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Abstract— Fine particulate matter (PM2.5) pollution can cause
serious public health problems worldwide. A novel geographically
and temporally weighted neural network constrained by global
training (GC-GTWNN) is proposed in this article for the remote
sensing estimation of surface PM2.5. The global neural network
(NN) is trained to learn the overall effect of the influencing
variables on surface PM2.5, and the local geographically and
temporally weighted NN (GTWNN) addresses the spatiotemporal
heterogeneity of the relationship between PM2.5 and the influ-
encing variables. Specifically, a global NN is trained with all
samples collected from the entire study domain and period. Then,
initialized with the global NN, the GTWNN models are built
for each location and time and fine-tuned via spatiotemporally
localized samples. Meanwhile, the geographically weighted loss
function is designed for GTWNN. The proposed GC-GTWNN
modeling is tested with a case study across China, which
integrates satellite aerosol optical depth, surface PM2.5 measure-
ments, and auxiliary variables. Cross-validation results indicate
that a remarkable improvement is observed from the global
NN to GC-GTWNN modeling (R2 value increasing from 0.49 to
0.80), and GC-GTWNN modeling also notably outperforms the
conventionally popular PM2.5 estimation models.

Index Terms— Geographically and temporally weighted neural
network (GTWNN), global training constraint, remote sensing
of PM2.5.

I. INTRODUCTION

THE PM2.5, also known as fine particulate matter, denotes
particulate matter with an aerodynamic diameter of no
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greater than 2.5 μm. PM2.5 has gradually received atten-
tion because of its negative impacts on human health [1],
[2]. Although PM2.5 shows some positive effects on climate
change [3], it also has great negative effects [4], [5]. Concern-
ing the monitoring of PM2.5, the fusion of satellite aerosol opti-
cal depth (AOD) products and surface PM2.5 measurements
is considered to be a promising approach [6]–[12]. In recent
years, various AOD–PM2.5 statistical models have been devel-
oped for the spatial estimation of surface PM2.5 [13], [14].
In the following, two categories of AOD–PM2.5 modeling,
namely, global modeling and spatiotemporal modeling, are
summarized to pave the way to our approach.

Assuming that the AOD–PM2.5 relationship does not change
in space and time, global modeling describes the AOD–PM2.5

relationship by the constant model in the entire study domain
and period. A common way of global modeling is to establish
a constant model using all collected samples; in the early
stage, it is often implemented on the basis of relatively simple
regression techniques, such as linear regression [15], [16],
multiple linear regression [17], and semiempirical model [18].
These models have gradually lost popularity because they
show limited ability to address the complicated nonlinear rela-
tionship between surface PM2.5 and the influencing variables.
Afterward, machine learning algorithms, including neural net-
work (NN) [19]–[21], random forest [22], support vector
machine [23], and gradient boosting [24], have been growingly
introduced to describe the nonlinear AOD–PM2.5 relationship.
AOD–PM2.5 modeling with machine learning algorithms has
been an encouraging tendency for surface PM2.5 estimation.
However, the global machine learning models rarely consider
the spatiotemporal variability (or heterogeneity) of the AOD–
PM2.5 relationship and often fail to acquire accurate estimates
for a local context.

On the contrary to global modeling, spatiotemporal
modeling establishes the AOD–PM2.5 relationship using
location-specific and/or time-specific coefficients; that is,
the AOD–PM2.5 models vary in space and time. Thus,
spatiotemporal modeling can address the spatiotemporal
variability of the AOD–PM2.5 relationship. Concerning spa-
tiotemporal modeling, the most representative models include
linear mixed-effects (LMEs) [25], [26], daily (or other time
scales) geographically weighted regression (GWR) [27], [28],
and geographically and temporally weighted regression
(GTWR) [29], [30]. Therein, the LME model often adds a
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Fig. 1. Schematic of the GC-GTWNN model.

random effect for individual times to allow for the tempo-
ral variability. In addition, daily GWR and GTWR models
are based on a local regression technique and simultane-
ously consider the spatial and temporal variability of the
AOD–PM2.5 relationship. These models have continuously
received wide attention in the satellite-based PM2.5 estimation
due to the consideration of spatiotemporal variability. How-
ever, these models usually fit a linear relationship between
surface PM2.5 and the influencing variables for a certain time
and/or location, and they thus may be hard to effectively
address the nonlinear and complicated relationship between
PM2.5 and the influencing variables.

Overall, various PM2.5 remote sensing estimation models
have been developed to address the nonlinearity and the
spatiotemporal variability of the AOD–PM2.5 relationship.
However, the nonlinear AOD–PM2.5 relationship is adequately
modeled in the global machine learning models, but not in
spatiotemporal modeling. On the contrary, the spatiotemporal
variability exists in the AOD–PM2.5 relationship, which is
considered by spatiotemporal modeling, while rarely con-
sidered in the machine learning models. Therefore, models
that can simultaneously address the nonlinearity and the spa-
tiotemporal variability are few; however, these models are
continuously pursued in the remote sensing estimation of
surface PM2.5 [31], [32].

This study aims to address both the nonlinearity and
the spatiotemporal variability by developing a geographically
and temporally weighted neural network (GTWNN) model.
This model represents the nonlinear AOD–PM2.5 relationship
using multilayer NNs and addresses the spatial and temporal

variability of the AOD–PM2.5 relationship based on local mod-
eling technique. However, the establishment of this model may
still encounter some challenges due to local modeling. First,
the computational cost will be sharply enlarged compared
with global NN modeling. Second, the data samples obtained
from a local context are often limited to the NN training.
Hence, a novel GTWNN constrained by global training (GC-
GTWNN), in which the global NN training provides a favor-
able guide for the local GTWNN model training, is proposed.
In this process, the GC-GTWNN model is trained with the
input of the satellite AOD product, normalized difference
vegetation index (NDVI) data, and meteorological parameters.
This model was tested by a case study in China over one year,
and daily estimates of surface PM2.5 were effectively generated
from satellite observations.

II. GC-GTWNN MODELING FOR

SURFACE PM2.5 ESTIMATION

A novel GC-GTWNN model, which integrates surface
PM2.5 measurements, satellite AOD, meteorological parame-
ters, and satellite NDVI, is developed to estimate the surface
PM2.5. The schematic of the GC-GTWNN model is shown
in Fig. 1, which indicates that the local GTWNN model is
established by the constraint of global NN training.

The GTWNN model (as shown at the bottom of Fig. 1)
considers the spatiotemporal variability of the AOD–PM2.5

relationship, and the general structure of the GTWNN model
can be depicted as follows:

PM2.5 = f j (AOD, Meteorology, NDVI) (1)
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where f j () means the location-time-specific NN for grid cell j ,
which varies in space and time to cope with the spatiotemporal
variability of the AOD–PM2.5 relationship. An NN model with
one input layer, two hidden layers, and one output layer is
shown in Fig. 1. The number of nodes in the input layer is
determined by the inflecting variables, which include satellite
AOD, meteorological parameters, and NDVI. The output layer
owns only one node, that is, ground PM2.5. Only those samples
on day T and previous days are included for the training of
f j (). The observed sample near grid cell j is assumed to
have a larger contribution to the estimation of PM2.5 than
those samples located farther to grid cell j . Specifically,
the spatiotemporal weight for sample k can be expressed as

wk = e
− (dsk )

2+λ(dtk )
2

h2
ST (2)

where dsk and dtk refer to the spatial and temporal distances
from sample k to prediction grid cell j , respectively; λ is
a scale factor used to balance the effects of the spatial
and temporal distances; hST is considered to be the band-
width in the spatiotemporal weighting scheme [29], [33].
In the determination of the above-mentioned two parameters,
there are two main schemes, namely, fixed bandwidth and
adaptive bandwidth. The former has a constant distance,
and the number of surrounding stations varies. In contrast,
the latter maintains the same number of surrounding stations.
In this study, the adaptive bandwidth scheme is used, and the
nested-loop method is adopted to determine the best parame-
ters in the process of site-based cross-validation (described
in the following), that is, to achieve the best performance of
cross-validation.

The spatiotemporal weights are incorporated into NN, and
the geographically weighted loss function is designed for
GTWNN, which embodies the novelty of GTWNN compared
with the global NN, as shown in the following:

GL = 1

2N

N∑

k=1

wk
(

yk − PM2.5,k
)2

(3)

where GL means the geographically weighted loss, and wk

is the spatiotemporal weight for sample k via the calcula-
tion of (2). yk and PM2.5,k refer to model the estimate and
station measurements of sample k, respectively. Thus, the
spatiotemporally closer samples show larger contributions to
the estimation of PM2.5. Afterward, the BP algorithm [34] is
used to acquire the optimal parameter by minimizing the above
geographically weighted loss function. The GTWNN model
can achieve the desired result through the aforementioned
process.

However, the implementation of GTWNN still encounters
three main challenges. First, the design of GTWNN uses
a local modeling strategy, whereas acquiring sufficient sam-
ples in a localized context for the training of GTWNN is
often severe. Second, the computational cost will be enor-
mously enlarged compared with global modeling because the
GTWNN model is separately built for each location and
time. Finally, GTWNN may produce unbalanced estimates
for different locations and times because of the random
initialization of NN.

Considering the above issues, a global NN training con-
straint (as shown at the top of Fig. 1) is introduced in the
establishment of GTWNN (i.e., GC-GTWNN). Fig. 1 shows
that a global NN model is established using all the samples
(i.e., the entire year of samples collected in this study).
The GTWNN models are then separately built for individual
locations and times, and they are initialized via the global
NN and fine-tuned with spatiotemporally localized samples.
Notably, the global NN and local GTWNN models share the
same network structure.

GC-GTWNN modeling can address the aforementioned
challenges of GTWNN due to the following reasons. In the
GC-GTWNN modeling framework, the global NN model
learns the overall effect of input variables on PM2.5 for the
entire region and period, and the GTWNN merely needs to be
fine-tuned to explain the temporal and spatial variations in the
relationship between PM2.5 and the influencing variables. The
spatiotemporally localized samples are sufficient for the fine-
tuning of the GTWNN model, and the amounts of iterations for
the model training are avoided. Furthermore, all the GTWNN
models are initialized with the same global NN model, which
helps eliminate the unbalanced estimates.

Fig. 2 shows the procedure of GC-GTWNN modeling
for remote sensing estimation of PM2.5. First, surface PM2.5

measurements, satellite observations, and meteorological data
are collected, and the preprocessing is conducted to form a
spatially and temporally consistent data set. On this basis,
a global NN model (net0) can be trained. Subsequently,
initialized by the global NN (net0), the GTWNN models
are separately set up for individual locations and times and
fine-tuned using spatiotemporally localized data samples. The
geographically weighted loss is adopted as the optimization
target during the fine-tuning process of GTWNN. Afterward,
the GC-GTWNN model should be evaluated, and then daily
estimates of ground PM2.5 concentration can be generated.

The widely used tenfold site-based CV technique [35] is
used to test the feasibility and prediction capability of the
proposed GC-GTWNN model. All the grid cells containing
monitoring stations are randomly and averagely partitioned
into tenfolds. Onefold is used as the validation set, and
ninefolds are adopted for model fitting. The same process
will be repeated until each validation fold has been validated.
Notably, the validation grid cells of monitoring stations are
not used for both the global NN training and the GTWNN
fine-tuning during the CV process of GC-GTWNN modeling.
Meanwhile, the linear regression determination coefficient
(R2, unitless), the mean prediction error (MPE, unit: μg/m3),
the root-mean-square error (RMSE, unit: μg/m3), and the
relative prediction error (RPE, RMSE divided by the mean
value of surface PM2.5, unit: %) are calculated between model
estimates and ground observations as the statistical indicators
for accuracy evaluation.

Furthermore, the monitoring stations are not uniformly
located in space, and the validation stations tend to be sub-
stantially close to the modeling stations. Hence, the site-based
CV may face the risk of merely revealing the estimation
accuracy near the modeling stations. A CV-based approach
considering the nonuniform spatial distribution of monitoring
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Fig. 2. Procedure for the proposed GC-GTWNN modeling.

stations (denoted as SDCV) is proposed in our previous
study [36] to evaluate the model performance completely.
SDCV incorporates the spatial distance between the modeling
and validation stations into model validation and excludes
modeling stations within a specific spatial distance. The details
of SDCV can be found in [36]. SDCV is also adopted to assist
in the performance evaluation of GC-GTWNN modeling, and
the validation results are discussed in Section V-A.

III. TEST OF GC-GTWNN

A. Case Study Design

China is selected as the study region for the testing of
GC-GTWNN, and the study period was the entirety of 2015.
The data collected for GC-GTWNN modeling include hourly
PM2.5 surface measurements, satellite AOD product, mete-
orological reanalysis data, and satellite NDVI, which are
comprehensively described in Section III-B. Three different
modeling schemes were implemented based on the data set
for comparison purposes. First, global NN was established
using all the collected samples. Second, the GC-GTWNN was
built with the support of the global NN. Third, the GTWNN
model, which differs from GC-GTWNN in that it was not
fine-tuned on the basis of the global NN, was directly trained.
GC-GTWNN was also compared with other widely used
PM2.5 estimation models (i.e., daily GWR [27], [28] and
GTWR [29], [30]) to further test its effectiveness. Meanwhile,

the aforementioned site-based CV and SDCV approaches were
exploited to evaluate the performance of these models.

B. Data and Preprocessing

1) PM2.5 Monitoring Data: The China National
Environmental Monitoring Center (CNEMC, available at
http://106.37.208.233:20035/) releases the PM2.5 monitoring
data at an hourly scale, with high reliability [37]. As shown
in Fig. 3, approximately 1500 stations have been established
for the monitoring of air quality in China by the end
of 2015. The station network is not uniformly distributed,
with dense stations located in east China and sparse stations
in west China. The 24-h mean PM2.5 based on the hourly
PM2.5 measurements is obtained for the calibration of the
AOD–PM2.5 relationship [38], and those days that have less
than 18 h of valid measurements were excluded from the
analysis.

2) Satellite AOD Product: The well-known Moderate Res-
olution Imaging Spectroradiometer (MODIS) sensor onboard
the Terra and Aqua satellites can offer global observations
in one to two days [39]. MODIS AOD product has achieved
considerable popularity in the large-scale monitoring of sur-
face PM2.5 [40], [41]. Collection 6 of AOD product (MxD04,
x is O for terra AOD and Y for Aqua AOD) was acquired
at https://ladsweb.modaps.eosdis.nasa.gov/. The data field with
the name of “AOD_550_Dark_Target_Deep_Blue_Combined,”
which has a spatial resolution of 10 km, was extracted.
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Fig. 3. Distribution of PM2.5 stations across China.

The AOD data from Terra and Aqua MODIS were averaged
in GC-GTWNN modeling to estimate the daily PM2.5 concen-
trations.

3) Other Auxiliary Data: The meteorological parameters
have been reported to show influences on the AOD–PM2.5

relationship [11], [42], [43]. The meteorological variables
in this study were acquired from the second Modern-Era
Retrospective Analysis for Research and Applications
(MERRA-2) reanalysis data [44], whose spatial resolution
is 0.5◦ latitude × 0.625◦ longitude. The relative humid-
ity (unit: %), air temperature (unit: K), wind speed (unit:
m/s), surface pressure (unit: Pa), and planetary boundary
layer height (unit: m) were used for GC-GTWNN mod-
eling. Additional details are found on the official website
(http://gmao.gsfc.nasa.gov/GMAO_products/).

In addition to meteorological variables, the MODIS NDVI
(MOD13) product, which has a spatial resolution of 1 km, was
also incorporated as a supplementary predictor.

4) Data Preprocessing: A 0.1◦ × 0.1◦ grid was created
for GC-GTWNN modeling, validating, and mapping. First,
the reprojection was conducted on all the data to the WGS84
geographic coordinate system because the aforementioned data
are collected from various sources with different coordinate
systems. Meanwhile, the satellite AOD and NDVI products
and meteorological data were resampled to 0.1◦ to match with
the modeling grid. Multiple station measurements were aver-
aged in each 0.1◦ grid for the PM2.5 monitoring data. Finally,
the satellite observations and meteorological data on the grid
cells with surface PM2.5 measurements were extracted to form
the modeling sample set. After preprocessing, the correlation

coefficient between satellite AOD and surface PM2.5, which
is equal to 0.48 and reports a similar correlation level with a
previous national study on China [45], was calculated.

IV. RESULTS AND ANALYSIS

A. GC-GTWNN Performance Evaluation

1) Overall Evaluation of GC-GTWNN: The global NN,
the directly trained GTWNN, and the GC-GTWNN models
were conducted, and the site-based CV results are shown
in Fig. 4. The result reveals that the global NN obtained
a frustrating performance, with R2, RMSE, MPE, and RPE
values of 0.49, 27.62 μg/m3, 19.37 μg/m3, and 50.08%,
respectively. The global NN model considers the nonlinear
relationship between surface PM2.5 and predictors, but the
nonconsideration of the spatiotemporal variability results in
poor performance. The GTWNN model considers the spatial
and temporal variability of the AOD–PM2.5 relationship to
overcome the drawback, and a remarkable improvement is
reported, with R2 value increasing by 0.29 (from 0.49 to
0.78) and RMSE value decreasing by 9.36 μg/m3 (from
27.62 to 18.26 μg/m3). Furthermore, the GC-GTWNN model
achieves the most advantageous performance, and the CV R2

and RMSE values are 0.80 and 17.44 μg/m3, respectively.
Compared with the directly trained GTWNN model, the
advantage of the GC-GTWNN lies in the overall effect of the
global sample set on the AOD–PM2.5 relationship. The global
training provides a favorable foundation for the fine-tuning of
local models and results in improved performance. Meanwhile,
another highly anticipated advantage for GC-GTWNN model-
ing is the improvement in efficiency, and GC-GTWNN takes
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Fig. 4. Scatter plots for (a) global NN, (b) GTWNN, and (c) GC-GTWNN site-based CV results (N = 66657). PM2.5 unit: μg/m3. The dashed line stands
for the y = x reference line.

Fig. 5. Model performance for low and high values of PM2.5 concentration.

less than a third as long as the directly trained GTWNN. This
result means that realizing the timely remote sensing monitor-
ing of PM2.5 via GC-GTWNN modeling while improving the
estimation accuracy of PM2.5 is possible.

2) Evaluation of GC-GTWNN for Low and High PM2.5

Values: PM2.5 remote sensing estimation models are liable
to overestimate the low values of PM2.5 and underestimate
the high PM2.5 values. Four cases were conducted to evaluate
the model performance under the conditions of low and high
values. These cases include ≤35, ≤50, ≥75, and ≥115 μg/m3,
and their results are exhibited in Fig. 5. This figure shows
that the global NN model performs the worst for all four
cases due to the nonconsideration of spatiotemporal variability
of the AOD–PM2.5 relationship. The comparison between
GTWNN and GC-GTWNN is summarized as follows. First,
GC-GTWNN modeling merely reports a slight advantage over
the GTWNN model for low values of PM2.5 in the evaluation
of R2 and RMSE metrics, whereas it has a linear regression
slope closer to 1. Second, a relatively more considerable
superiority is observed when comparing the GC-GTWNN
model with the GTWNN model considering high PM2.5 values.
The R2, RMSE, and slope values for GC-GTWNN modeling

are 0.65, 26.85 μg/m3, and 0.81, respectively, in the case
of ≥75 μg/m3. Meanwhile, the corresponding metrics for
the GTWNN model are 0.61, 29.11 μg/m3, and 0.79. Thus,
the GC-GTWNN model suffers from a lesser degree of overes-
timation and/or underestimation for low/high values of surface
PM2.5 concentrations.

3) Temporal Evaluation of GC-GTWNN: Table I presents
the seasonal statistics of site-based CV results for the global
NN, GTWNN, and GC-GTWNN models. Among the three
models, the global NN model performs the worst for the four
seasons, with R2 values of 0.33, 0.39, 0.44, and 0.51 for
spring (March to May), summer (June to August), autumn
(September to November), and winter (December to February),
respectively. The seasonal RMSE values of the global NN are
25.85, 20.05, 26.74, and 35.65 μg/m3. A notable improvement
is observed from the global NN to GTWNN for all the four
seasons, with R2 value increasing by 0.39 (from 0.33 to
0.72), 0.26 (from 0.39 to 0.65), 0.30 (from 0.44 to 0.74),
and 0.29 (from 0.51 to 0.80), respectively. The GC-GTWNN
model demonstrated its superiorities in CV performance for
all the four seasons, and the seasonal R2 (RMSE, slope)
values are 0.74 (15.83 μg/m3, 0.79), 0.68 (13.99 μg/m3, 0.76),
0.76 (17.40 μg/m3, 0.79), and 0.82 (21.82 μg/m3, 0.84),
respectively. From another perspective, winter reported the
highest R2 value among the four seasons, which indicates the
good fit of the models in winter. However, winter also has
the highest RMSE values, which can be attributed to the high
levels of PM2.5 concentration in winter.

Fig. 6 exhibits the daily mean observations and model
estimates of PM2.5 based on the CV results. First, the min-
imum and maximum values of daily mean PM2.5 observa-
tions are 17.33 and 152.68 μg/m3, respectively. Meanwhile,
as observed in the gray shading, the PM2.5 values present
apparent spatial variations (large standard deviation) within
China. Second, the global-NN-based estimates present notable
deviations against the surface PM2.5 observations, whereas the
GTWNN and the GC-GTWNN estimates show substantially
similar trends to surface PM2.5 measurements, as indicated
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TABLE I

SEASONAL STATISTICS OF SITE-BASED CV RESULTS FOR THE GLOBAL NN, GTWNN, AND GC-GTWNN MODELS.
THE EQUATION STANDS FOR THE FIT LINE BETWEEN MODEL ESTIMATES AND SURFACE OBSERVATIONS

Fig. 6. Daily mean observations and model estimates of surface PM2.5 concentration in 2015. Gray shading: standard deviation of surface PM2.5 measurements.
Black circle: zoomed-in view map.

in Fig. 6. Furthermore, the GC-GTWNN estimates are fre-
quently found to be closer to surface PM2.5 measurements
(left-hand zoomed-in map). In contrast, the GTWNN model
sometimes performs slightly better than the GC-GTWNN
model (right-hand zoomed-in map); however, this is rel-
atively rare. Meanwhile, the statistics confirm that the
GC-GTWNN estimates (R2 = 0.996, RMSE = 1.43 μg/m3)
have some advantages over GTWNN estimates (R2 = 0.994,
RMSE = 1.62 μg/m3) compared with surface PM2.5.

4) Spatial Evaluation of GC-GTWNN: In addition, the spa-
tial statistic was conducted to provide a complete evaluation
of the models. The time series of surface PM2.5 observations
and model CV estimates were collected for each grid cell
containing PM2.5 stations, and the R2 and RMSE values were
calculated. Fig. 7 shows the boxplots of R2 and RMSE values
of all the grid cells for the models. The mean values of R2

Fig. 7. Boxplots of spatial (a) R2 and (b) RMSE (unit: μg/m3) for the
models.

and RMSE for the global NN model, which performs the
poorest among the three models, are 0.42 and 25.00 μg/m3,

Authorized licensed use limited to: Wuhan University. Downloaded on August 27,2021 at 12:27:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 8. Spatial evaluation of the GC-GTWNN model. (a) R2. (b) RMSE (unit: μg/m3). (c) Match-up samples.

respectively. Considering the GTWNN and GC-GTWNN mod-
els, the mean R2 values of GTWNN and GC-GTWNN are
0.76 and 0.76, respectively. The RMSE values of the GTWNN
range from 3.64 to 80.44 μg/m3, with a mean value of
15.21 μg/m3; the minimum, maximum, and mean values of
RMSE for GC-GTWNN are 4.14, 67.08, and 15.01 μg/m3,
respectively. Meanwhile, 66 grid cells have a low R2 value of
less than 0.4 for the GTWNN model, whereas merely 53 grid
cells for GC-GTWNN modeling. This condition indicates that
GC-GTWNN can mitigate the extremely poor estimation of
PM2.5 concentrations to some degree.

We also mapped the spatial distribution of R2, RMSE, and
match-up samples for each grid cell, which are shown in
Fig. 8. Eastern China shows higher R2 and lower RMSE
values, whereas western China reports worse performance,
which may be due to the lower monitoring station density
in western China. Another interesting finding is that southern
China suffers from more missing satellite data, and fewer
match-up samples are found, whereas the situation in northern
China is better.

B. Spatial Distribution of PM2.5 Derived From GC-GTWNN

The daily estimates of surface PM2.5 concentration were
obtained on the basis of the GC-GTWNN model. Considering
sampling bias due to satellite missing data, a merging strategy
proposed in our previous study for the mapping of annual
and seasonal PM2.5 distributions [19] was adopted. As shown
in Fig. 9, severe pollution is revealed by the distributions
of PM2.5 across China. The spatial mean value of PM2.5

is 44.8 μg/m3, which is 28.1% higher than level 2 of the
Chinese National Ambient Air Quality Standards (CNAAQS).
Meanwhile, a spatial variation is revealed by the Hu Line (or
Heihe–Tengchong Line) [46]. The west of the Hu line has a
mean PM2.5 level of 43.9 μg/m3, whereas the east of the Hu
Line shows a higher level of 46.4 μg/m3, which is consistent
with the degree of economic development and urbanization in
China.

Spatially, heavy pollution hotspots with high levels of
PM2.5 have been clustered in China, including North China
Plain (Beijing, Tianjin, Hebei, Henan, Anhui, Shandong, and
Jiangsu), Xinjiang Autonomous Region, and Sichuan Basin.
The aggregations of PM2.5 may be attributed to high emis-
sions, unfavorable meteorological influences, and/or topo-
graphic conditions [8], [29], [33]. Seasonally, winter reports

the heaviest PM2.5 pollution, followed by spring and autumn.
Summer is found to be the cleanest season in one year. There-
fore, the above findings reveal that GC-GTWNN modeling
helps characterize the spatial and temporal patterns of PM2.5

levels beyond ground station measurements alone.

V. DISCUSSION

A. Comparison With Other Models

Considering the nonuniform distribution of monitoring sta-
tions, SDCV incorporates the spatial distance between the
validation and modeling stations into model validation. For
a given distance (d), the modeling station with a distance to
the closest validation station of less than d is excluded in the
model establishment [36]. The distances ranging from 0 to
200 km with a step of 10 km are selected for the evaluation
of models. Meanwhile, GC-GTWNN modeling is compared
with the widely used daily GWR and GTWR models and the
previous geographically and temporally weighted generalized
regression neural network (GTW-GRNN) [33]. Fig. 10 shows
the SDCV performance of the models. All models generally
report a downward trend in performance with the increasing
distance (adjacent modeling stations are excluded). Especially
in the 0–30-km phase, the models experience a dramatic
performance decrease because they are spatiotemporally local
models and are strongly dependent on the adjacent monitoring
stations.

The comparison between the models follows. First,
d = 0 km refers to the site-based CV. Considering spatiotem-
poral heterogeneity of the AOD–PM2.5 relationship, GWR
obtains an acceptable performance with R2 and RMSE values
of 0.72 and 20.54 μg/m3, respectively, which outperforms
the global NN model (R2 = 0.49, RMSE = 27.62 μg/m3).
Benefitting from the use of temporal dependence, GTWR
is more advantageous than GWR, with R2 and RMSE val-
ues of 0.73 and 20.26 μg/m3, respectively. These findings
demonstrate that space–time regression models achieved rel-
atively satisfactory results. Through nonlinear modeling of
NN, the GTW-GRNN model reports some advantages, with
R2 and RMSE values of 0.79 and 17.81 μg/m3, respectively.
Meanwhile, GC-GTWNN notably outperforms the GWR and
GTWR models. Compared with the GTWR model, the R2

value is increased by 0.07 (from 0.73 to 0.80), and the
RMSE value is decreased by 2.82 μg/m3 (from 20.26 to
17.44 μg/m3). The models displayed similar decreasing
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Fig. 9. Spatial distribution of surface PM2.5 in China predicted by GC-GTWNN. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. (e) Annual.

patterns in performance with the increasing distance from 0
to 200 km. However, the GC-GTWNN model performs the
best among all the distances. The SDCV performance com-
parison with other popular models confirmed the superiority
of GC-GTWNN for the spatial estimation of surface PM2.5

from remote sensing observations.
In addition, we have compared the GC-GTWNN model

with the recent models used to estimate surface PM2.5 from
remote sensing data, such as deep residual neural network
(ResNet) [47] and extremely randomized trees (Extra-trees)
[48]. The site-based CV results are shown in Table II,
which demonstrates that the proposed GC-GTWNN model
achieves better estimation performance. This condition may
be due to that the GC-GTWNN model can effectively handle
the spatial and temporal heterogeneity of the AOD–PM2.5

relationship.

TABLE II

SITE-BASED CV RESULTS OF GC-GTWNN AND OTHER MODELS

B. Configuration of GC-GTWNN Modeling

Two main categories of parameters must be configured in
GC-GTWNN modeling. One category is the NN structure, and
the other is the spatiotemporal weighting parameters. For the
first category, the global NN and the GC-GTWNN share the
same structure, which contains one input layer (seven nodes
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Fig. 10. SDCV performance of the models.

Fig. 11. Validation R2 with different hidden layers and nodes.

for the input satellite observations and meteorological data)
and one output layer (one node for surface PM2.5). Concerning
hidden layers, it is interesting to find that with more hidden
layers, the global NN model can achieve a better performance,
over a certain range. However, GC-GTWNN stands in the
opposite direction (see Fig. 11). Consequently, one hidden
layer with 15 nodes was selected in this study considering
the prediction capability and computational complexity of
GC-GTWNN modeling. In addition, the iteration epochs for
global NN training, GTWNN fine-tuning, and GTWNN direct
training were set as 800, 120, and 800, respectively. Besides,
the adaptive bandwidth regime, in which the number of nearest
neighbors remains constant, whereas the distance varies, was
adopted in this study for the configuration of spatiotemporal
weighting parameters. A CV approach was used to select

the values of λ and hST [33] and designated as 8E4 and 2,
respectively, via a nested-loop process.

The model fitting of the GC-GTWNN model was conducted,
and the R2 and RMSE values are 0.97 and 6.21 μg/m3,
respectively. The overfitting phenomenon exists in our model,
with the site-based CV R2 and RMSE values of 0.80 and
17.44 μg/m3, respectively. However, the overfitting phenom-
enon is inevitable to a certain extent for the space–time
weighted models, because a monitoring station locates at
the position to be estimated, and its weight is maximal
(weight = 1) in the model fitting, whereas no monitor-
ing stations locate at the position to be estimated in the
model validation. Hence, the imbalance exists in the model
fitting and model validation. For example, several previ-
ous papers [29], [30], [49], [50] used the GTWR model
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to estimate surface PM2.5, and they all reported overfitting
problems.

C. “Global-to-Local” Modeling Framework

A “global-to-local” framework is proposed in this study
to estimate surface PM2.5 from satellite observations. First,
a global NN is established to model the relationship between
surface PM2.5, satellite AOD, and other auxiliary factors. Then,
the GTWNN model is designed to address the spatiotemporal
heterogeneity of this relationship. Indeed, the contribution of
GC-GTWNN modeling may not only lie in the success of
satellite-based PM2.5 estimation but perhaps more importantly
embody in proposing a “global-to-local” space–time modeling
framework.

The “global-to-local” framework first models the global
relationship using all collected samples, and then fine-tunes
the local estimates based on a localized modeling tech-
nique. This framework demonstrates the potential for deep
learning considering spatiotemporal variability. Deep learn-
ing models work effectively in approximating complicated
relationships [51], [52], but are difficult to be trained in a
local context for addressing spatiotemporal variability. Indeed,
GC-GTWNN modeling with more hidden layers and neurons
demonstrates the possibility to train a deep learning model
considering spatiotemporal variability (Fig. 11). Thus, this
framework provides some inspirations for combining deep
learning and spatiotemporal characteristics. Furthermore, the
proposed modeling framework may have considerable poten-
tials in other applications, such as deep-learning-based remote
sensing missing data reconstruction [53], [54]. In such a
process, a deep learning model is usually trained on an
abundant sample set, and then the missing information is
recovered on the target image. However, useful information
on the target image, which can embody the self-features of
the target, is often neglected. Whether the fine-tuning for
the trained deep learning model via useful information can
improve the reconstruction accuracy deserves further attention.

D. Limitations

GC-GTWNN modeling may still encounter challenges in
some cases; for instance, only a short time (e.g., a few days)
of observations can be collected, and establishing the global
NN models to provide the baseline of fine-tuning is difficult.
At this time, the observations from other times (e.g., other
years) or regions may be useful for pretraining of the NN mod-
els, which are popular in machine learning fields. Meanwhile,
the validated results of the directly trained GTWNN also show
remarkable potentials to work without the support of the global
NN. Moreover, the satellite AOD product used in this study
has a coarse resolution and may lose its popularity in the
fine-scale monitoring of PM2.5 pollution. However, this study
aims to develop GC-GTWNN modeling for remote sensing
estimation of PM2.5. The proposed approach can be used for
generating fine-scale PM2.5 data from high-resolution satellite
AOD observations in future studies.

This study does not effectively deal with the scale effect,
that is, the mismatch between point-based measurements of

the ground monitoring stations and satellite-based area obser-
vations. A previous study [55] has pointed out that the spatial
representation of surface PM2.5 monitoring station is generally
approximately 0.5–16 km2 with the most possible values
of 2–3 km2. However, this issue is common in this field, which
still needs further research, and is also one of the key directions
in our future studies.

Furthermore, more influencing factors will be considered in
future studies. For instance, a previous study [56] indicated
that the secondary formation could be a very important source
for aerosol particles, and introducing solar radiation data will
help consider this issue.

VI. CONCLUSION

Remote sensing estimation of surface PM2.5 has been
broadly studied in recent years. However, the nonlinearity
and the spatiotemporal variability of the AOD–PM2.5 rela-
tionship are rarely simultaneously addressed. Therefore, this
study proposed a novel GC-GTWNN for the remote sensing
estimation of surface PM2.5. First, a global NN is estab-
lished to learn the overall effect of input variables on ground
PM2.5. Initialized by the global NN, the GTWNN models
are established and fine-tuned with spatiotemporally localized
data samples. A case study across China showed that the
CV R2 and RMSE values of GC-GTWNN are 0.80 and
17.44 μg/m3, respectively, which reports a significant improve-
ment over the global NN (R2 = 0.49, RMSE = 27.62 μg/m3).
Meanwhile, a comparison with the traditionally popular PM2.5

estimation models also indicated that GC-GTWNN modeling
achieved remarkable advantages for the estimation of PM2.5

from satellite observations. Furthermore, the daily estimates
of GC-GTWNN were effectively generated, and the national
annual PM2.5 exceeded level 2 of CNAAQS (i.e., 35 μg/m3)
by 28.1%. These results reveal the reliability of the proposed
approach for satellite-based PM2.5 estimation in this study.
This approach will be of considerable value for the large-scale
monitoring of PM2.5 pollution.
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