. 
However, in these studies, the summer LSTs were still 
represented by single-day or less than three-day LSTs, so that 
they could not be considered as a thorough description of 
summer LST.  

To fill in these gaps, we have designed a procedure to 
produce time series of comparable and fine-scale SMLSTs. In 
particular, normalization is undertaken to reduce the difference 
and control the comparability between the different satellite 
images. The SMLST is skillfully calculated to ensure the 
representativeness of the summer LST and to control the 
comparability in the time series. Spatiotemporal fusion is also 
employed to combine the high temporal resolution and the high 
spatial resolution. Therefore, with the assistance of the 
high-resolution and coarse-resolution images, by integrating 
normalization and spatiotemporal fusion, a time series of 
comparable and fine-scale summer LSTs can be generated. 

II. STUDY REGION AND DATA  

A. Study region 

 
Fig. 1. The study area: Wuhan, in China. The image is the Landsat-8 image 
from September 15th, 2018. 

Wuhan is located between 113°41′ E–115°05′ E and 29°58′ 
N–31°22′ N in China, with an administrative area of 

8494.41km2, and a subtropical monsoon climate. As one of the 
hottest “ stove cities” in China [33, 34], Wuhan can be 

considered as a typical city to study LST patterns in summer. 
Thus, Wuhan was selected as the experimental area in this 
study. The satellite data scene used in this research covers more 
than 80% of the Wuhan, including the whole of the Wuhan 
metropolis (Fig. 1). 

B. Data 
TABLE I 

DATA USED IN THIS RESEARCH 
Data Dates 

Landsat-5 
(TM) 

1987/09/26, 1988/08/11, 1989/03/07, 1990/09/02, 1991/07/19, 
1992/04/16, 1993/10/12, 1994/05/08, 1995/08/31, 1996/10/04, 
1997/09/21, 1998/10/26, 1999/09/27, 2000/09/13, 2002/09/03, 
2003/05/01, 2004/07/22, 2005/04/20, 2006/11/01, 2008/04/20, 
2009/09/06, 2010/11/12, 2011/06/08 

Landsat-7 
(ETM+) 

2001/07/22 

Landsat-8 
(OLI/TIRS)

2013/06/13, 2014/10/06, 2015/10/25, 2016/07/23, 2017/10/30, 
2018/09/15 

MODIS 
2000/09/13, 2001/07/22, 2002/09/03, 2003/05/01, 2004/07/22, 
2005/04/20, 2006/11/01, 2009/09/06, 2010/11/12, 2011/06/08
MOD11A1 covering the whole summer in 2000-2018 

AVHRR 

1987/09/26, 1988/08/11, 1989/03/07, 1990/09/02, 1991/07/19, 
1992/04/16, 1993/10/12, 1994/05/08, 1995/08/31, 1996/10/04, 
1997/09/21, 1998/10/26, 1999/09/27 
Surface reflectance covering the whole summer in 1984-2018

Water vapor
(reanalysis 

data) 

1987/09/26, 1988/08/11, 1989/03/07, 1990/09/02, 1991/07/19, 
1992/04/16, 1993/10/12, 1994/05/08, 1995/08/31, 1996/10/04, 
1997/09/21, 1998/10/26, 1999/09/27, 2000/09/13, 2001/07/22, 
2002/09/03, 2003/05/01, 2004/07/22, 2005/04/20, 2006/11/01, 
2008/04/20, 2009/09/06, 2010/11/12, 2011/06/08, 2013/06/13, 
2014/10/06, 2015/10/25, 2016/07/23, 2017/10/30, 2018/09/15

The data used included two main parts (Table 1). 1) Satellite 
data. Cloud-free Landsat images (Landsat 4/5/7/8) covering 
Wuhan were obtained for several months during 1984–2018 
from the United States Geological Survey (USGS) website 
(http://glovis.usgs.gov/). The spatial resolution for the different 
Landsat thermal bands is 120m (Landsat-4/5 Thematic Mapper 
(TM)), 60m (Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+)), and 100m (Landsat-8 Thermal Infrared Sensor 
(TIRS)), respectively, which were all resampled to a 30-m 
resolution when downloaded. From 2000 to 2018, the 
MOD11A1 product covering the whole of the summer (1st June 
to 31st August) and corresponding to the dates of the cloud-free 
Landsat images was obtained from the Level-1 and 
Atmosphere Archive and Distribution System Distributed 
Active Archive Center (LAADS DAAC) website 
(https://ladsweb.modaps.eosdis.nasa.gov/). The spatial 
resolution of the MOD11A1 product is 1000m. The Advanced 
Very High Resolution Radiometer (AVHRR) surface 
reflectance product (version 4) covering the whole of the 
summer was collected from the National Oceanic and 
Atmospheric Administration (NOAA) Climate Data Record 
(CDR) website (https://data.nodc.noaa.gov/). The spatial 
resolution of the AVHRR surface reflectance product is 0.05 
degrees. From 1984 to 1999, the AVHRR surface reflectance 
product corresponding to the dates of the cloud-free Landsat 
images and covering the whole of the summer was also 
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collected. 2) Reanalysis data. The water vapor data for LST 
inversion were obtained from the National Centers for 
Environmental Prediction (NCEP)/National Center for 
Atmospheric Research (NCAR) reanalysis dataset [35], with a 
spatial resolution of 2.5 degrees. 

The original Landsat data were calibrated into 
top-of-atmosphere (TOA) radiance by the calibration 
coefficients provided by the satellite. Moreover, to alleviate the 
influence of atmospheric effects, the Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes (FLAASH) 
atmospheric correction algorithm was applied to all the 
experimental images. 

III. METHODS  

A. LST retrieval 

Since it is difficult to obtain real-time atmospheric profile 
data when the satellites pass through the study area over a 
long-term time series, especially before 2000, we chose a 
single-channel LST inversion method for the Landsat LST 
inversion for which only the radiance, emissivity and water 
vapor are needed[36-41]. The single-channel algorithm has 
been found to result in an accuracy within 1K in most cases [42, 
43]. The Normalized Difference Vegetation Index (NDVI) was 
used to indicate the land cover so as to calculate the emissivity 
according to the method proposed by Sobrino et al [44, 45]. The 
water vapor data were obtained from the NCEP/NCAR 
reanalysis dataset. 

The AVHRR surface reflectance product contains the 
reflectance for the red band and near-infrared band (band 1 and 
band 2, respectively), and brightness temperature for the 
mid-infrared band (band 3) and thermal infrared bands (band 4 
and band 5). A simple split-window LST algorithm was 
selected to retrieve AVHRR LST [46, 47], for which only the 
brightness temperature and the emissivity for the two thermal 
infrared bands of the AVHRR product are needed. Similar to 
the emissivity measured from Landsat, the emissivity for the 
AVHRR bands was also measured by the NDVI [45, 48-50]. 

B. Basic idea of the proposed method 

To carry out long-term and fine-scale monitoring of the 
thermal environment, high spatial and temporal resolutions for 
the LST time series are required. Thus, the spatiotemporal 
fusion method was used in this research to meet the 
requirement for a high spatiotemporal resolution. In brief, the 
spatiotemporal fusion method aims to add sufficient spatial 
details generated from the high-resolution images into the 
coarse-resolution images so that the high spatial resolution and 
high temporal resolution can be integrated. To conduct the 
spatiotemporal fusion, at least one pair of high-resolution and 
coarse-resolution images from the reference date (i.e. reference 
pair), and a coarse-resolution image from the target date (i.e. 
target image) are required (Fig. 2). The high-resolution image 
from the reference date supplies effective spatial details, while 
the coarse-resolution images from the reference and target 
dates provide the spectral variation between the reference date 

and target date. In particular, the spatial and temporal nonlocal 
filter-based data fusion method (STNLFFM, software 
downlink: http://sendimage.whu.edu.cn) was utilized to 
generate the LST time series with a high spatiotemporal 
resolution [31, 51]. Although STNLFFM was developed for 
use with reflectance data, its application for LST has been 
tested in previous research [25].  

 
Fig. 2. Illustration of spatiotemporal fusion. For each image, the red area is the 
top 7.5% LST; the yellow area is the top 7.5%–25% LST; the green area is the 
top 25%–80% LST; the blue area is the last 20% LST. 

The STNLFFM predicts the high-resolution LST at the target 
date tp with the assistance of the high-resolution and 
coarse-resolution LST at reference date tk. The high-resolution 
LST can be retrieved from: 

1

[ ]
N

p i i k i i k i i k i i k
i

F(x, y,t ) W(x , y ,t ) a(x , y ,t ) F(x , y ,t ) b(x , y ,t )


   
  
(1)

 
where F denotes the high-resolution LST. (x, y) is a given pixel 
location. tp is the target date. F(x, y, tp) is the predicted 
high-resolution LST of the target pixel (x, y) at tp; N is the 
number of similar pixels (with the same land cover as the target 
pixel) within the image, including the target pixel itself. (xi, yi) 
is the location of the i th similar pixel. tk is the reference date. W 
(xi, yi, tk) is the weight of the ith similar pixel at tk. F(xi, yi, tk) is 
the LST in the high-resolution image for the ith similar pixel at 
tk. a (xi, yi, tk) and b (xi, yi, tk) are the coefficients determined by 
the LST changes from date tk to date tp. The W(xi, yi, tk) 
describes the contribution of each similar pixel to the prediction 
of the high-resolution LST of the target pixel. For a detailed 
description of the calculation, we refer the reader to [31]: 

There are three inputs for the spatiotemporal fusion model, 
i.e., high-resolution (30m) and coarse-resolution(1000m) 
images at the reference date, and a coarse-resolution image at 
the target date. And one high-resolution (30m) output at target 
date. The most important step is to generate suitable inputs. The 
selection of the three inputs is discussed in the following 
sections. The normalization methods used to assure the 
comparability are also discussed. The flowchart of the whole 
method is shown in Fig. 3. 
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Fig. 3. The production procedure for comparable and fine-scale SMLSTs. 

C. Target image selection for representativeness 

To produce a more representative LST for the whole summer, 
we skillfully take the SMLST instead of single-day LST as the 
coarse-resolution image at the reference date. The SMLST is 
the average of all the LSTs in each summer, which concerns all 
the valid summer LSTs and offsets the temperature anomaly to 
some extent. It can therefore be considered as representative 
LST for the summer. Furthermore, since the SMLST can well 
present the characteristic of each summer, it can be compared in 
the time series. Hence, for the target date, the comparability and 
representativeness are controlled by the SMLST. In this study, 
we produced MODIS-like SMLSTs as the target coarse-scale 
images, with one SMLST for one summer. 

D. Reference pair selection for the fine scale setup 

To conduct the spatiotemporal fusion, the SMLST image is 
first selected as the target image for the whole summer. The 
SMLST is required to be fused into a high-resolution image 
with sufficient spatial details. Thus, effective reference pairs 
should be selected to provide the spatial details. In other words, 
the high-resolution image and coarse-resolution image at the 
reference date should be cloud-free and seamless, so that 
meaningful spatial details can be retrieved. In the proposed 
method, the Landsat LSTs are considered as the high-resolution 
images, and the MODIS-like LSTs are regarded as the 
coarse-resolution images. Since the MODIS-like images can be 
retrieved every day, while the Landsat satellite possesses a 
longer revisit cycle, the major consideration for the reference 
pair selection lies in the selection of the Landsat images. 

 If at least one cloud-free Landsat image can be found in a 
target summer, the corresponding coarse-resolution image is 
expected to be cloud-free. However, the slight mismatch of the 
satellite overpass time between the different sensors may lead 
to the phenomenon of there being some missing pixels in the 
coarse-resolution images, even though the corresponding 
Landsat images are cloud-free. In this case, to match with the 
spatial distribution of the Landsat imagery, a weighted linear 
regression based multi-temporal recovery method (WLR) 
(software downlink: http://sendimage.whu.edu.cn) is used to 

reconstruct the missing information in the coarse-resolution 
LSTs[52]. The WLR method requires an auxiliary image to 
provide the spatial details. In this research, the high-quality 
coarse-resolution LST close to the date of the reference 
coarse-resolution LST was selected as the auxiliary image. 

As a result of the cloud contamination or other image 
degradation factors, there may not be any cloud-free Landsat 
image in a target summer. In this case, the reference pairs from 
other seasons were taken into consideration. We suggest that 
the reference pairs are preferred to be selected from early spring 
to autumn (generally February 15th to November 15th for the 
northern hemisphere, and August 15th to May 15th for the 
southern hemisphere, except for whole year for the tropics), to 
be consistent with the land cover in summer. If there was no 
cloud-free Landsat image in that stage, the reference pairs from 
the adjacent years were considered. Since the spatial details for 
the fusion results are mainly extracted from the reference 
Landsat image, we should ensure that the spatial detail for the 
Landsat image is coincident with the ground truth. Thus, we 
insist to use cloud-free Landsat images at first. If no cloud-free 
Landsat image could be found for the target year, or for the 
adjacent years, we recovered the Landsat ETM+ Scan Line 
Corrector (SLC)-off images or other Landsat images with less 
cloud by WLR. 

E. Normalization for comparability 

1)  Temporal normalization  
The coarse-resolution images used in our study were the 

MOD11A1 product and the AVHRR product. Actually, limited 
by the launch time of the Terra satellite, we could not acquire 
the MOD11A1 product in summer before 2000. Thus, we used 
the AVHRR product before 2000. The AVHRR LSTs and the 
MODIS LSTs are not comparable, due to the different sensors 
and overpass times. Since many researchers have confirmed 
that the accuracy of the MOD11A1 LST is reliable [53-56], if 
the AVHRR LST could be normalized to be consistent with the 
MOD11A1 LST (i.e. the MODIS-like LST), we could therefore 
generate a comparable series of MODIS-like LSTs from 1984 
to 2018. 

 
Fig. 4. Overpass times for a pixel at 97.2° E, 29.7° N in summer in 2017. 

Normalization between AVHRR and MODIS has been 
widely conducted with the NDVI product [57-60]. Referring to 
these normalization methods for the NDVI products, we 
propose a normalization method for AVHRR LST and 
MOD11A1 LST focusing on each pixel in the time series.  
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Since no MOD11A1 LST could be collected before 2000, the 
relationship between the AVHRR LST and MOD11A1 LST 
was established by the data obtained after 2000. We assumed 
that the relationship is invariable, so that it could be applied to 
the data before 2000. The AVHRR LSTs and MOD11A1 LSTs 
for the whole of the summer from 2000 to 2018 were generated 
and resampled into a 1000-m resolution in UTM projection 
(1705 pairs, as some MOD11A1 images were missing). 
Referring to the quality assessment field (QA band) obtained 
from the AVHRR surface reflectance product, the pixels 
polluted by cloud or cloud shadow were excluded from the 
AVHRR LST images. As a result of orbit drift, the overpass 
time for each pixel in the AVHRR LST images varies over a 
certain period (of around one week; an example is shown in Fig. 
4). Considering the diurnal temperature cycle (DTC, [18, 39, 61, 
62]), for AVHRR LSTs, it would be more reasonable to 
calculate different normalization coefficients corresponding to 
the different overpass times. For each pixel location, the 
overpass times for the 1705 pairs were transferred into integer 
values. Next, the LSTs for the 1705 pairs were classified into 
several clusters based on the integer overpass times. To obtain a 
more robust relationship between the AVHRR LSTs and 
MODIS LSTs, for each cluster, robust regression according to 
Huber’s M-estimator was conducted[63]. In the traditional 
framework of the least-squares solver, the function between the 
AVHRR LSTs and MODIS LSTs can be simply interpreted as: 

, , , , ,M1000 A1000 2LST (x, y t) f(x, y t) LST (x, y t) g(x, y t) e (x, y t)      (2) 

where x, y and t indicate target pixels (x, y) at integer 
overpass time t in the 1705 pairs in summer from 2000 to 2018. 
LSTM1000 is the MODIS LST at a 1000-m resolution. LSTA1000 is 
the AVHRR LST at a 1000-m resolution. f and g are the linear 
regression coefficients. e2 is the residual. For each cluster 
(target t), the sum of squared residuals e2 should be minimized. 
However, impacted by the image quality of the AVHRR 
images, the outliers in the fitting samples have an adverse effect 
on the regression model. Hence, the weighted least squares 
estimator is introduced to weaken the influence of the outliers 
and strengthen the robustness of the model by minimizing the 
sum of the weighted and squared residuals: 

2

,

min ( )2
x y

w(x, y) e (x, y)                          (3) 

where w(x,y) is the corresponding weight, which adjusts the 
impact of every pixel(x,y) in target t, and should decrease as the 
residual e2 increases. In this study, w(x,y) was calculated by 
Huber’s M-estimator: 

1

max(1 )
w(x, y)

,| r(x, y)|
                           (4) 

(med(| med( )|))/0.6745
2

2 2

e (x, y)
r(x, y)

tune e (x, y) e (x, y)


 
        (5) 

where tune is a given parameter (usually 1.345), which can be 
adjusted. med(*) is the median function. As a result of the 
adaptive weights, we can generate new regression coefficients 
fm and gm. Hence, a set of regression coefficients corresponding 
to the different overpass times for each pixel could be gained. 

For each pixel in reference AVHRR images before 2000, its 
normalization coefficients (fm and gm) could be found by 

searching for the overpass time. The reference AVHRR LST 
could then be normalized by applying the normalization 
coefficients corresponding to the different overpass times, 
assuming that the normalization coefficients are fixed for a 
target pixel at a target overpass time t for different years. After 
temporal normalization, one mean MODIS-like LST image for 
one summer could be generated (i.e. the MODIS-like SMLST 
for each summer as the target image). 

1)  Spatial normalization  
For the original selected reference pairs in the above step, the 

error between the Landsat LST and MODIS-like LST is not 
constant. In Brief, most LST inversion methods for Landsat are 
based on a single thermal band [36, 44, 64], while the 
MOD11A1 product and AVHRR LST are obtained from 
multiple-thermal bands [46, 47, 65, 66], inevitably resulting in 
an error between the Landsat LST and MODIS-like LST. 
Generally, the inversion error of Landsat is greater than that of 
MODIS, which leads to a less stable series of Landsat LST 
compared with MODIS-like LST. In other words, the error 
between the reference Landsat LST and reference MODIS-like 
LST does not remain the same as the reference date changes, 
leading to different fusion results by different reference pairs. 
Thus, an LST normalization method was developed to correct 
the error between the Landsat LST and MODIS-like LST to 
reduce the variation for different reference pairs in the spatial 
area and assures the comparability between different sensors. 

Since the MOD11A1 LST has been verified to be a reliable 
data [53-55], we attempt to set the MODIS-like LST as the 
reference axis to deduce the system error between MODIS-like 
LST and Landsat LST. For all reference pairs, the land covers 
have been classified into two categories, impervious surface 
and pervious surface. The impervious surface is gained from 
our previous research [67]. The other land covers are all 
classified as pervious surface. Next, the average LST and 
standard deviation for each land cover of each reference pair 
are calculated. Furthermore, for each land cover in each pair, 
the difference between the average LST of Landsat and 
MODIS-like images can be generated: 

LC, j LC, j LC, jDALST LALS MALST                  (6) 

where LC represents for the land cover, i.e. impervious surface 
or pervious surface. j stands for the jth reference pair. LALST is 
the average LST of Landsat image, and MALST is the average 
LST of MODIS-like image. DALST is the difference between 
the average LST of Landsat and MODIS-like images. 

 Similarly, for each land cover in each pair, the difference 
between the standard deviation of Landsat and MODIS-like 
images can be generated: 

LC, j LC, j LC, jDSTD LSTD MSTD                   (7) 

where LC and j are the same with the above. LSTD is the 
standard deviation of Landsat image, and MSTD is the standard 
deviation of MODIS-like LST. DSTD is the difference between 
the standard deviation of Landsat and MODIS-like LSTs. 

Sequentially, the mean of all the DALST for impervious and 
pervious surface can be gained (MDALSTi, and MDALSTp, 
respectively), so does the standard deviation (MDSTDi, and 
MDSTDp, respectively). These means are regarded as the 
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system error between Landsat and MODIS-like images. In 
other words, for a target land cover of one reference pair, the 
expected average LST of Landsat image should be the addition 
of average LST of MODIS-like image and system error, so does 
the standard deviation: 

LC, j LC, j LCEALST MALST MDALST                   (8) 

LC, j LC, j LCESTD MSTD MDSTD                     (9) 

where LC and j are the same with the above. EALST is the 
expected average LST of Landsat image, and ESTD is the 
expected standard deviation of Landsat image. 

Thus, according to the moment matching [68, 69], we can 
normalize the Landsat images into a more stable series: 

LC, j,x,y LC, j,x,y LC, j,x LC, j,xNLST = (LST - B ) / A             (10) 

where,

,

,

LC, j
LC, j x

LC, j

LC, j
LC, j x LC, j LC, j

LC, j

LSTD
A =

ESTD

LSTD
B = LALST - EALST

ESTD








 
                

(11) 

where LC and j are the same with the above. x and y are the 
pixel location. NLST is the normalized Landsat LST we expect 
to gain. LST is the LST value for each pixel of each category. 
Taking the impervious surface as example, the temporal trend 
of the normalized Landsat LST series (Fig. 5, Landsat-nor) is 
expected to be more similar with MODIS-like LST series (Fig. 
5, origin-modis) compared with the origin Landsat LST series 
(Fig. 5, origin-Landsat). The normalized Landsat LST and the 
corresponding MODIS-like LST are selected as the final 
reference pair to conduct the spatiotemporal fusion. 

 
Fig. 5. The expected normalized series of Landsat LST for impervious surface. 

IV. RESULTS 

A. Accuracy assessment for the long-term coarse-scale 
images 

The long-term coarse-scale images generated in this study 
were a MODIS-like dataset, which included the MOD11A1 
LSTs after 2000 and the normalized AVHRR LSTs before 2000. 

Since the accuracy of the MODIS products has been tested to be 
reliable in previous research, the accuracy for the whole 
MODIS-like dataset depends on the temporal normalization 
between the AVHRR LSTs and MODIS LSTs. The temporal 
normalization between the AVHRR LSTs and MODIS LSTs is 
aimed at adjusting the AVHRR LSTs to be consistent with the 
MODIS LSTs, so that continuous MODIS-like LSTs from 1984 
to 2018 can be generated. In this study, we normalized the 
AVHRR LSTs before 2000 with the regression coefficients 
generated by the AVHRR LSTs and MOD11A1 products for 
2000–2018. Due to the lack of MOD11A1 products before 
2000, we could not directly estimate the accuracy of the 
normalized AVHRR LSTs from 1984 to 1999. Thus, to test the 
accuracy of the normalization in the time series, a simulated 
experiment was carried out between the AVHRR LSTs and the 
MOD11A1 products for 2000–2018. 

 
Fig. 6. AVHRR LST, normalized AVHRR LST and the corresponding 
MOD11A1 LST for July 22nd, 2004. For each image, the red area is the top 7.5% 
LST; the yellow area is the top 7.5%–25% LST; the green area is the top 25%–
80% LST; the blue area is the last 20% LST. 

In detail, we applied the regression coefficients to the 
AVHRR LSTs for 2000–2018, so that the normalized AVHRR 
LSTs could be compared with the MOD11A1 product at the 
same time. An example of the original AVHRR LST on 
2004/07/22 can be seen in Fig. 6a. The corresponding MODIS 
LST is shown in Fig. 6c. Based on the normalization method 
described in Section 3.2.1, the normalized AVHRR LST can be 
seen in Fig. 6b. Comparing the original AVHRR LST and the 
normalized result, it is clear that more effective information has 
been added into the AVHRR LST. 

 
Fig. 7. Temporal trends for the AVHRR LST, normalized AVHRR LST and 
MODIS LST for Wuhan. lst_AVHRR_nor is the normalized AVHRR LST; 
lst_MODIS is the MODIS LST; lst_AVHRR is the original AVHRR LST. 

For the temporal trends, from Fig. 7, it can be figured out that 
the AVHRR LST (gray line) has increased a lot after 
normalization, and the temporal trend for the normalized 
AVHRR LST (blue line) is smoother than the original AVHRR 
LST. Furthermore, the values and temporal trends for the 
normalized AVHRR LST are similar to the MODIS LST 
(orange line). Overall, the normalized AVHRR LST is tested to 
be consistent with the MODIS LST, as expected. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3046755, IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing

B. Accuracy assessment for the comparable and fine-scale 
results 

With the assistance of the selected suitable inputs, the 
comparable and fine-scale LSTs can be generated by the 
spatiotemporal fusion. Given that the accuracy for the input 
coarse-scale images has been estimated to be reliable in the 
above section, if the relationship between the high-resolution 
and coarse-resolution images can also be confirmed as reliable, 
then the accuracy of the fusion LSTs can be accepted. In other 
words, the accuracy of the fusion results is dependent on the 
spatial normalization between the Landsat LSTs and 
MODIS-like LSTs. To assess the spatial normalization 
accuracy, a validation experiment was carried out in Wuhan. 
The MOD11A1 SMLST covering Wuhan in 2001 was selected 
as the target image to conduct the spatiotemporal fusion. The 
Landsat images of several days (Table 2) and the corresponding 
MOD11A1 images were chosen as the reference pairs. The 
fusion results by different reference pairs were obtained. The 
average fusion LSTs (Landsat-like LSTs) for the urban area 
(urban LSTs) (with the urban definition referring to [22]) and 
suburban area (suburban LSTs) (with the suburban definition 
referring to [21]) were compared with the single-day Landsat 
LST (single).  

The LST accuracies can be inferred from Table 2. Focusing 
on the single-day Landsat LST (single), we would obtain 
different summer LSTs if we chose different days to represent 
the whole summer (e.g. 318.24K for the urban LST on 
2001/05/03, 304.83K for the urban LST on 2001/07/22). If we 
selected the SMLST as the target image to obtain fusion results, 
but without normalization (fusion), the fusion LSTs by the 
reference pairs from other seasons (spring, autumn and winter) 
would be increased to closer to the summer LST, compared 
with the single-day LSTs (e.g. 282.48K for the urban LST on 
2002/01/30, but 306.14K for the urban LST in fusion result by 
the reference pair on 2002/01/30). What’s more, if the fusion 
results were generated by normalized reference pairs and target 
SMLST (nor & fusion), we could generate a relatively uniform 

SMLST, no matter which reference pair was selected. In detail, 
focusing on the fusion results by reference pairs with (nor & 
fusion) and without normalization (fusion), we can find that the 
difference in the fusion results from different reference pairs is 
narrowed by the normalization, for urban LST, suburban LST 
and the UHI intensity (UHII) (e.g. without normalization: 
319.06K for the urban LST on reference date 2001/05/03 and 
305.90K for the urban LST on reference date 2001/07/22; with 
normalization: 310.91K for the urban LST on reference date 
2001/05/03 and 310.22K for the urban LST on reference date 
2001/07/22). We can therefore conclude that the numerical 
difference between the different reference pairs has been 
reduced by the spatial normalization. 

The accuracy for the spatial details of the fusion results with 
normalized reference pairs can be figured out from Fig. 8. After 
normalization, the built-up area (total area of yellow and red for 
each image in Fig. 8) for the fusion results generated from the 
reference pairs in different months are almost the same. 
However, the spatial details for non-built-up areas (mainly 
vegetation and water bodies, i.e. green and blue areas for each 
image in Fig. 8) vary with the month. More specifically, the 
reference pairs from late February to October generate fusion 
results with similar details in the non-built-up areas (the 
Yangtze River presents as green in January, November, and 
December). This is also why we suggest that the reference pairs 
should be selected from early spring to autumn. In that stage, 
we can establish that the spatial details of the fusion results will 
remain almost the same for all the normalized reference pairs. 

In general, taking the MODIS-like SMLST as the target 
image, after spatial normalization for reference pairs, the 
spatial and temporal details of fusion results from different 
normalized reference pairs are almost the same, for all the 
reference dates. Thus, the normalization method effectively 
bridges the gap between the different reference pairs. In other 
words, if the target image is fixed, after normalizing the 
reference pairs, we can generate a relatively uniform fused LST 
no matter which reference pair is selected. 

TABLE II 
SUMMER LSTS GENERATED BY THE DIFFERENT METHODS 

Dates 
Urban LST (K) Suburban LST (K) UHII (K) 

single  fusion nor&fusion single fusion nor&fusion single fusion nor&fusion

2002/01/30 282.48 306.14 311.06 281.48 301.21 305.02 1.00 4.93 6.04 

2000/02/26 290.20 309.58 311.25 287.16 303.76 306.12 3.04 5.82 5.13 

2002/03/19 306.67 315.20 310.85 301.16 308.70 304.89 5.51 6.50 5.96 

2003/04/15 299.93 302.96 310.89 295.35 299.33 305.19 4.58 3.63 5.70 

2001/05/03 318.24 319.06 310.91 310.33 311.91 305.27 7.91 7.15 5.64 

2001/07/22 304.83 305.90 310.22 300.67 302.64 305.06 4.16 3.26 5.16 

2001/09/24 310.64 312.41 310.73 307.39 307.09 305.20 3.25 5.32 5.53 

2002/10/13 312.70 317.74 310.99 308.70 311.25 305.18 4.00 6.49 5.81 

2001/11/27 290.30 309.70 311.22 288.43 304.30 305.56 1.87 5.40 5.66 

2001/12/29 279.43 304.72 311.15 278.61 299.82 305.01 0.82 4.90 6.14 
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Fig. 8. Spatiotemporal fusion results by different normalized reference pairs in Wuhan. The dates for the reference pairs are listed below the fusion results. For each 
image, the red area is the top 7.5% LST; the yellow area is the top 7.5%–25% LST; the green area is the top 25%–80% LST; the blue area is the last 20% LST. 

C. Comparable and fine-scale dataset for Wuhan 

Wuhan is selected as the validation case to show the results 
obtained by the procedure designed in this research. One 
cloud-free reference pair was chosen for one year from 1984 to 
2018 in Wuhan. Finally, 30 reference pairs (except 1984, 1985, 
1986, 2007 and 2012) were selected to conducted STNLFFM. 
All the input images for the fusion are listed in Table 3. 

Firstly, the AVHRR LSTs were normalized in the time series 
to be consistent with the MOD11A1 LSTs by the use of the 
robust regression coefficients generated from the AVHRR 
LSTs and MOD11A1 LSTs for 2000–2018. Since there are 
some missing pixels in the reference MOD11A1 LST images in 
some years, some high-quality MOD11A1 LSTs were collected 
as auxiliary data to conduct the WLR method to recover the 
missing pixels. Thus, a continuous time series of MODIS-like 
LSTs for the reference dates and MODIS-like SMLSTs for the 
target dates for Wuhan from 1984 to 2018 was generated. The 
Landsat LSTs at the reference dates were then normalized into 
a stable series. Lastly, the normalized Landsat LSTs and 
corresponding MODIS-like images at the reference dates, and 
the MODIS-like SMLSTs at the target dates were utilized to 
produce the Landsat-like SMLSTs for Wuhan.  

All the fusion results are shown in Fig. 9 and Fig. 10. For the 
temporal analysis, a continuous LST evolution from 1984 to 
2018 can be illustrated (Fig. 9, blue line). Since the generated 
fusion LSTs can be deemed as representative and comparable, 
we can point out that the LST evolution trend in Wuhan 
decreased at first and then increased, with the maximum LST of 
306.22K occurring in 2018. From Fig. 9, we can also figure out 
that the LST generated in this research presents a similar trend 
with the LST generated by the MODIS-like SMLSTs (orange 

line), but the numeric range is greater with higher peaks and 
lower valleys.  

For the spatial analysis (Fig.10), it can be clearly seen that 
the fusion results include sufficient spatial information. Thus, a 
more refined analysis can be carried out. For the spatial analysis, 
a clear UHI distribution can be determined from the fusion 
results. It is obvious that the area with higher LST (red and 
yellow area) for Wuhan was centralized at first and then 
scattered over the past three decades. A remarkable UHI core is 
found in Wuhan metropolis and the progress of urbanization 
can also be recognized. 

Overall, the results generated by the procedure proposed in 
this research combine the more precise temporal trend from the 
MODIS-like LSTs and the more refined numeric range and 
spatial information from the Landsat LSTs. 

 
Fig. 9. The average LST of Wuhan from 1984 to 2018. The blue line is the 
average LST generated in this study; the orange line is the average LST of the 
MODIS-like SMLSTs, i.e. the average LST of normalized AVHRR SMLSTs 
before 2000 and MOD11A1 SMLSTs after 2000. 
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Fig. 10. UHI distribution in Wuhan from 1984 to 2018. For each image, the red area is the top 7.5% LST; the yellow area is the top 7.5%–25% LST; the green area 
is the top 25%–80% LST; the blue area is the last 20% LST. 
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TABLE III 
REFERENCE LSTS AND TARGET LSTS FOR THE SPATIOTEMPORAL FUSION IN WUHAN 

1984-1999 fusion 2000-2018 WLR 2000-2018 fusion 

Reference pairs Target images Auxiliary images Target images Reference pairs Target images 

MODIS-like and 
Normalized Landsat 

MODIS-like 
SMLST 

MOD11A1 MOD11A1 
MOD11A1and 

Normalized Landsat 
MOD11A1 

SMLST

1987/09/26 1984 2000/07/31 2000/09/13 2000/09/13 2000 

1987/09/26 1985   2001/07/22 2001 

1987/09/26 1986 2002/08/31 2002/09/03 2002/09/03 2002 

1987/09/26 1987 2003/06/19 2003/05/01 2003/05/01 2003 

1988/08/11 1988   2004/07/22 2004 

1989/03/07 1989   2005/04/20 2005 

1990/09/02 1990   2006/11/01 2006 

1991/07/19 1991   2006/11/01 2007 

1992/04/16 1992   2008/04/20 2008 

1993/10/12 1993 2009/06/05 2009/09/06 2009/09/06 2009 

1994/05/08 1994   2010/11/12 2010 

1995/08/31 1995 2011/07/02 2011/06/08 2011/06/08 2011 

1996/10/04 1996   2013/06/13 2012 

1997/09/21 1997   2013/06/13 2013 

1998/10/26 1998 2014/07/21 2014/10/06 2014/10/06 2014 

1999/09/27 1999   2015/10/25 2015 

  2016/07/26 2016/07/23 2016/07/23 2016 

    2017/10/30 2017 

    2018/09/15 2018 
 

V. CONCLUSION 

In this research, with the help of AVHRR LSTs and MODIS 
LSTs, we were able to generate a continuous and comparable 
time series of MODIS-like LSTs by temporal normalization. 
Furthermore, by integrating the Landsat LSTs and the 
MODIS-like LSTs by spatial normalization, we could reduce 
the difference and assure the comparability between the 
different sensors. What’s more, we skillfully took the SMLSTs 
instead of single-day LSTs for MODIS-like images to represent 
the whole summer, so that a more accurate representation of 
each summer could be expressed. Finally, by conducting 
spatiotemporal fusion between the normalized Landsat LSTs, 
MODIS-like LSTs and MODIS-like SMLSTs, a time series of 
long-term, fine-scale, comparable and representative LSTs for 
thermal environment monitoring in summer could be gained. 
Compared with the current studies, our method effectively 
integrates the high spatial resolution, high temporal resolution, 
representativeness, and comparability from multi-source data. 

Overall, we have proposed a framework to produce 
long-term, fine-scale and comparable SMLSTs, which has the 
potential for application with other remotely sensed data (e.g. 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) and AVHRR, ASTER and MODIS, 
etc.…), and could serve as a basis for the refined analysis of the 
thermal environment. Inevitably, there are some limitations to 

our work. Firstly, if the study area is too cloudy to obtain 
cloud-free Landsat images in many years (e.g. it is difficult to 
collect cloud-free Landsat images between 2000 and 2018 for 
Chengdu, China), the proposed procedure would not take effect, 
due to the lack of reference pairs. If we could apply other 
fine-scale remotely sensed data (e.g. ASTER), this problem 
could be overcome. Secondly, the spatial resolution of the 
AVHRR product used in this study is too coarse (0.05 degrees) 
to provide sufficient spatial information, which increased the 
difficulty of detecting the land cover changes before 2000. 
Even though the spatial resolution of MOD11A1 product is 
much higher than that of AVHRR product, the land cover 
changes within 1 km2 are still hard to interpret. The 
spatiotemporal fusion method inevitably leaves out some 
changes happening in a certain area, so we insist that the date of 
reference pairs should be close enough to that of the target 
image. In our future work, we will focus on the problems and 
try to provide a more precise dataset for long-term and 
fine-scale thermal environment monitoring at national or global 
scale. 
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