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A B S T R A C T   

Two-leaf light use efficiency (TL-LUE) models are efficient methods to simulate regional and global gross primary 
productivity (GPP). A TL-LUE model has previously been shown to outperform the big-leaf MOD17 model 
through separate consideration of the contributions of sunlit and shaded leaves. However, the impacts of radi
ation intensity on LUE are inadequately considered in the TL-LUE model, and the maximum LUEs of sunlit and 
shaded leaves are assigned as different constants, which often induce large uncertainties. Therefore, a TL-LUE 
model modified with a radiation scalar (RTL-LUE) is developed in this paper. The same maximum LUE is used 
for both sunlit and shaded leaves, and the difference in LUE between sunlit and shaded leaf groups is determined 
by the same radiation scalar. The RTL-LUE model was calibrated and validated at global 169 FLUXNET eddy 
covariance (EC) sites. Results indicate that although GPP simulations from the TL-LUE model match well with the 
EC GPP, the RTL-LUE model can further improve the simulation, for half-hour, 8-day, and yearly time scales. The 
TL-LUE model tends to overestimate GPP under conditions of high incoming photosynthetically active radiation 
(PAR), because the radiation-independent LUE values for both sunlit and shaded leaves are only suitable for low- 
medium (e.g., average) incoming PAR conditions. The errors in the RTL-LUE model show lower sensitivity to 
PAR, and its GPP simulations can better track the diurnal and seasonal variations of EC GPP by alleviating the 
overestimation at noon and growing seasons associated with the TL-LUE model. This study demonstrates the 
necessity of considering a radiation scalar in GPP simulation in LUE models even if the first-order effect of ra
diation is already considered through differentiating sunlit and shaded leaves. The simple RTL-LUE developed in 
this study would be a useful alternative to complex process-based models for global carbon cycle research.   

1. Introduction 

Gross primary productivity (GPP), the integral of vegetation photo
synthesis by all leaves at the ecosystem scale, is an important component 
for the terrestrial ecosystem carbon cycle (Beer et al., 2010; Chen et al., 
2019b). GPP represents the total amount of atmospheric carbon dioxide 
fixed by vegetation per unit of space and time, and thus plays a critical 
role in quantifying the status and changes of the global carbon budget 
(Falkowski et al., 2000; Marcott et al., 2014). Under the background of 
the rapid global change, it is of great significance to accurately quantify 
GPP at regional or global scales, in order to advance our understanding 
of the interactions between terrestrial ecosystems and changes in at
mospheric CO2, temperature, and other variables (Xia et al., 2015; Yang 

et al., 2013). 
In the past decades, numerous models with various complexities and 

structures have been developed to simulate GPP at the regional or global 
scale, mainly including process-based models and light use efficiency 
(LUE) models (Marshall et al., 2018; Yuan et al., 2014). Among them, 
LUE models are favored in many applications due to their simple model 
structure and input requirement, making the models easy to use relative 
to process-based models, which require large numbers of prescribed 
parameters and input datasets (Dong et al., 2015; Mattos et al., 2020). 
LUE models can be conveniently driven by the remote sensing vegeta
tion index (VI) data, which are available globally at various resolutions 
(Guan et al., 2019; Xiao et al., 2010; Zhang et al., 2017). Based on the 
assumption that GPP linearly increases with the canopy absorbed 
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photosynthetically active radiation (APAR), a variety of big-leaf LUE 
models were developed, such as the MOD17 model (Running et al., 
2004), the eddy covariance (EC-LUE) model (Yuan et al., 2007), the 
Vegetation Photosynthesis Model (VPM) (Xiao et al., 2004), and the 
Carnegie-Ames-Stanford Approach (CASA) (Potter et al., 1993). The 
main disparity of these models concentrates on the calculation of APAR 
and environmental scalars used to constrain the actual LUE departing 
from the optimum LUE (McCallum et al., 2013; Zhang et al., 2015). 

These big-leaf LUE models treat the entire vegetation canopy as a big 
extended leaf, assuming that the direct and diffuse radiation are 
absorbed without differences in their use for photosynthesis (Haxeltine 
and Prentice, 1996; Wang and Leuning, 1998). However, the photo
synthesis rates of sunlit and shaded leaves in plant canopies are 
respectively limited by the maximum carboxylation rate and the elec
tron transport rate, and hence have different LUE values (Chen et al., 
1999; De Pury and Farquhar, 1997; Propastin et al., 2012). Different 
groups of leaves (sunlit and shaded) have different levels of exposure to 
sunlight, due to their different positions in the canopy (Liu et al., 1997; 
Oliphant et al., 2011). Sunlit leaves absorb both direct and diffuse ra
diation, which are easily light-saturated. In contrast, shaded leaves can 
only absorb diffuse radiation because they are blocked by sunlit leaves, 
which are usually limited by low APAR (Chen et al., 1999; Mercado 
et al., 2009; Rap et al., 2018; Zhang et al., 2011). As a result, there are 
specific differences in APAR and LUE of the sunlit and shaded leaves, 
and the same treatment of sunlit and shaded leaves in big-leaf models 
will induce bias (Propastin et al., 2012; Wang et al., 2015). In fact, it has 
already been found that the MODIS GPP product underestimates GPP in 
regions with high vegetation coverage due to insufficient consideration 
of the contribution of shaded leaves (Chen et al., 2020; He et al., 2018; 
Zhang et al., 2012). In order to overcome this problem, a two-leaf LUE 
(TL-LUE) model was developed on the basis of the MOD17 model (He 
et al., 2013) by integrating the approach in the Boreal Ecosystem Pro
ductivity Simulator (BEPS) to separate the LAI and PAR of sunlit and 
shaded leaves (Chen et al., 1999; Liu et al., 1997). This TL-LUE model 
has been proved to outperform the big-leaf MOD17 model across a wide 
range of biomes, which highlights the necessity of separate treatments of 
sunlit and shaded leaves in LUE models (He et al., 2013; Zhou et al., 
2016). 

Nevertheless, the differences in LUE between different groups of 
leaves in the TL-LUE model are totally determined by the independent 
maximum LUE of sunlit and shaded leaves (εmsu and εmsh), which are the 
parameters manually set for different biomes (He et al., 2013; Zhou 
et al., 2016). The actual LUE of sunlit and shaded leaves are reduced 
from the optimum (εmsu and εmsh) by the same scalars of daily minimum 
temperature and vapor pressure deficit (VPD). However, the differences 
in LUE between sunlit and shaded leaves should mainly be attributed to 
the different intensity of radiation they received, and the maximum LUE 
is almost the same for the two groups of leaves (Chen et al., 1999; De 
Pury and Farquhar, 1997; Liu et al., 1997). The maximum LUE of a leaf is 
only decided by the physiological traits of the leaf itself, which should be 
nearly the same whether or not it is sunlit or shaded (Koyama and 
Kikuzawa, 2010; Leverenz, 1987). Although there are small differences 
in nitrogen content and carboxylation capacity between sunlit and 
shaded leaves because plants tend to allocate more resources to leaves at 
the top, which receive direct radiation more frequently than those at 
lower layers (Chen et al., 2012), the impacts of these differences on LUE 
would be much smaller than that of radiation (Hikosaka, 1996). So the 
similar physiological traits of sunlit and shaded leaves will certainly 
result in the similar maximum LUE, and the differences of LUE in them 
should be mostly caused by the different environmental conditions 
(Farquhar et al., 1980; Haxeltine and Prentice, 1996). Even though 
slight differences should exist between sunlit and shaded leaves in their 
temperature and humidity environments, the large difference in the 
light intensity between them is the dominant factor on their LUE (Lev
erenz, 1987). A light response curve generally shows a rapid increase in 
the leaf photosynthesis rate with increasing incident radiation when the 

radiation intensity is low and a much slower increase when the radiation 
intensity is high, i.e., photosynthesis becomes saturated at a high radi
ation intensity (Ogren, 1993; Perkins et al., 2006; Zheng et al., 2017). 
Such a light response curve suggests that the LUE in shaded leaves 
should be higher than that in sunlit leaves, because of the lower APAR 
absorbed by shaded leaves. As a result, the existing TL-LUE model with 
two prescribed LUEs for sunlit and shaded leaves has the following is
sues: (1) it does not capture the influence of radiation intensity varia
tions on LUE for both sunlit and shaded leaves, and (2) the LUEs of sunlit 
and shaded leaves are independent of each other, while in reality they 
are related and their difference depends on the incoming radiation in
tensity, canopy structure, and other variables. 

From the theoretical point of view, it is therefore necessary to 
develop a system in which sunlit and shaded leaf LUEs are determined 
mechanistically and cohesively. In some ecosystem models, such as 
BEPS (Chen et al., 1999; Liu et al., 1997) and BIOME-BGC (Hunt Jr and 
Running, 1992), a radiation scalar is used to scale stomatal conductance 
from its optimum value to reality. Since stomatal conductance and LUE 
are highly related, we attempt to use this scalar to improve the TL-LUE 
model. The main purpose of this study is to develop a modified TL-LUE 
model (RTL-LUE) with consideration of the influence of radiation on 
LUE using this radiation scalar and to demonstrate the improvements of 
RTL-LUE over TL-LUE in simulating GPP of terrestrial ecosystems 
derived from eddy covariance (EC) data for 12 vegetation types across 
the globe. 

2. Data and methods 

2.1. Data 

In this study, the FLUXNET2015 dataset is applied to the parame
terization and validation of the RTL-LUE and TL-LUE models, including 
the records of GPP, incoming solar radiation, air temperature, and VPD. 
The FLUXNET2015 dataset (www.fluxdata.org) is the latest published 
flux observations from EC towers with a standard format, including the 
refined data from different regional networks for 212 sites worldwide 
(Pastorello et al., 2017; Pastorello et al., 2020). Similar to many previous 
studies, GPP partitioned by the DT method (termed “GPP_DT_VU
T_REF”) is employed as the true GPP, which is partitioned from NEE 
using a hyperbolic light response curve (Reichstein et al., 2005). The 
sites with more than one year of valid half-hour observations during 
2001− 2015 are all selected, and there are in total 169 sites and 1191 
site-years covering 12 vegetation types in the International 
Geosphere-Biosphere Program (IGBP) classification system. The number 
of sites and site-years for each vegetation type are listed in Table 1, and 
the detailed information and references for each site can be found in 
Table S1. The half-hourly data are used because they can support the 
comparison of diurnal GPP variations. 

The Global LAnd Surface Satellite (GLASS) LAI product from 2001 to 
2015 is used to drive the TL-LUE and RTL-LUE models, as the description 
of vegetation canopy structure and used to calculate APAR (Xiao et al., 
2016). The dataset is provided at a spatial resolution of 1 km and tem
poral resolution of 8 days, which has been proved to have a satisfactory 
performance in GPP simulation (Xiao et al., 2017; Xie et al., 2019). 
Furthermore, the MODIS MOD15A2H LAI products with a spatial reso
lution of 500 m and temporal resolution of 8 days are also acquired to 
investigate the sensitivities of GPP performance to LAI inputs in the 
TL-LUE and RTL-LUE models (Myneni et al., 2015), by comparing the 
accuracy of GPP simulation from the two different LAI products. In order 
to reduce the impacts of the residual cloud contamination and eliminate 
the unrealistically short-term fluctuations, both the GLASS and MODIS 
LAI time series data were smoothed with the modified Whittaker trend 
filtering method (Chu et al., 2021). 
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2.2. TL-LUE model 

The TL-LUE model (He et al., 2013) stems from the MOD17 algo
rithm and improves the calculation of canopy APAR and GPP after 
separating the canopy into sunlit and shaded leaf groups according to 
the BEPS model (Chen et al., 1999). GPP of a plant canopy is calculated 
as follows: 

GPP = (εmsu ×APARsu + εmsh ×APARsh) × f (VPD) × g(Ta) (1)  

where εmsu and εmsh are the maximum light use efficiency of sunlit and 
shaded leaves, respectively; APARsu and APARsh are the incoming PAR 
absorbed by sunlit and shaded leaves and calculated as follows: 

APARsu = (1 − α) ×
[

PARdir × cos(β)
cos(θ)

+
PARdif − PARdif ,u

LAI
+C

]

× LAIsu

(2)  

APARsh = (1 − α) ×
[

PARdif − PARdif ,u

LAI
+C

]

× LAIsh (3)  

where α is the canopy albedo that obtained related to vegetation types 
(Table. S2); β is the mean leaf-sun angle and the value for a canopy with 
spherical leaf angle distribution is set as 60◦; θ is the solar zenith 
angle;PARdif , PARdir, and PARdif ,u are the diffuse, direct components of 
incoming PAR, and the diffuse PAR under the canopy, respectively, 
which are empirically partitioned according to the clearness index (R) 
following Chen et al. (1999); C represents the multiple scattering of 
direct radiation; LAIsu and LAIsh are the LAI of sunlit and shaded leaves, 
separated according to the canopy LAI, clumping index (Ω) and solar 
zenith angle according to Chen et al. (1999). The LAIsu can be computed 
as follow, and the LAIsh is the residual of LAI minus LAIsu. 

LAIsu = 2 × cos(θ) ×
(

1 − exp
(

− 0.5×Ω×
LAI

cos(θ)

))

(4) 

In equation (1), f(VPD) and g(Ta) are the scalars of VPD and mini
mum temperature, which are the same as it in the MOD17 model 
(Running et al., 2004), calculated as follows: 

f (VPD) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 VPD ≥ VPDmax

VPDmax − VPD
VPDmax − VPDmin

VPDmax < VPD < VPDmax

1 VPD ≤ VPDmin

(5)  

g(Ta) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 Ta ≥ Tmax

Ta − Tmin

Tmax − Tmin
Tmin < Ta < Tmax

0 Ta ≤ Tmin

(6)  

where VPD is the daily average VPD at day-time and Ta is the daily 
minimum temperature, which can be both calculated from the half-hour 
data; VPDmax,VPDmin,Tmax, andTmin are parameters specific to vegetation 
types (Table S2). 

2.3. Description of the RTL-LUE model 

Due to the fact that the nutrient and environmental conditions be

tween sunlit and shaded leaves are very similar, the difference in LUE 
between these two groups of leaves should mainly attribute to the 
different light intensities. According to the BEPS and BIOME-BGC 
models, the scalar of photosynthetic photon flux density (PPFD) can 
be used to quantify the response of stomatal conductance to light in
tensity (Chen et al., 1999; Hunt Jr and Running, 1992; Liu et al., 1997). 
After considering the scalar of PPFD for the photosynthesis of sunlit and 
shaded leaves, a TL-LUE model with radiation constraint on LUE 
(RTL-LUE) is developed, and the calculation of GPP can be modified as 
follows: 

GPP = ε*
max × (f (PPFDsu)×APARsu + f (PPFDsh)×APARsh) × f (VPD)

× f (Ta)

(7)  

where ε*
max is the maximum LUE of all the leaves within the canopy; 

APARsu, APARsh f(VPD) and g(Ta) are calculated in the same way as 
them in TL-LUE and the MOD17 model; f(PPFDsu) and f(PPFDsh) are the 
radiation scalars for sunlit and shaded leaves, respectively, which are 
calculated by the PPFD of the two groups of leaves, using the same 
reciprocal function as follows: 

f (PPFD) =
b

a × PPFD + b
(8)  

where a and b are the coefficients in the relationship between light in
tensity and LUE. b is set as a constant with the value of 1 mol m− 2 hh− 1, 
and only the parameter a is used to control the response of LUE to PPFD 
and needs to be parameterized depending on different vegetation types. 
PPFD (mol m− 2 hh− 1) for sunlit and shaded leaves can be obtained from 
the absorbed PAR (PARsu or PARsh) multiplied by a constant PAR-energy 
ratio of 4.55 mol/MJ (Chen et al., 1999). 

2.4. Model Parameterization and evaluation 

2.4.1. Model Parameterization 
Similar to previous studies, the parameters VPDmax,VPDmin,Tmax,

Tmin,Ωandα are empirically set both in TL-LUE and RTL-LUE models 
according to previous studies (He et al., 2013; Zhou et al., 2016), as 
shown in Table S2. Two parameters need to be further optimized in both 
the RTL-LUE model (εmax and a) and the TL-LUE model (εmsu and εmsh). 
These four parameters were all optimized using the randomly selected 
one-year data for each site (Table S1), and the mean values of the sites 
with the same vegetation type are obtained. The shuffled complex 
evolution-University of Arizona method was employed to implement the 
optimization (Duan et al., 1992; Zhou et al., 2016), which evaluates the 
model performance with the agreement index (d): 

d = 1 −

∑N

i=1
(Pi − Oi)

2

∑N

i=1

(⃒
⃒
⃒
⃒Pi − O

⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒Oi − O

⃒
⃒
⃒
⃒

)2 (9)  

where N is the total simulated experiment data point; Pi and Oi represent 
the predicted GPP from the TL-LUE or RTL-LUE models and observed EC 
GPP, respectively; and O and P are the mean values of observations and 
predictions for all experimental data points. 

Table 1 
Number of EC sites and site years for different vegetation types in the IGBP classification system.  

Vegetation typea DBF DNF EBF ENF MF GRA CRO CSH OSH WET SAV WSA 

Number of Site 19 1 12 41 8 32 13 1 11 18 7 6 
Number of Site-years 147 3 70 326 76 214 103 4 68 86 45 49  

a DBF: deciduous broadleaf forest; DNF: deciduous needleleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest; GRA: grass; 
CRO: crop; CSH: closed shrub; OSH: open shrub; WET: wetlands; SAV: savannas; WSA: woody savannas. 
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2.4.2. Model evaluation 
The accuracies of the GPP simulations from the two models were 

assessed against half-hourly, composited 8-day, and composited yearly 
EC GPP. The diurnal and seasonal variations of GPP were qualitatively 
compared, and a simple ratio of EC GPP and model simulations were 
used to quantitatively assess the fluctuation of the difference between 
modeled and observed GPP. In addition, three indexes were used for 
accuracy evaluation, including the coefficient of determination (R2), the 
root-mean-square error (RMSE), and the mean predictive error (bias): 

R2 =

(
∑N

i=1
(Pi − O)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Pi − P)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Oi − O)

2

√

⎞

⎟
⎟
⎟
⎟
⎠

2

(10)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Pi − Oi)

2

N

√
√
√
√
√

(11)  

bias =

∑N

i=1
(Oi − Pi)

N
(12)  

3. Results 

In this section, the parameterized maximum LUE in the TL-LUE and 
RTL-LUE models are compared, and the performances in GPP estimation 
from the two models are evaluated against the EC GPP. The results at 
half-hourly, 8-day, and yearly scales are all compared first, and then the 
diurnal and seasonal variations of GPP simulations from the two models 
are further evaluated. 

3.1. Comparison of the parameterized maximum LUE 

Two parameters need to be optimized both in two models, i.e., a and 
ε*

max in RTL-LUE andεmsu and εmsh in TL-LUE. The mean values, standard 
deviations (SD), and CV of them in different vegetation types are 
compared in Table 2. Overall, the values of ε*

max in the RTL-LUE model 
are lower than εmsh and higher than εmsu in the TL-LUE model among all 
the 12 vegetation types. In the TL-LUE model, the value of εmsh is much 
higher than εmsu because shaded leaves only have the chance to absorb 
the diffuse radiation, with PARsh always much lower than PARsu and 
usually lies between the light compensation point and the light satura
tion point. According to the light response curve, the photosynthetic rate 
will decrease with increasing APAR, so the LUE of shaded leaves should 

be higher than that of sunlit leaves. Furthermore, the mean values of εmsh 

and εmsu are also compared with ε*
max, which shows a very similar vari

ation among different vegetation types with an R2=0.73. The mean 
values of εmsh and εmsu are generally lower than ε*

max, which may be due 
to the reason that shaded leaves are always more than sunlit leaves in a 
canopy. Since the value of εmsh is generally higher than that of εmsu, the 
arithmetic mean of εmsh and εmsu with the same weight should be lower 
than the actual maximum LUE, in which the shaded leaves have a higher 
weight than sunlit leaves. So the variation of ε*

max among different 
vegetation types is also more similar to that of εmsh with R2=0.79, but R2 

is only 0.34 for εmsu. 
The ranks of εmsh and εmsu among different vegetation types are 

consistent with the results of Zhou et al. (2016), in which the highest 
values are found in crops and the lowest values are in savannas. In this 
study, because three more vegetation types are included, εmsu and εmsh of 
crops are both the second-highest, and the εmsh in savannas are also the 
second-lowest and only slightly higher than those of DNF. For ε*

max, the 
highest value is also found in crops, and the lowest value is in closed 
shrubs. There are some differences between the mean values of εmsu and 
εmsh in this study and Zhou et al. (2016) for overlapping nine vegetation 
types. The main reason is that there are many more sites employed to 
optimize the parameters in this study, in order to verify the reliability of 
the model across as many sites as possible. Zhou et al. (2016) parame
terized the TL-LUE model by carefully excluding the flux sites with 
heterogeneous vegetation types. The accuracy of GPP simulations based 
on the suggested parameters for the nine vegetation types in Zhou et al. 
(2016) is also evaluated, and the results are very similar to those in this 
study, with a difference generally lower than 0.01 in R2, as shown in 
Table S3. Because there are three more vegetation types used in this 
study, we do not apply the parameters suggested in Zhou et al. (2016) 
but optimize them ourselves for a fair comparison with the improved 
RTL-LUE model. 

The parameter of a also shows significant differences among 
different vegetation types. The highest a values are found in the EBF and 
crops, and the lowest values are in SAV and WSA. Due to the reciprocal 
scalar of PPFD used in this study, the larger the value of a for a vege
tation type, the more sensitive to PAR the vegetation type is (Chen et al., 
1999). 

3.2. Validation of the GPP simulations 

3.2.1. Half-hourly results 
In this study, GPP was estimated based on the half-hourly EC 

observation datasets, and the accuracy of simulated results was first 
evaluated at the half-hour scale, and further assessed after they were 

Table 2 
Mean value, Standard Deviations (SD), and CV of the optimized parameter of a and different maximum LUE, i.e. ε*

max, εmsu, and εmsh, for different vegetation types.  

Vegetation type a Mean (g C MJ− 1) b SD (g C MJ− 1) b CV c (%) 
a  ε*

max  εmsu  εmsh  a  ε*
max  εmsu  εmsh  a  ε*

max  εmsu  εmsh  

DBF 1.54 2.85 0.78 3.13 1.08 0.91 0.31 0.87 69.90 32.08 39.59 27.82 
DNF 0.69 1.68 0.70 1.89 / / / / / / / / 
EBF 1.02 2.16 0.72 2.40 0.76 0.83 0.12 0.60 74.37 38.46 16.65 25.06 
ENF 0.79 2.14 0.88 2.57 0.51 0.58 0.32 0.74 64.79 27.07 36.99 28.91 
MF 0.81 2.54 1.23 2.86 0.40 0.76 1.17 0.61 49.35 30.05 95.37 21.52 
GRA 0.63 2.39 1.07 3.02 0.53 1.39 0.54 1.89 84.12 58.01 50.59 62.47 
CRO 1.43 3.32 1.25 3.22 1.77 2.04 0.57 1.59 123.58 61.33 46.05 49.45 
CSH 0.59 1.68 0.70 2.10 / / / / / / / / 
OSH 0.57 1.58 0.68 2.35 0.61 1.01 0.40 1.83 106.43 63.97 58.60 77.80 
WET 1.36 2.82 1.14 3.26 2.18 1.85 0.66 2.36 159.96 67.08 57.63 72.49 
SAV 0.20 1.60 1.41 1.91 0.00 1.10 0.98 1.16 0.00 66.85 69.57 60.93 
WSA 0.46 1.96 0.97 3.01 0.31 0.70 0.27 1.57 68.14 31.95 28.27 52.01  

a The abbreviations of different vegetation types are the same as it in Table 1 
b the unit is only for ε*

max, εmsu, and εmsh, and the PPFDa is a parameter without unit 
c CV=100% × SD/Mean. 
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composited into the 8-day and yearly GPP in the following two sections. 
As shown in Fig. 1, R2 and RMSE for GPP simulations from the TL-LUE 
and RTL-LUE models were calculated at 169 EC sites against the EC GPP, 
and compared in a scatterplot. It can be observed that the RTL-LUE 
model outperforms the TL-LUE model at almost all sites, with a higher 
R2 and lower RMSE. There are in total 160 out of 169 sites showing a 
reduced RMSE after considering the radiation scalar in the RTL-LUE 
model, and the number is 144 for sites with a higher R2. The largest 
improvement in R2 is 0.097, and the largest reduction in RMSE is 0.15 g 
C m− 2 hh− 1. There are 102 sites showing an improvement in R2 more 
than 0.02, and 111 sites showing a reduction in RMSE more than 0.02 g 
C m− 2 hh− 1. The improvements in R2 are even larger and more stable at 
the sites with higher R2 values, as shown in Fig. 1 (a). For example, there 
are in total 56 sites with R2 greater than 0.7, and 54 out of them show an 
improved R2 with a mean increase of 0.04. On the contrary, the re
ductions in RMSE are more remarkable at the sites with higher RMSE, as 
shown in Fig. 3 (b). Among the 70 sites with RMSE higher than 0.15, 69 
of them show a lower RMSE in the RTL-LUE model with a mean 
reduction of 0.068 g C m− 2 hh− 1. 

The three indexes of GPP simulations from the TL-LUE and RTL-LUE 
models were also compared among the 12 different vegetation types, by 
calculating the mean value for all sites with the same vegetation type. As 
shown in Table. 3, although the GPP simulated by the TL-LUE model 
agrees well with the EC data, the RTL-LUE model further improves the 
simulation of GPP in all of the 12 vegetation types. Overall, the TL-LUE 
model shows mean values of 0.58 and 0.14 g C m− 2 hh− 1 for R2 and 

RMSE, respectively, and the corresponding values are 0.61 and 0.10 g C 
m− 2 hh− 1 for the RTL-LUE model with an improvement in R2 by 0.03 
and a reduction in RMSE by 0.04 g C m− 2 hh− 1. The rank of vegetation 
types based on the value of R2, RMSE, or bias are all the same. The value 
of R2 ranges from 0.38 for open shrubs to 0.78 for closed shrubs in the 
results of the TL-LUE model, and the range is from 0.40 to 0.82 for the 
RTL-LUE model. The RTL-LUE model consistently performs much better 
in the five types of forest sites, and a considerable improvement is found 
in the deciduous broadleaf forest sites, with a difference of 0.06, 0.09 g C 
m− 2 hh− 1, and 0.06 g C m− 2 hh− 1 for R2, RMSE, and bias, respectively. 
However, almost no improvements can be observed at the sites covered 
by savannas, only with a limited reduction in RMSE and bias of about 
0.01 g C m− 2 hh− 1. 

3.2.2. 8-day results 
In order to further evaluate the accuracy of GPP simulated by the TL- 

LUE and RTL-LUE models, the half-hourly data were composited using 
the 8-day sum to match the time interval of LAI data. The density 
scatterplot of all the data points for the 12 individual vegetation types 
are provided in Fig. 3 (TL-LUE) and Fig. 4 (RTL-LUE), respectively. It can 
be observed that the overall accuracies of both the two models are 
improved after the 8-day composition, with a mean R2 of 0.64 and 0.65 
for the GPP simulations from the TL-LUE and RTL-LUE models, and the 
RMSE is 19.01 g C m− 2 8d− 1 and 13.91 g C m− 2 8d− 1, respectively. The 
R2 of grass, woody savannas, and open shrubs sites even show an 
improvement in R2 greater than 0.18. However, the accuracies of GPP 

Figure 1. Comparison of the accuracy of GPP simulations against tower measurements (EC GPP) for the original TL-LUE model and the RTL-LUE model at 169 EC 
observation sites: (a) R2, (b) RMSE. 

Table 3 
Statistic of the GPP simulation accuracy for different vegetation types.  

Vegetation type a TL-LUE RTL-LUE Difference b 

R2 RMSE c bias c R2 RMSE c bias c R2 RMSE c bias c 

DBF 0.68 0.20 0.11 0.74 0.12 0.04 0.06 -0.09 -0.06 
DNF 0.65 0.06 0.02 0.67 0.05 0.02 0.02 -0.01 -0.01 
EBF 0.66 0.17 0.07 0.69 0.11 0.02 0.03 -0.07 -0.05 
ENF 0.66 0.12 0.03 0.68 0.09 0.00 0.02 -0.04 -0.03 
MF 0.71 0.21 0.05 0.73 0.15 0.01 0.02 -0.06 -0.04 
GRA 0.51 0.12 0.04 0.53 0.10 0.02 0.02 -0.03 -0.02 
CRO 0.41 0.18 0.06 0.43 0.15 0.03 0.02 -0.03 -0.03 
CSH 0.78 0.13 0.08 0.82 0.07 0.01 0.04 -0.07 -0.07 
OSH 0.38 0.06 0.02 0.40 0.04 0.01 0.02 -0.01 -0.01 
WET 0.59 0.14 0.07 0.62 0.09 0.03 0.03 -0.05 -0.04 
SAV 0.49 0.12 0.02 0.49 0.11 0.01 0.00 -0.01 -0.01 
WSA 0.53 0.12 0.07 0.54 0.09 0.03 0.01 -0.04 -0.04 
All 0.58 0.14 0.05 0.61 0.10 0.02 0.03 -0.04 -0.03  

a The abbreviation of different vegetation types are the same as it in Table 1 
b Difference means the R2, RMSE, and bias of RTL-LUE model minus the corresponding value of TL-LUE model 
c the units of RMSE and bias are g C m− 2 hh− 1. 
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simulations in some vegetation types decrease compared to the half- 
hourly data, and typically the closed shrubs sites show a decline in R2 

by − 0.19. For the 8-day data, the most significant improvement of the 
RTL-LUE model over the TL-LUE model is found at open shrub sites with 
an increase of 0.03 for R2 and a decrease of 1.95 g C m− 2 8d− 1 for RMSE. 
The best accuracy can be found in the deciduous broadleaf forest sites 
with an R2 of 0.77 and 0.80 for the TL-LUE and RTL-LUE models, 
respectively. The worst performance is found at crop sites with an R2 of 
0.34 and 0.36 for the two models, respectively. GPP of crops are not well 
simulated in both two models, with an overestimation in low EC GPP 
points and underestimation in high EC GPP points. Similar simulation 
results for crops were reported in previous studies using the BEPS model 
and the MOD17 model, and failure to account for the impacts on irri
gation and fertilization in crops was considered to be the main reason for 
the low performance of these models (Zhang et al., 2012). 

3.2.3. Yearly results 
In order to conduct an overall assessment of GPP simulated by the 

TL-LUE and RTL-LUE models, half-hourly data were further summed 

into yearly data. The density scatterplots of simulated GPP against the 
EC GPP of all site-years are shown in Fig. 4. Although GPP simulated by 
the TL-LUE model already shows good agreement with EC GPP, the re
sults from the RTL-LUE model further confirm its superiority, with im
provements of R2 (+0.02), RMSE (− 165.28 g C m− 2 year− 1), and bias 
(− 202.59 g C m− 2 year− 1). Furthermore, it can be observed that the TL- 
LUE model tends to overestimate GPP, especially in the points with high 
GPP values. This phenomenon is consistent in Fig. 2. However, this 
problem is relieved by the RTL-LUE model after considering the radia
tion scalar, which could suppress the high value of GPP when radiation 
was high. 

In general, from the analysis above, it can be summarized that the 
RTL-LUE model can improve the accuracy in GPP simulation after using 
the radiation scalar, at half-hourly, 8-day, and yearly time scales. For all 
or individual vegetation types, the GPP simulated by the RTL-LUE model 
shows increased R2 and reduced RMSE and bias relative to the TL-LUE 
model in comparison with EC observations. 

Figure 2. Validation of GPP simulations from the TL-LUE model after composited into 8-day totals.  
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3.3. Diurnal variation of GPP 

Since GPP was calculated based on the half-hourly dataset, the 
diurnal variation of GPP simulated by the TL-LUE and RTL-LUE models 
can be compared against EC data. In order to validate the diurnal vari
ation of GPP, the Coefficients of Variation (CV) of the Ratio (R_CV) 
between EC GPP and simulated GPP (Ratio=EC GPP/simulated GPP) in 
each site-days were calculated. Since the Ratio represents the relative 
difference between the simulated GPP and EC GPP, the R_CV, which 
denotes the variation of Ratio in each day, can certainly assess the 
consistency of the diurnal variation between EC GPP and GPP simula
tions. If the diurnal variation of simulated GPP is entirely the same as the 
EC GPP, the R_CV should be zero. As a result, the smaller the R_CV, the 
better the diurnal variation of the simulated GPP is. In addition, the R2 

and RMSE between the simulated GPP and EC GPP in all the 333,919 
site-days were also calculated, and the mean values of them for 12 
vegetation types are displayed in Table. 4. It can be observed that the 
mean R_CV of GPP simulations from the RTL-LUE model is obviously 
lower than that from the TL-LUE model, either in all or individual 
vegetation types. Among all the 333,919 site-days, 92.9% of them show 
a lower R_CV in the GPP simulations from the RTL-LUE model compared 
to the TL-LUE model simulations, while the ratio is 83.4% and 76.5% for 
a higher R2 and lower RMSE. The overall improvement of R_CV reaches 
11.5%, which is almost one-third of the R_CV for the GPP estimations 
from the TL-LUE model. The most remarkable improvement can be 
found at the sites covered by evergreen broadleaf forest and open 
shrubs, with differences greater than 0.14 in R-CV and 0.04 in R2. The 
diurnal variation of GPP at savannas sites is similar between the two 
models, with almost the same R2 and very small differences in RMSE and 
R_CV. 

The diurnal variation of GPP estimations was further qualitatively 
compared against the EC observations, by plotting representative 
diurnal variation curves from 12 different months and 12 different 
vegetation types. As shown in Fig. 5, monthly mean values for each half- 
hour were calculated and plotted. The monthly means were used in 
order to minimize the fluctuations in a single day and to enhance the 
dependability of the comparisons. For all the months and vegetation 
types, both the GPP simulations from the two models and EC GPP 
consistently reach the peak at noon with the highest radiation. However, 
in almost all the 12 plots, the TL-LUE model tends to overestimate GPP 
at the peak, while the GPP simulated by the RTL-LUE model agrees well 
with EC GPP in this condition. The improvement in simulating the peak 
GPP values with the RTL-LUE model can mainly attribute to the use of 

the radiation scalar in the model. Because no radiation scalar is used in 
the TL-LEU model, the LUEs of both sunlit and shaded leaves do not vary 
with radiation, causing underestimation of GPP at low PAR but over
estimation at high PAR, even though the LUEs are optimized using the 
observed GPP to capture their mean values. The use of the radiation 
scalar avoids this issue, and this is the main improvement of RTL-LUE 
over TL-LUE. While in the morning and dusk, when the radiation sca
lar does not play an important role because radiation is generally low, 
both the GPP simulated by TL-LUE and RTL-LUE models agree well with 
the EC GPP. For the sites covered by the savannas, the diurnal variation 
of GPP simulated by the two models are almost the same, which is 
mostly due to the low value of a used (0.20, the lowest among 12 
vegetation types), so the variation of GPP will not be sensitive to the 
intensity of radiation. 

3.4. Seasonal variation of GPP 

The seasonal variation is also critical when evaluating the reliability 
of GPP simulations. Similar to the assessment of diurnal variation, the 
composited 8-day data were employed to calculate R2, RMSE, and R_CV 
between the simulated GPP and EC data for all site-years. The 8-day data 
were used to eliminate the diurnal variation and only assess the seasonal 
variation. The mean values of the three indexes for 12 vegetation types 
are summarized in Table 5. There are some differences between the 
results in Section 3.1.2, where the indexes are calculated for each site, 
but the evaluation here is made for individual site-years. The conclu
sions are consistent with those for the diurnal variation. The seasonal 
variation of GPP simulated by the RTL-LUE model agrees better with EC 
GPP than that by the TL-LUE model, either in all or individual vegetation 
types. Overall, about 92.3% of the 1191 site-years show a declined R_CV 
for the GPP simulations from the RTL-LUE model comparing to the TL- 
LUE model results, and the ratio is 87.5% and 81.3% for a higher R2 and 
lower RMSE for RTL-LUE. The quantitative improvements in seasonal 
variation are not as significant as those in the diurnal variation. The 
most considerable decrease in R_CV is 4.5% in ENF, and the greatest 
improvement in R2 is 0.02 and the greatest reduction in RMSE is 9.86 g C 
m− 2 8d− 1 in DNF and CSH. Although RMSE and R_CV decrease in all 12 
vegetation types when TL-LUE is replaced with RTL-LUE, R2 is almost 
the same for SAV, CSH, and ENF. 

The seasonal variation curves of some representative site years for 
the 12 vegetation types were also selected for qualitative assessment, as 
displayed in Fig. 6. The seasonal variations of GPP simulated by both 
models show very similar seasonal variation with EC GPP in almost all 

Table 4 
Statistics of the diurnal variation consistency between half-hourly GPP simulations and EC GPP over all site-days.  

Vegetation types a TL-LUE RTL-LUE Percentage b (%) 
R2 RMSEc R_CVd (%) R2 RMSEc R_CVd (%) R2 RMSEc R_CVd 

DBF 0.91 0.16 33.24 0.95 0.09 17.83 83.95 78.17 90.75 
DNF 0.91 0.05 33.58 0.93 0.04 22.67 68.78 80.41 89.18 
EBF 0.92 0.14 31.69 0.96 0.09 18.27 93.81 80.73 97.63 
ENF 0.91 0.09 32.44 0.95 0.06 21.53 94.58 62.93 97.41 
MF 0.90 0.16 29.00 0.91 0.11 20.00 91.31 79.44 94.15 
GRA 0.85 0.09 39.37 0.88 0.07 28.57 81.29 71.28 91.35 
CRO 0.90 0.12 33.02 0.94 0.10 19.17 84.88 68.25 91.54 
CSH 0.94 0.12 26.08 0.95 0.06 22.45 95.75 86.28 99.38 
OSH 0.77 0.04 53.32 0.82 0.03 39.16 84.10 74.59 95.04 
WET 0.92 0.11 29.73 0.95 0.07 18.63 84.17 77.17 91.30 
SAV 0.78 0.09 41.36 0.78 0.08 40.51 50.78 73.95 79.83 
WSA 0.79 0.10 41.52 0.79 0.07 31.59 58.23 84.06 87.36 
All 0.88 0.10 35.40 0.91 0.07 23.95 83.55 76.49 92.09  

a The abbreviation of different vegetation types are the same as it in Table 1 
b Percentage means the percentage of site-days that the diurnal variation of GPP simulated by RTL-LUE model was better than TL-LUE model, i.e., with a higher R2, 

lower RMSE, and lower R_CV 
c unit of RMSE is g C m− 2 hh− 1 

d R_CV means the Coefficients of Variation (CV) of the ratio (EC GPP/simulated GPP), and represents the diurnal fluctuation of the difference between GPP sim
ulations and EC observations. 

X. Guan et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 307 (2021) 108546

8

vegetation types, except for crops. The apparent decline of EC GPP 
during the DOY (day of the year) from 193 to 257, which may be caused 
by crop harvest, cannot be well simulated by both models. It may be 
mostly caused by the uncertainties in LAI data, which cannot sufficiently 
capture crop growth stages. The unsatisfactory results for the evaluation 
of crops in Section 3.2.2 may also be caused by the same reason, as the 
low values in EC GPP during the harvest period are all overestimated in 
Fig. 2 and 3 (g). Furthermore, the overestimation of GPP by the TL-LUE 
model can also be found in the growing season, such as the vegetation 
types of DBF, EBF, ENF GRA, and CSH. The seasonal variation of GPP 
simulated by the two models is almost the same for the DNF and SAV 
sites, and both of them agreed well with the EC GPP. 

In general, the TL-LUE GPP initially agrees well with the EC obser
vations in most vegetation types, but the RTL-LUE model can further 
improve the consistency with observations. Although the seasonal var
iations of GPP simulated by the RTL-LUE model are better than those by 
the TL-LUE model in most site years, the improvements are not as sig
nificant as it in the diurnal variation, either in the quantitative and 
qualitative analysis. 

4. Discussion 

In this section, the relationship between PAR and canopy LUE is 
firstly discussed to exam the reasonability of the radiation scalar used in 
the RTL-LUE model. Afterward, the sensitivity of GPP estimation and 
canopy LUE to PAR variation is analyzed, and the reason for the over
estimation of GPP in the TL-LUE model is further explored. Finally, the 
sensitivity of GPP simulation to remote sensing LAI inputs is investi
gated, and the improvements and limitations of the RTL-LUE model are 
summarized. 

4.1. Relationship between PAR and canopy LUE in site observations 

In order to the exam reasonability of adopting the scalar of radiation 
in the GPP simulation, it is necessary to verify the relationship between 
LUE and PAR based on the site observations. Since there are no LUE 
measurements at the EC sites, the canopy LUE was approximated by the 
ratio of the observed GPP and PAR (LUEc=GPP/PAR) (He et al., 2013). 
LAI or APAR was not employed here to avoid errors induced by remote 
sensing data, so the analysis based on measurements only can capture 
the true relationship between LUE and PAR. As shown in Fig. 7, the 
density scatterplot of LUEc and PAR at specific sites among 12 vegeta
tion types are demonstrated, and the linear and reciprocal fitting lines 
are also included. The LUEc decreases with the increase in PAR in all 

vegetation types. However, the decrease is not linear, with the rate of 
decrease higher at the lower PAR values and gradually becoming slower 
with increasing PAR. As a result, it can be concluded that the reciprocal 
function can better fit the relationship between LUEc and PAR, and is 
suitable to represent the scalar of radiation on GPP estimation. 

Furthermore, the quantitative assessments were also conducted by 
calculating the mean values of R2 and RMSE for the linear and reciprocal 
regressions for the 12 vegetation types. The index of bias was excluded 
because it is too small to compare. As listed in Table 6, the reciprocal 
function can fit the relationship between LUEc and PAR much better 
than the linear regression, with higher R2 and lower RMSE. Overall, the 
reciprocal function outperforms the linear relationship in 98.8% of the 
169 sites. Only two sites covered by EDF and GRA (site names are AU- 
Ync and FR-Fon) show an R2 lower than 0.05 for both two functions. 
The improvements of R2 range from 0.01 in crops to 0.07 in EBF. Both 
methods perform the worst in crops, only with an R2 lower than 0.1 and 
very high RMSE around 0.34 g C MJ− 2. It may also be the reason for the 
unsatisfactory result in GPP simulations by both TL-LUE and RTL-LUE 
models. Even in this condition, the reciprocal regression is better than 
the linear regression at all crop sites. In general, it can be concluded that 
the canopy LUE (approximated by LUEc=GPP/PAR) shows a reciprocal 
relationship with PAR, so it is reasonable to use the radiation scalar in 
the RTL-LUE model. 

4.2. Sensitivity of GPP Simulations to PAR 

The comparison of GPP simulations with EC measurements indicates 
that the TL-LUE model tends to overestimate GPP under the conditions 
of high incoming radiation. In order to further investigate the degree of 
overestimation, the difference of GPP simulations and EC GPP (ΔGPP =

GPPsimulation − GPPEC) are binned according to the magnitude of 
incoming PAR. As shown in Fig. 8, both models tend to underestimate 
GPP in the conditions of very low PAR, and gradually overestimate GPP 
at high PAR values. GPP simulations from the two models can agree well 
with the EC GPP with little differences in the low incoming PAR range. 
While, with the increase in PAR, the overestimation of the TL-LUE model 
generally becomes more and more severe and reaches a very high level. 
In contrast, although the overestimation of the RTL-LUE model can also 
be observed in some vegetation types, the magnitude of overestimation 
is much smaller and becomes stable even the PAR is very high. The RTL- 
LUE model dramatically alleviates the sensitivity of simulated GPP to 
PAR, by suppressing the high GPP to be more close to the EC measure
ments in the conditions of high incoming PAR. The difference between 
the two models at SAV sites is still very small, which is consistent with 

Table 5 
Statistics of the seasonal variation consistency between 8-day GPP simulations and EC GPP over all site-years.  

Vegetation type a TL-LUE RTL-LUE Percentage b (%) 
R2 RMSE c R_CV d (%) R2 RMSE c R_CV d (%) R2 RMSE c R_CV d 

DBF 0.83 24.66 52.80 0.84 15.67 50.00 95.68 87.05 81.29 
DNF 0.83 8.34 44.94 0.85 7.16 41.69 100.00 100.00 100.00 
EBF 0.48 22.02 37.47 0.49 15.28 31.91 66.67 91.30 98.55 
ENF 0.84 14.41 54.83 0.84 11.28 49.81 64.09 69.97 99.07 
MF 0.90 24.48 46.02 0.91 16.71 40.95 87.32 95.77 95.77 
GRA 0.64 14.68 62.65 0.65 12.57 58.92 76.53 75.59 94.37 
CRO 0.41 24.68 74.77 0.42 21.97 72.01 90.29 90.29 92.23 
CSH 0.63 17.69 25.67 0.63 7.83 24.90 75.00 75.00 75.00 
OSH 0.53 6.94 73.82 0.54 5.64 68.99 69.12 79.41 97.06 
WET 0.82 20.47 57.10 0.83 14.16 54.53 80.49 71.95 81.71 
SAV 0.63 13.05 48.07 0.63 12.71 47.48 61.36 93.18 79.55 
WSA 0.57 14.56 48.72 0.58 10.08 44.20 83.67 95.92 93.88 
All 0.71 17.59 52.24 0.72 13.40 48.78 81.27 87.54 92.79  

a The abbreviation of different vegetation types are the same as it in Table 1 
b Percentage means the percentage of site-days that the diurnal variation of GPP simulated by RTL-LUE model was better than TL-LUE model, i.e., with a higher R2, 

lower RMSE, and lower R_CV 
c unit of RMSE is g C m− 2 8d− 1 

d R_CV means the CV of the ratio (EC GPP/simulated GPP), and represents the seasonal fluctuation of the difference between GPP simulations and EC observations. 
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Figure 3. Validation of GPP simulations from the RTL-LUE model after composited into 8-day totals.  

Figure 4. The relation between the yearly EC GPP and the simulated results from (a) the RTL-LUE model and (b) the TL-LUE model.  
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the results above due to the small value of a. 
The main reason for the overestimation of GPP by the TL-LUE model 

in conditions of high incoming PAR is the use of constant LUE values 
without scaling for radiation. The percentage of point numbers within 
different PAR ranges is also calculated and displayed as the black 
triangular line in Fig. 8. Obviously, much more points are concentrated 
in the area with low incoming PAR, where the GPP simulated by the TL- 
LUE model agrees well with the EC GPP. As a result, the parameter 
optimization tends to obtain a relatively high value of εmsu and εmsh that 
suit for the majority conditions of low incoming PAR, in order to ensure 
the overall accuracy. Besides, because only the scalars of VPD and 
temperature are considered in the TL-LUE model, the LUEs of sunlit and 
shaded leaves will not directly change with PAR. So the constantly high 
εmsu and εmsh will certainly induce the unreasonable high LUE, resulting 
in the overestimation of GPP in the conditions of high incoming PAR. 
This problem can be significantly alleviated in the RTL-LUE model, 
because the scalar of incoming PAR is used to suppress the LUE at higher 
incoming PAR. 

The canopy LUEs (LUEc=GPP/PAR) calculated by GPP simulations 
and EC observations are also averaged over 0.01 bins of incoming PAR 
(MJ m− 2 hh− 1), as shown in Fig. 9. At all sites, the EC observed LUEc 
significantly decreases with PAR, and the RTL-LUE model can generally 
reproduce these trends. However, the variation of LUEc simulated by the 
TL-LUE model shows more flat trends. Obviously higher LUEc values in 

the TL-LUE model can be observed at high incoming PAR, indicating 
that the maximum LUE could not be reduced to the actual LUE only by 
the scalars of VPD and temperature in the TL-LUE model, and thus 
leading to the overestimation of GPP at high incoming PAR. It is 
reasonable to consider the constraint of radiation in the RTL-LUE model, 
and the overestimation could be significantly alleviated by f(PPFD). 

4.3. Improvements and limitations 

In this study, an RTL-LUE model is developed to improve GPP 
simulation by considering the scalar of radiation on vegetation LUE, 
based on the concept that LUE should decrease with increasing incoming 
PAR (Chen et al., 1999; Koyama and Kikuzawa, 2010; Sinclair and 
Horie, 1989). The model is modified based on a TL-LUE model by giving 
the same maximum LUE to the sunlit and shaded leaves, rather than 
prescribing two different maximum LUE values for these two leaf 
groups. Generally, the maximum LUE, which is controlled by physio
logical traits of leaves in a plant canopy, should be almost the same for 
shaded or sunlit leaves (Leverenz, 1987). Although limited differences 
may exist in the distributions of nutrients and leaf age between sunlit 
and shaded leaves, their impacts on the maximum LUE are expected to 
be small (Hikosaka, 1996). The major differences between sunlit and 
shaded leaves are the environmental conditions, i.e., radiation, tem
perature, and humidity, which will only impact the actual LUE rather 

Figure 5. Diurnal variation of EC GPP and GPP simulated by the TL-LUE and RTL-LUE models in different months and different vegetation types. The title of each 
subplot is named as “month. year/site name/vegetation types”. 
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than maximum LUE. Among these environmental variables, radiation is 
the primary factor because the radiation absorbed by shaded leaves is 
undoubtedly much less than that by sunlit leaves (McCallum et al., 2013; 
Perkins et al., 2006). The results and analysis above have shown the 
effectiveness of the scalar of radiation in constraining the maximum LUE 
and representing the differences in LUE between sunlit and shaded 
leaves. After modifying the model, no additional data inputs are needed, 
and the number of parameters needed to optimize is also the same, 
which are εmsu and εmsh for the TL-LUE model and a and ε*

max for the 
RTL-LUE model. If we take a as the fixed-parameter for environmental 
scalars, similar to VPDmax, VPDmin, Tmax, or Tmin, only ε*

max is needed to 
optimize in the RTL-LUE model. 

However, there still exist some limitations in this study. First of all, 
LAI is the core inputs for both the TL-LUE and RTL-LUE models, and the 
use of remote sensing LAI may induce uncertainties in parameter cali
bration and GPP validation (Zhou et al., 2016). In order to investigate 
the sensitivities of GPP performance to LAI inputs in the two models, the 
accuracy of GPP simulations from the MODIS LAI products (as shown in 
Table S4) are compared with the results from the GLASS LAI products. 
Results indicate that the GPP simulations from RTL-LUE also agree 
better with the EC GPP than the results of TL-LUE in all the 12 vegetation 
types, when using the MODIS LAI as the input. Similar to the previous 
studies (Liu et al., 2018; Xie et al., 2019), GPP simulated from the GLASS 
LAI has a better agreement with EC GPP than the results from the MODIS 

LAI with much lower RMSE and bias, both for TL-LUE and RTL-LUE 
model. However, significant discrepancies can be found in the R2 be
tween the GPP simulations and the EC GPP among different vegetation 
types. The simulation results from the GLASS LAI still generally showed 
higher R2 at forest sites, but showed lower R2 at GRA, CRO, OSH, and 
WET sites. As a result, it can be concluded that although the RTL-LUE 
model can outperform the TL-LUE model both using GLASS and 
MODIS LAI products, different LAI products will certainly have signifi
cant impacts on the GPP simulation results both for the two models, with 
large discrepancies among different vegetation types. Besides, the cloud 
and atmospheric conditions induced abnormal variations in the LAI time 
series, and the mismatch of the spatial resolution of LAI products and the 
flux footprints may also lead to some uncertainties (Chen, 1999; Chu 
et al., 2021; He et al., 2013). LAI of a pixel from the GLASS product 
represents the mean value of the 1 km area, rather than the mean LAI of 
the unique vegetation types or regions measured by a flux tower. Further 
studies can be conducted using LAI products with high spatial resolu
tions and high accuracy in conjunction with flux footprints. 

In addition, the EC sites in the FLUX2015 dataset with more than one 
year of valid half-hour data are all selected in this study. The neglect of 
the heterogeneous land cover of the flux sites may also induce un
certainties both in the parameterization and validation (Zhou et al., 
2016). The low criteria are employed to select data because we want to 
verify the accuracy of the model as broadly as possible. Further research 

Figure 6. Seasonal variations of EC GPP and GPP simulated by the TL-LUE and RTL-LUE models for different vegetation types. The title of each subplot is named as 
“vegetation types/site year/site name”, DOY means the day of the year. 
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can be conducted to explore whether there are differences in the con
clusions if the flux sites with very heterogeneous vegetation types are 
excluded. Furthermore, we assume that the discrepancies in LUE be
tween sunlit and shaded leaves are mainly decided by the different light 
intensity they received, and the impacts of temperature, humidity, and 
nutrients are ignored. Actually, the sunlit leaves are supposed to have 
higher temperatures because they are directly exposed to the full sun
light, which will also impact the water vapor deficit at the leaf surface 
(Gates, 1964; Leuning et al., 1995; Miller, 1971). As a result, it is 
interesting to investigate if the temperature and humidity scalars for 
sunlit and shaded leaves can be calculated differently. These scalars used 
in the RTL-LUE model are the same as the MOD17 algorithm. The 
exclusion of soil water content, CO2 fertilization, and nutrient conditions 
in optimizing LUE may have also limited the accuracy of GPP estimation 
to some extent (Chen et al., 2019a; Wang et al., 2020). Further efforts 
are needed to synthesizing the impacts of these factors on LUE. 

5. Conclusion 

In this study, a radiation-constrained two-leaf light use efficiency 
(RTL-LUE) model is developed to improve the simulation of GPP on the 
basis of a TL-LUE model. This new model assigns the same maximum 
LUE to both sunlit and shaded leaves, and the differences in LUE be
tween them are represented by a scalar of radiation. The core parame
ters of TL-LUE and RTL-LUE models were optimized and the accuracies 
of GPP simulations by these two models were assessed, based on the 
measurements from globally distributed 169 EC sites. GPP simulations 
from the two models generally agree well with EC GPP, but consistent 
improvements can be observed in results from RTL-LUE (R2=0.74, 
RMSE=358.81 g C m− 2 year− 1) over TL-LUE (R2=0.72, RMSE= 524.09 
g C m− 2 year− 1). The improvements are the largest at forest sites. GPP 
simulations from RTL-LUE show higher R2 and lower RMSE and bias 
than those from TL-LUE either in all or individual vegetation types, for 
half-hour, 8-day, and yearly time scales. Besides, the diurnal and sea
sonal variations of GPP simulated by RTL-LUE also fit better with the EC 

Figure 7. Comparison of the linear and reciprocal relationship between canopy LUE(LUEc=GPP/PAR) and PAR using site observations. The title of each subplot is 
named as “vegetation types/site name”. 
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Table 6 
Comparing the linear and reciprocal relationships between LUEc (GPP/PAR) and PAR based on site observations for different vegetation types.  

Vegetation type a Linear Reciprocal Difference Percentage b (%) 
R2 RMSE c R2 RMSE c R2 RMSE b R2 RMSE c 

DBF 0.13 0.35 0.15 0.34 0.02 -0.01 94.74 94.74 
DNF 0.23 0.17 0.28 0.16 0.05 -0.01 1 1 
EBF 0.57 0.18 0.64 0.16 0.07 -0.02 1 1 
ENF 0.28 0.23 0.33 0.22 0.05 -0.01 1 1 
MF 0.22 0.28 0.24 0.27 0.02 -0.01 1 1 
GRA 0.19 0.23 0.23 0.22 0.04 -0.01 96.88 96.88 
CRO 0.07 0.34 0.08 0.34 0.01 -0.00 1 1 
CSH 0.53 0.14 0.58 0.13 0.05 -0.01 1 1 
OSH 0.22 0.11 0.29 0.10 0.06 -0.01 1 1 
WET 0.15 0.23 0.17 0.22 0.02 -0.01 1 1 
SAV 0.25 0.19 0.28 0.18 0.03 -0.01 1 1 
WSA 0.29 0.15 0.34 0.14 0.05 -0.01 1 1 
All 0.27 0.23 0.23 0.24 0.04 -0.01 98.82 98.82  

a The abbreviation of different vegetation types are the same as it in Table 1 
b Percentage means the percentage of sites that the reciprocal relationship was better than linear to regress the LUEc=GPP/PAR and PAR, i.e., with a higher R2 and 

lower RMSE 
c unit of RMSE is g C m− 2 hh− 1. 

Figure 8. The sensitivity of GPP simulations to PAR for 12 specific sites with different vegetation types (ΔGPP = GPPsimulation − GPPEC, Percentage means the 
percentage of point numbers within the ranges of PAR). The title of each subplot is named as “vegetation types/site name”. 
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observations than those by TL-LUE, because the overestimation at high 
incoming PAR (at noon and in peak growing season) by TL-LUE is 
significantly alleviated by the radiation scalar used in RTL-LUE. The 
optimized values of ε*

max in the RTL-LUE model are generally lower than 
εmsh and higher than εmsu optimized in the TL-LUE model, and show 
similar variation with εmsh among 12 vegetation types. The scatter plots 
of canopy LUE and PAR based on EC observations show that it is 
reasonable to use the reciprocal scalar of radiation to constrain LUE. 
Further statistics indicate that the RTL-LUE model showed a much lower 
sensitivity of error to PAR after considering the scalar of radiation. The 
overestimation of GPP in the TL-LUE model can be mainly explained by 
the optimized radiation-independent constant εmsh and εmsu values, 
which are only suitable for low-medium incoming PAR conditions that 
occurred most frequently and had the largest influence on the optimi
zation of εmsh and εmsu. 

This study highlights the importance of the radiation scalar in 
simulating GPP in LUE models even after the differentiation of LUE 
between sunlit and shaded leaf groups, because LUE would still vary 

within the same group and the difference in LUE between the two groups 
would also vary with radiation. We also demonstrate the excellent 
performance of the RTL-LUE model under most circumstances without 
differentiating the maximum LUE between sunlit and shaded leaves in 
order to minimize the number of parameters to be optimized. This seems 
to be a workable strategy as the small difference in leaf physiology be
tween sunlit and shaded leaves would be superseded by the difference in 
light intensity on these two leaf groups. Further efforts in improving the 
RTL-LUE models may be directed towards the scalars of temperature and 
VPD and the possible differentiation of these scalars between sunlit and 
shaded leaves. 
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Figure 9. Comparison of the dependence of canopy light use efficiency (LUEc = GPP/PAR) on PAR averaged over 0.01 bins of PAR at 12 specific sites with different 
vegetation types. The title of each subplot is named as “vegetation types/site name”. 

X. Guan et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 307 (2021) 108546

15

Acknowledgments 

This research was supported by the National Key Research and 
Development Program of China (2019YFB2102903), the National Nat
ural Science Foundation of China (42001371), and the China Scholar
ship Council. We are grateful to all data providers, including the 
FLUXNET community, MODIS and GLASS LAI team. Special thanks are 
given to all the PIs who contributed to the FLUXNET2015 dataset and 
provided valuable data for the research community. All the flux and 
meteorological data are available from the website (https://fluxnet. 
org/data/fluxnet2015-dataset/), which are acquired and shared by 
global collaborated regional networks supporting the FLUXNET. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.agrformet.2021.108546. 

References 

Beer, C., et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and 
covariation with climate. Science 329 (5993), 834–838. 

Chen, B., et al., 2020. Importance of shaded leaf contribution to the total GPP of 
Canadian terrestrial ecosystems: evaluation of MODIS GPP. Journal of Geophysical 
Research: Biogeosciences 125 (10), e2020JG005917. 

Chen, B., et al., 2019a. Including soil water stress in process-based ecosystem models by 
scaling down maximum carboxylation rate using accumulated soil water deficit. 
Agricultural and Forest Meteorology 276, 107649. 

Chen, J., Liu, J., Cihlar, J., Goulden, M., 1999. Daily canopy photosynthesis model 
through temporal and spatial scaling for remote sensing applications. Ecological 
modelling 124 (2-3), 99–119. 

Chen, J.M., 1999. Spatial scaling of a remotely sensed surface parameter by contexture. 
Remote Sensing of Environment 69 (1), 30–42. 

Chen, J.M., et al., 2019b. Vegetation structural change since 1981 significantly enhanced 
the terrestrial carbon sink. Nature communications 10 (1), 1–7. 

Chen, J.M., et al., 2012. Effects of foliage clumping on the estimation of global terrestrial 
gross primary productivity. Global Biogeochemical Cycles 26 (1). 

Chu, D. et al., 2021. Long time-series NDVI reconstruction in cloud-prone regions via 
spatio-temporal tensor completion. arXiv preprint arXiv:2102.02603. 

De Pury, D., Farquhar, G., 1997. Simple scaling of photosynthesis from leaves to canopies 
without the errors of big-leaf models. Plant, Cell & Environment 20 (5), 537–557. 

Dong, J., et al., 2015. Comparison of four EVI-based models for estimating gross primary 
production of maize and soybean croplands and tallgrass prairie under severe 
drought. Remote Sensing of Environment 162, 154–168. 

Duan, Q., Sorooshian, S., Gupta, V., 1992. Effective and efficient global optimization for 
conceptual rainfall-runoff models. Water resources research 28 (4), 1015–1031. 

Falkowski, P., et al., 2000. The global carbon cycle: a test of our knowledge of earth as a 
system. science 290 (5490), 291–296. 

Farquhar, G.D., von Caemmerer, S.v., Berry, J.A., 1980. A biochemical model of 
photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149 (1), 78–90. 

Gates, D.M., 1964. Leaf temperature and transpiration 1. Agronomy Journal 56 (3), 
273–277. 

Guan, X., Shen, H., Li, X., Gan, W., Zhang, L., 2019. A long-term and comprehensive 
assessment of the urbanization-induced impacts on vegetation net primary 
productivity. The Science of the total environment 669, 342–352. 

Haxeltine, A., Prentice, I., 1996. A general model for the light-use efficiency of primary 
production. Functional Ecology 551–561. 

He, L., et al., 2018. Changes in the shadow: the shifting role of shaded leaves in global 
carbon and water cycles under climate change. Geophysical Research Letters 45 
(10), 5052–5061. 

He, M., et al., 2013. Development of a two-leaf light use efficiency model for improving 
the calculation of terrestrial gross primary productivity. Agricultural and Forest 
Meteorology 173, 28–39. 

Hikosaka, K., 1996. Effects of leaf age, nitrogen nutrition and photon flux density on the 
organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor 
Cav.) grown horizontally to avoid mutual shading of leaves. Planta 198 (1), 
144–150. 

Hunt Jr, E.R., Running, S.W., 1992. Simulated dry matter yields for aspen and spruce 
stands in the North American boreal forest. Canadian journal of remote sensing 18 
(3), 126–133. 

Koyama, K., Kikuzawa, K., 2010. Geometrical similarity analysis of photosynthetic light 
response curves, light saturation and light use efficiency. Oecologia 164 (1), 53–63. 

Leuning, R., Kelliher, F.M., De Pury, D., Schulze, E.D., 1995. Leaf nitrogen, 
photosynthesis, conductance and transpiration: scaling from leaves to canopies. 
Plant, Cell & Environment 18 (10), 1183–1200. 

Leverenz, J.W., 1987. Chlorophyll content and the light response curve of shade-adapted 
conifer needles. Physiologia Plantarum 71 (1), 20–29. 

Liu, J., Chen, J., Cihlar, J., Park, W., 1997. A process-based boreal ecosystem 
productivity simulator using remote sensing inputs. Remote sensing of environment 
62 (2), 158–175. 

Liu, Y., et al., 2018. Satellite-derived LAI products exhibit large discrepancies and can 
lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing 
of Environment 206, 174–188. 

Marcott, S.A., et al., 2014. Centennial-scale changes in the global carbon cycle during the 
last deglaciation. Nature 514 (7524), 616–619. 

Marshall, M., Tu, K., Brown, J., 2018. Optimizing a remote sensing production efficiency 
model for macro-scale GPP and yield estimation in agroecosystems. Remote sensing 
of environment 217, 258–271. 

Mattos, E.M., Binkley, D., Campoe, O.C., Alvares, C.A., Stape, J.L., 2020. Variation in 
canopy structure, leaf area, light interception and light use efficiency among 
Eucalyptus clones. Forest Ecology and Management 463, 118038. 

McCallum, I., et al., 2013. Improved light and temperature responses for light-use- 
efficiency-based GPP models. Biogeosciences 10 (10), 6577–6590. 

Mercado, L.M., et al., 2009. Impact of changes in diffuse radiation on the global land 
carbon sink. Nature 458 (7241), 1014–1017. 

Miller, P.C., 1971. Sampling to estimate mean leaf temperatures and transpiration rates 
in vegetation canopies. Ecology 52 (5), 885–889. 

Myneni, R., Knyazikhin, Y., Park, T., 2015. MOD15A2H MODIS/terra leaf area index/ 
FPAR 8-Day L4 global 500m SIN grid V006. NASA EOSDIS Land Processes DAAC. 

Ogren, E., 1993. Convexity of the photosynthetic light-response curve in relation to 
intensity and direction of light during growth. Plant physiology 101 (3), 1013–1019. 

Oliphant, A., et al., 2011. The role of sky conditions on gross primary production in a 
mixed deciduous forest. Agricultural and Forest Meteorology 151 (7), 781–791. 

Pastorello, G., et al., 2017. A new data set to keep a sharper eye on land-air exchanges. 
Eos, Transactions American Geophysical Union (Online) 98 (8). 

Pastorello, G., et al., 2020. The FLUXNET2015 dataset and the ONEFlux processing 
pipeline for eddy covariance data. Scientific data 7 (1), 1–27. 

Perkins, R.G., Mouget, J.-L., Lefebvre, S., Lavaud, J., 2006. Light response curve 
methodology and possible implications in the application of chlorophyll 
fluorescence to benthic diatoms. Marine Biology 149 (4), 703–712. 

Potter, C.S., et al., 1993. Terrestrial ecosystem production: a process model based on 
global satellite and surface data. Global Biogeochemical Cycles 7 (4), 811–841. 

Propastin, P., Ibrom, A., Knohl, A., Erasmi, S., 2012. Effects of canopy photosynthesis 
saturation on the estimation of gross primary productivity from MODIS data in a 
tropical forest. Remote Sensing of Environment 121, 252–260. 

Rap, A., et al., 2018. Enhanced global primary production by biogenic aerosol via diffuse 
radiation fertilization. Nature Geoscience 11 (9), 640–644. 

Reichstein, M., et al., 2005. On the separation of net ecosystem exchange into 
assimilation and ecosystem respiration: review and improved algorithm. Global 
change biology 11 (9), 1424–1439. 

Running, S.W., et al., 2004. A continuous satellite-derived measure of global terrestrial 
primary production. Bioscience 54 (6), 547–560. 

Sinclair, T., Horie, T., 1989. Leaf nitrogen, photosynthesis, and crop radiation use 
efficiency: a review. Crop science 29 (1), 90–98. 

Wang, S., et al., 2015. Improving the light use efficiency model for simulating terrestrial 
vegetation gross primary production by the inclusion of diffuse radiation across 
ecosystems in China. Ecological Complexity 23, 1–13. 

Wang, S., et al., 2020. Recent global decline of CO2 fertilization effects on vegetation 
photosynthesis. Science 370 (6522), 1295–1300. 

Wang, Y.-P., Leuning, R., 1998. A two-leaf model for canopy conductance, 
photosynthesis and partitioning of available energy I:: Model description and 
comparison with a multi-layered model. Agricultural and Forest Meteorology 91 (1- 
2), 89–111. 

Xia, J., et al., 2015. Joint control of terrestrial gross primary productivity by plant 
phenology and physiology. Proceedings of the National Academy of Sciences 112 
(9), 2788–2793. 

Xiao, J., et al., 2010. A continuous measure of gross primary production for the 
conterminous United States derived from MODIS and AmeriFlux data. Remote 
sensing of environment 114 (3), 576–591. 

Xiao, X., et al., 2004. Satellite-based modeling of gross primary production in an 
evergreen needleleaf forest. Remote sensing of environment 89 (4), 519–534. 

Xiao, Z., Liang, S., Jiang, B., 2017. Evaluation of four long time-series global leaf area 
index products. Agricultural and Forest Meteorology 246, 218–230. 

Xiao, Z., et al., 2016. Long-time-series global land surface satellite leaf area index 
product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on 
Geoscience and Remote Sensing 54 (9), 5301–5318. 

Xie, X., et al., 2019. Assessment of five satellite-derived LAI datasets for GPP estimations 
through ecosystem models. The Science of the total environment 690, 1120–1130. 

Yang, J., et al., 2013. The role of satellite remote sensing in climate change studies. 
Nature climate change 3 (10), 875–883. 

Yuan, W., et al., 2014. Global comparison of light use efficiency models for simulating 
terrestrial vegetation gross primary production based on the LaThuile database. 
Agricultural and Forest Meteorology 192-193, 108–120. 

Yuan, W., et al., 2007. Deriving a light use efficiency model from eddy covariance flux 
data for predicting daily gross primary production across biomes. Agricultural and 
Forest Meteorology 143 (3-4), 189–207. 

Zhang, F., et al., 2012. Evaluating spatial and temporal patterns of MODIS GPP over the 
conterminous US against flux measurements and a process model. Remote Sensing of 
Environment 124, 717–729. 

Zhang, L.-X., Zhou, D.-C., Fan, J.-W., Hu, Z.-M., 2015. Comparison of four light use 
efficiency models for estimating terrestrial gross primary production. Ecological 
Modelling 300, 30–39. 

Zhang, M., et al., 2011. Effects of cloudiness change on net ecosystem exchange, light use 
efficiency, and water use efficiency in typical ecosystems of China. Agricultural and 
Forest Meteorology 151 (7), 803–816. 

X. Guan et al.                                                                                                                                                                                                                                    

https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/
https://doi.org/10.1016/j.agrformet.2021.108546
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0001
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0001
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0002
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0002
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0002
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0003
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0003
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0003
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0004
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0004
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0004
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0005
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0005
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0006
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0006
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0007
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0007
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0009
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0009
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0010
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0010
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0010
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0011
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0011
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0012
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0012
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0013
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0013
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0014
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0014
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0015
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0015
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0015
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0016
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0016
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0017
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0017
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0017
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0018
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0018
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0018
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0019
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0019
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0019
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0019
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0020
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0020
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0020
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0021
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0021
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0022
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0022
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0022
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0023
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0023
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0024
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0024
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0024
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0025
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0025
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0025
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0026
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0026
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0027
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0027
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0027
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0028
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0028
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0028
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0029
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0029
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0030
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0030
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0031
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0031
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0032
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0032
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0033
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0033
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0034
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0034
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0035
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0035
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0036
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0036
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0037
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0037
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0037
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0038
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0038
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0039
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0039
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0039
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0040
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0040
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0041
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0041
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0041
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0042
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0042
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0043
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0043
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0044
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0044
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0044
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0046
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0046
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0046
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0046
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0047
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0047
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0047
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0048
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0048
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0048
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0049
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0049
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0050
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0050
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0051
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0051
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0051
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0052
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0052
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0053
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0053
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0054
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0054
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0054
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0055
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0055
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0055
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0056
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0056
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0056
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0057
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0057
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0057
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0058
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0058
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0058


Agricultural and Forest Meteorology 307 (2021) 108546

16

Zhang, Y., et al., 2017. A global moderate resolution dataset of gross primary production 
of vegetation for 2000–2016. Scientific data 4 (1), 1–13. 

Zheng, T., et al., 2017. Inverting the maximum carboxylation rate (Vcmax) from the 
sunlit leaf photosynthesis rate derived from measured light response curves at tower 
flux sites. Agricultural and Forest Meteorology 236, 48–66. 

Zhou, Y., et al., 2016. Global parameterization and validation of a two-leaf light use 
efficiency model for predicting gross primary production across FLUXNET sites. 
Journal of Geophysical Research: Biogeosciences 121 (4), 1045–1072. 

X. Guan et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0059
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0059
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0060
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0060
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0060
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0061
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0061
http://refhub.elsevier.com/S0168-1923(21)00230-6/sbref0061

	A modified two-leaf light use efficiency model for improving the simulation of GPP using a radiation scalar
	1 Introduction
	2 Data and methods
	2.1 Data
	2.2 TL-LUE model
	2.3 Description of the RTL-LUE model
	2.4 Model Parameterization and evaluation
	2.4.1 Model Parameterization
	2.4.2 Model evaluation


	3 Results
	3.1 Comparison of the parameterized maximum LUE
	3.2 Validation of the GPP simulations
	3.2.1 Half-hourly results
	3.2.2 8-day results
	3.2.3 Yearly results

	3.3 Diurnal variation of GPP
	3.4 Seasonal variation of GPP

	4 Discussion
	4.1 Relationship between PAR and canopy LUE in site observations
	4.2 Sensitivity of GPP Simulations to PAR
	4.3 Improvements and limitations

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


