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Abstract: Urban geographical maps are important to urban planning, urban construction, land-use 
studies, disaster control and relief, touring and sightseeing, and so on. Satellite remote sensing 
images are the most important data source for urban geographical maps. However, for optical 
satellite remote sensing images with high spatial resolution, certain inevitable factors, including 
cloud, haze, and cloud shadow, severely degrade the image quality. Moreover, the geometrical and 
radiometric differences amongst multiple high-spatial-resolution images are difficult to eliminate. 
In this study, we propose a robust and efficient procedure for generating high-resolution and high-
quality seamless satellite imagery for large-scale urban regions. This procedure consists of image 
registration, cloud detection, thin/thick cloud removal, pansharpening, and mosaicking processes. 
Methodologically, a spatially adaptive method considering the variation of atmospheric scattering, 
and a stepwise replacement method based on local moment matching are proposed for removing 
thin and thick clouds, respectively. The effectiveness is demonstrated by a successful case of 
generating a 0.91-m-resolution image of the main city zone in Nanning, Guangxi Zhuang 
Autonomous Region, China, using images obtained from the Chinese Beijing-2 and Gaofen-2 high-
resolution satellites. 

Keywords: cloud detection and removal; high-quality and high-resolution; mosaicking; 
pansharpening; remote sensing 

 

1. Introduction 

The generation of a high-quality seamless urban geographical map is significant for urban land-
use mapping and urban land planning [1–4]. Generally, high-spatial-resolution images (HRIs) from 
satellite remote sensing platforms are required for precise urban mapping. In recent years, small 
satellites, as a new generation of satellites, have received extensive attention and developed rapidly 
because of their light weight, small volume, low cost, and flexible launch capability. In addition, small 
satellites can be further netted as distributed constellations which facilitate the acquisition of high-
spatial-resolution remote sensing images with a high imaging quality and short revisit cycle. 
However, several issues must be considered during urban image generation with small satellite HRIs, 
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such as Beijing-2, as shown in Figure 1. HRIs can be divided into the issues coming from an individual 
image and the issues arising amongst multiple images. 

On the one hand, a single optical satellite image will inevitably be affected by a high proportion 
of haze and cloud cover [5–7]. Thus, dehazing and cloud removal should be utilized to obtain a clear 
and spatially seamless image. These issues come from individual images that make generating a high-
quality seamless urban image a challenging task. On the other hand, for imagery containing 
multispectral and panchromatic bands, the spatial resolution of the multispectral image and the 
spectral resolution of the panchromatic image can be enhanced by fusing them. Thus, pansharpening 
[8–10] is also required. Furthermore, the swath width of images is usually reduced with an increase 
in spatial resolution. Thus, image mosaicking is an essential step for large-scale urban image 
generation [11–13] but is accompanied by new problems. Geometric misalignment and radiometric 
incoherency in adjacent images can cause seam lines in the image mosaicking process. Hence, image 
registration and radiometric normalization must be conducted [14–16], which also brings new 
challenges to the procedure of urban image generation. 

 
Figure 1. Issues to be addressed for generating high-quality seamless images. 

These issues are currently tackled independently and inefficiently. Thus, suitable images are 
often unavailable to be merged into an urban image. The lack of a systematic solution and the 
requirements of urban mapping are the motivations for developing an integrated procedure to 
address the abovementioned issues. In this study, a procedure for high-quality seamless urban image 
generation, integrating image registration, dehazing and thin cloud removal, thick cloud detection 
and removal, pansharpening, and image mosaicking is proposed. Specifically, our attention is 
focused on cloud removal, including a novel spatially adaptive method for removing thin clouds 
with non-uniform atmospheric light and a stepwise local moment matching (SLMM) method for 
removing thick clouds. The case study of the main city zone of Nanning, Guangxi Zhuang 
Autonomous Region, China, shows the generated results of the procedure. The experimental results 
confirm that the proposed procedure is a promising and effective way for generating large-scale high-
quality seamless images of urban areas. 

The remainder of this paper is organized as follows. Section 2 discusses the related works. 
Section 3 describes the proposed procedure and method for generating a high-quality seamless urban 



Remote Sens. 2020, 12, 81 3 of 26 

image from satellite HRIs. Section 4 explains the experimental results, and Section 5 provides a 
discussion. Section 6 presents the conclusion. 

2. Related Works 

Haze/thin cloud frequently appears in optical remote sensing images, resulting in reduced 
image contrast and blurred surface color [17]. In general, existing thin cloud removal methods can be 
divided into two categories: (1) radiative transfer model (RTM)- and (2) statistical information (SI)-
based methods. The RTM-based methods simulate the imaging process to correct the clouds by 
introducing atmosphere-, surface- and sensor-related parameters [18,19]. This type of method is 
rigorous in theory but requires numerous parameters. The RTM-based methods are unsuitable for 
use with high-resolution remote sensing images because the local horizontal difference of the 
atmosphere is insufficiently considered. SI-based methods mine the statistical characteristics of 
clouds in the spatial and spectral domains to correct the imagery. Typical methods include filtering 
in the frequency domain [17,20], dark channel prior (DCP)-based methods [21–24], and spectral 
transformation-based methods [25–28]. These methods can remove clouds without any prior 
knowledge and can be combined with an RTM method to achieve an accurate correction [29]. 
However, statistical characteristics are not always suitable for the complex scenes acquired from 
different sensors. Furthermore, the influences of uneven scattering in the spatial domain are usually 
ignored, resulting in uneven haze not being completely removed. For high-resolution remote sensing 
images with complex scenes and uneven haze, the development of a general thin cloud removal 
method is urgently required. 

Thick clouds and the accompanying shadows are inevitable contaminants for optical imagery in 
the range of visible and infrared spectra. Such contaminants lead to information loss and influence 
the availability of satellite data. In recent years, scholars have undertaken many studies of cloud 
detection and removal. Most of the current cloud detection methods screen the clouds in images by 
rule-based classification, which is based on the discriminative spectral features of the cloud and 
shadow [30–32]. However, cloud detection in high-resolution images is more difficult than in 
medium-resolution images due to the insufficient spectral information. Thus, additional spatial 
features, such as geometric and texture features, have been combined with spectral features to obtain 
improved cloud detection results [33,34]. In addition, deep learning has been introduced in cloud 
detection and has obtained satisfactory results, benefiting from the advantage of adaptively learning 
discriminative features [35]. Cloud removal for cloud-contaminated imagery follows after a cloud 
and shadow mask have been acquired; it is essentially an information reconstruction process [7], 
which usually relies on temporal complementary information from one or more cloud-free images of 
adjacent dates [36–38]. The temporal-based cloud removal methods have been intensively studied 
and are a promising way for handling thick clouds [39–41]. However, the spectral and spatial details 
of the cloud-removed region should be further enhanced for remote sensing HRIs. 

Pansharpening is conducted for the spatial resolution improvement of multispectral images. 
Numerous pansharpening algorithms have been developed in recent decades, which can generally 
be divided into four main categories: (1) component substitution (CS)- [42–44], (2) multiresolution 
analysis (MRA)- [45–47], (3) variational optimization (VO)- [48–50] and (4) deep learning (DL)-based 
methods [9,51,52]. Amongst these methods, the CS- and MRA-based methods are the fastest and the 
most commonly used. Most professional remote sensing software packages, such as ENVI and 
ERDAS Imagine, provide pansharpening algorithms belonging to the CS-based category. The VO-
based methods were developed after the first two categories and are based on a solid mathematical 
foundation. The DL-based methods fully utilize the powerful learning capability of neural networks 
and are currently the state-of-the-art algorithms in pansharpening. 

The main urban areas often cannot be covered in only one image due to the limitations of the 
imaging swath width or imaging mechanism. Stitching or mosaicking multiple images from different 
periods or sensors is often a necessary order to capture the full target area [14,53–55]. Image 
registration [56] is usually required before the mosaicking of multiple images. The existing image 
registration algorithms can be classified into two categories, namely, area- and feature-based 
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methods. The area-based methods fully utilize the intensity information, and the emphasis is placed 
on the similarity metric construction, such as correlation coefficients (CC), mutual information (MI) 
[57], and normalized correlation coefficients (NCC) [58]. Feature-based methods use distinct features, 
such as points, lines, and regions, to represent the image to be registered. The most representative 
feature extraction algorithms, such as scale-invariant feature transform (SIFT) [59] and speeded-up 
robust features (SURF) [60], are mostly utilized in feature-based frameworks. In addition, many 
excellent algorithms for image mosaicking exist, which generally consists of radiometric 
normalization [61–65], seam line detection [66–68] and image blending [14,69–71]. However, image 
registration, radiometric normalization, and seam line detection are still challenging tasks for the 
mosaicking of high-resolution remote sensing images. 

Image registration, radiometric calibration, and image blending are fundamental steps for 
addressing the issues of geometric misalignment, radiometric incoherency, and large-scale maps, 
respectively. The objective is to generate a large-scale image that involves multiple scenes. However, 
the mosaicking of HRIs is more difficult than that of lower-resolution images. Achieving accurate 
image registration, which is essential for image mosaicking, is difficult due to the limited imaging 
angle and land-cover changes. The determination of the seam lines for the images to be mosaicked is 
also important for seamless mosaicking and is often a time-consuming process. Furthermore, the 
other issues shown in Figure 1, including haze and thin cloud, thick cloud, cloud shadow, and 
pansharpening, are not all covered in the existing literature. Most of the studies have addressed these 
issues separately. For example, cloud cover is usually considered when mosaicking remote sensing 
images. On the one hand, clouds are often handled independently by scholars in terms of cloud 
detection and removal. Roy et al. [72] utilized cloud masking to generate mosaics of the conterminous 
United States. The generation of sea ice maps is further dependent upon cloud removal in the 
compositing process [73,74]. On the other hand, certain other issues have also been addressed, in 
addition to clouds. Helmer and Ruefenacht [12] used regression tree prediction and histogram 
matching for seamless mosaicking to support change detection in persistently cloudy regions of 
Landsat images. Hewson et al. [75] reduced the effects of atmospheric and surface scattering through 
atmospheric water vapor correction and cloud/shadow masking for the seamless geological map 
generation of the Broken Hill–Curnamona province of Australia, using ASTER imagery. Zhang et al. 
[76] considered cloud cover and geometric correction in the workflow to produce digital orthophoto 
maps over a national scale. Li et al. [77] applied cloud masking and image pansharpening techniques 
to produce a cloud shadow-free and high-resolution mosaic based on co-registered IKONOS images. 
In addition, attention has been paid to the radiometric differences. Du et al. [78] combined 
radiometric normalization with pixel-wise compositing and quality control in the process of 
mosaicking high-resolution satellite images. Radiometric balancing has also been applied in the 
image mosaic generation of ASTER thermal infrared data [79]. In summary, a comprehensive and 
effective procedure is required to generate a high-quality seamless and large-scale urban image from 
high-spatial-resolution satellite images. 

3. Method 

In this study, a procedure is proposed for high-quality seamless urban image generation from 
high-resolution satellite images. Methodologically, a spatially adaptive method considering the 
uneven atmospheric scattering and a novel algorithm known as SLMM are correspondingly 
proposed to remove the thin and thick clouds of the images, respectively. Figure 2 shows the 
framework of the proposed procedure. The images are initially pre-processed by systematic 
geometric correction and then classified into target and auxiliary images. The target images are 
determined as images that are close to the target date and have good quality, whereas the auxiliary 
images are selected on the basis of the cloud cover of the target images. The step of dehazing and thin 
cloud removal is then conducted for the target images covered by haze and thin clouds. 
Subsequently, the cloud-contaminated target images are transferred for thick cloud removal on the 
basis of the results of thick cloud detection. The cloud-free multispectral and panchromatic images 
are combined for pansharpening and mosaicking after overlapping image registration. Finally, the 
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high-quality seamless urban image of the target area can be obtained by the post-processing steps, 
including target area clipping and radiometric adjustment. 

 
Figure 2. Framework of the procedure for high-quality seamless image generation. 

3.1. Pre-Processing 

In the pre-processing steps, all available remote sensing images are initially resampled to the 
same resolutions for multispectral and panchromatic images after systematic geometric correction. 
Subsequently, all images are classified into target and auxiliary images. The target images are close 
to the target date (e.g., yearly/seasonally/monthly period depending on available images and users’ 
purposes after considering possible land cover changes due to vegetation phenology and urban 
expansion, etc.) and have a good quality in the target area, whereas the auxiliary images are selected 
on the basis of the cloud cover of the target images. The cloud cover percentages can be derived from 
the image header files or estimated by the existing cloud detection methods. However, considering 
the low accuracy of the provided cloud cover percentages or masks, a more accurate cloud detection 
method should thus be utilized. Finally, image registration is applied to eliminate possible 
misalignments between the multispectral and panchromatic images, and cloudy regions in the target 
and reference images, respectively. The area-based method has a weak capability to handle large 
geometrical deformation and is time-consuming. Thus, a feature-based method is adopted to register 
the images, implemented by the steps shown in Figure 3, in which sensed images denote the images 
to be registered. 

 
Figure 3. Image registration process. 
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Following the image registration process, the reference and sensed images are input into ENVI. 
Most of the distinct feature points are extracted and matched with the corresponding points in the 
sensed image via the template matching algorithm. However, considering that the ranges of the 
images to be registered are large, and that a global transformation model will be estimated, the 
extracted feature points should be distributed uniformly and sparsely. Such feature points can be 
achieved by combining necessary manual adjustments. The feature points are empirically extracted 
in the building corners, road intersections and so on to supplement the feature points locally. With 
the satisfactory feature points, the geometrical relationship between the reference and sensed images 
is calculated by a linear polynomial model. The coordinates in the sensed image are then transformed 
and resampled by a bilinear interpolation algorithm. The same process is also used to register the 
corresponding target and auxiliary images and the corresponding panchromatic and multispectral 
images to alleviate the geometrical displacement. 

3.2. Dehazing and Thin Cloud Removal 

In this study, a spatially adaptive haze removal method is proposed on the basis of the DCP [21] 
and hazy image model [80–82]. The variation of atmospheric scattering, which is effective in 
removing uneven haze and producing a vivid result, is considered. The DCP is a statistical law that 
states that the intensity of certain pixels in local patches tends to be zero in at least one or several 
channels for the non-sky regions of clear images. The hazy image model describes the radiance 
composition of images under a turbid atmosphere, which can be expressed as [21] 

𝐼𝐼(𝑥𝑥) = 𝐽𝐽(𝑥𝑥)𝑡𝑡(𝑥𝑥) + 𝐴𝐴(1 − 𝑡𝑡(𝑥𝑥)) (1) 

where 𝐼𝐼 is the hazy/thin cloud image, 𝐽𝐽 denotes the clear image, 𝑡𝑡 is the transmission, and 𝐴𝐴 is the 
atmospheric light. Thus, we can remove the haze/thin cloud via the hazy image model if 𝐴𝐴 and 𝑡𝑡 
are available. Figure 4 depicts the flowchart of the haze/thin cloud removal procedure. 

 
Figure 4. Flowchart of haze/thin cloud removal. 

In theory, the portion of the path radiance that is scattered and reaches the sensor will 
correspond to atmospheric light A in the hazy image model. However, the atmospheric light is 
usually assumed to be a constant in the entire scene. This assumption is true for an image covered 
with uniform haze, such as most natural images. The reason is that the scattering intensities of these 
images are relatively stable, and the scattered path radiance reaching the sensor will be almost the 
same in the entire scene. However, remote sensing images have particularly broad imaging range 
and are often covered with uneven haze. For such images, the scattered path radiance will vary in 
the spatial dimension, suggesting that the atmospheric light should be spatially varied. Therefore, 
developing an estimation algorithm that reflects the spatial characteristic of atmospheric light is 
necessary. 

Changes in scattering intensity generally cause uneven luminance in the image, indicating that 
the luminance can reflect the scattering intensity distribution in space. Therefore, the luminance is an 
important clue for estimating non-uniform atmospheric light. On the basis of the above analysis, we 
propose a luminance-based atmospheric light estimation strategy, entitles the non-uniform 
atmospheric light model. This model can be defined as follows: 

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∆𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (2) 
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where 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is the non-uniform atmospheric light and 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and ∆𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  are the basic atmospheric 
light and atmospheric light increment, respectively. The former is a constant and the latter is a 
variable related to the haze heterogeneity. 

The non-uniform atmospheric light of an arbitrary image is given by the following two steps: (1) 
calculating the atmospheric light increment from the luminance fieldw and (2) estimating the basic 
atmospheric light from the original image. Firstly, a Gaussian low-pass filter is selected to obtain the 
luminance from the hazy image. As the atmospheric light is locally stable, a minimum filter is 
adopted to post-process the luminance. Hence, the increment can be expressed as 

∆𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝛹𝛹

𝐼𝐼+ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 (3) 

where 𝐼𝐼 is the luminance of the image, 𝑚𝑚𝑚𝑚𝑚𝑚
𝛹𝛹

𝐼𝐼 is a minimum filter with window 𝛹𝛹, in which the 
window size is related to the heterogeneity of the haze, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum of 𝐼𝐼, and ∆𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the 
estimated atmospheric light increment. 

To calculate the basic atmospheric light 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , the 0.1% pixels with the largest dark channel 
intensity, which are calculated by the traditional DCP, are initially selected. Moreover, one of the 
pixels with the largest intensity is regarded as the value of basic atmospheric light. Once 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 
∆𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  are obtained, the non-uniform atmospheric light of the input image can be estimated via 
Equation (2). With 𝛢𝛢, the transmission of the image can be calculated and the haze/thin cloud-free 
image can finally be acquired. In addition, for the panchromatic channel, 𝐴𝐴 and 𝑡𝑡 are upsampled to 
the same size to remove haze/thin cloud. 

3.3. Thick Cloud Detection and Removal 

For the thick cloud of the high-resolution images, a cloud detection method and a cloud removal 
method are introduced in the following content. 

3.3.1. Thick Cloud Detection 

The multi-feature combined (MFC) method proposed by Li et al. [33] is used to screen cloud and 
cloud shadow in the haze/thin cloud-free images on the basis of the results of the dehazing and thin 
cloud removal. Figure 5a shows the process flow of the MFC algorithm. The MFC method combines 
multiple features (i.e., spectral, shape and texture) to implement object-based cloud and shadow 
detection. MFC initializes a rough cloud mask on the basis of spectral threshold segmentation, and 
the core cloud regions are captured after this step. A fine mask is then produced by applying guided 
filtering and binarization processing, in which the thin clouds around the cloud boundaries are 
captured. Finally, the non-cloud bright objects in the refined cloud mask are removed by using object-
based shape and texture features to improve the cloud detection results and produce the final cloud 
mask. Furthermore, a cloud shadow mask is obtained on the basis of the cloud mask, which is 
screened by associating clouds and the detected shadows through object-based matching and 
correction, with the aid of satellite viewing and solar angles. Notably, a higher priority is set for cloud 
than cloud shadow in the final mask. 

The MFC method was originally proposed for Gaofen-1 wide-field-of-view imagery, which 
contains three visible bands and a near-infrared band. It can also be applied to other types of imagery 
that have similar band settings. In this study, MFC is used to produce cloud and cloud shadow masks 
for the experimental images after parameter optimization. Several key spectral thresholds in MFC 
are manually fine-tuned through a series of tests and parameter-sensitive analyses. Manual correction 
is required in a few cases because cloud and cloud shadow detection for high-resolution images is 
challenging, and the results produced by MFC are not completely accurate. Subsequently, the 
corrected masks are used as guidance for the subsequent cloud and cloud shadow removal. 
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Figure 5. Flowcharts of the cloud detection method and proposed cloud removal method. (a) 
Flowchart of cloud detection. (b) Flowchart of cloud removal. 

3.3.2. Thick Cloud Removal 

In this study, a simple but effective cloud removal method based on SLMM is proposed to 
recover the cloud-contaminated areas. The proposed SLMM cloud removal method has fidelity 
advantages for the spectral and spatial details in the recovered cloud-contaminated regions. Figure 
5b illustrates the flowchart of the SLMM method. The inputs of the method are the target image that 
should be recovered, the cloud and cloud shadow mask of the target image, and the auxiliary image, 
which is another temporal image covering the same area as the target image. Assuming that the 
auxiliary image is cloud-free and has been registered with the target image, our goal is to recover the 
cloud-contaminated areas in the target image by combining the complementary information from the 
auxiliary image whilst ensuring that the recovered areas are seamless. 

The proposed SLMM method consists of three main steps. Initially, connected component 
labeling is conducted, in which the pixels marked as cloud or cloud shadow in the target mask and 
connected in eight neighbours are labeled as independent objects. Then, as shown in Figure 6, each 
target image patch 𝑇𝑇 located around an object can be acquired by extending the height and width of 
the object’s bounding rectangle (black rectangle in Figure 6a) with specific pixels (e.g., 200) in all four 
sides. For each patch T, the SLMM procedure is implemented to recover the contaminated areas pixel 
by pixel through stepwise replacement. Notably, the contaminated areas to be recovered are labeled 
in the target mask and recovered along the cloud object boundaries to the center. Such a process can 
be controlled by stepwise one-pixel erosion of the target mask, in which recovered pixels are treated 
as the known cloud-free pixels and involved in the recovery of the remaining contaminated pixels 
labeled in the target mask. Specifically, the recovered cloud-contaminated pixel 𝑇𝑇(𝑖𝑖, 𝑗𝑗) at (𝑖𝑖, 𝑗𝑗) in the 
target image patch can be acquired by the linear transformation of pixel 𝑅𝑅(𝑖𝑖, 𝑗𝑗) in the auxiliary image, 
as shown in Equation (4). Such pixel involves valid and cloud-free pixels in local window 𝑘𝑘 centred 
at (𝑖𝑖, 𝑗𝑗) in the target and auxiliary image patches. The linear transformation in Equation (4) is also 
called local moment matching, where σ𝑇𝑇  and σ𝑅𝑅 are the standard deviation of the valid pixels in 𝑘𝑘 
in the target and auxiliary image patches, respectively. Moreover, 𝜇𝜇𝑇𝑇 and 𝜇𝜇𝑅𝑅 are the corresponding 
mean values. Notably, the size of window k is equal to 2𝑟𝑟 + 1, where 𝑟𝑟 is empirically set to 80 in the 
experiments of this study. Finally, boundary smoothing is conducted at one-pixel outer and inner 
edges of the recovered areas to eliminate edge effects. Consequently, the Gaussian smoothing kernel 
is empirically set with a size of 3 × 3 and a standard deviation of 1.6. The contaminated areas in the 
target image are recovered object by object and channel by channel. 
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𝑇𝑇(𝑖𝑖, 𝑗𝑗) =
σ𝑇𝑇
σ𝑅𝑅

· 𝑅𝑅(𝑖𝑖, 𝑗𝑗) + 𝜇𝜇𝑇𝑇 −
σ𝑇𝑇
σ𝑅𝑅

· 𝜇𝜇𝑅𝑅 (4) 

The stepwise strategy progressively recovers the contaminated pixels from object boundaries to 
the center and treats the recovered pixels as cloud-free pixels. In addition, this strategy makes the 
proposed cloud removal method effective for large-scale thick cloud removal, specifically in high-
resolution images. The spatial details from the auxiliary image can be well preserved in the recovered 
areas because the SLMM method is a type of intensity adjustment-based method. 

 
Figure 6. Illustration of the stepwise recovery of a cloud-contaminated area using SLMM. (a) Target 
image to be recovered. (b,c) Target image partly recovered through stepwise replacement, in which 
the recovered pixels in (b) are treated as cloud-free pixels and involved in the recovery of the 
remaining contaminated pixels in (c). (d) Recovered target image. 

3.4. Pansharpening 

The fast pansharpening algorithm used in this study is based on the CS-based fusion framework 
and fully utilizes the high efficiency of the CS-based method [10,83]. Figure 7 depicts the flowchart 
of the proposed pansharpening method, which can be represented as: 

𝑀𝑀𝑆𝑆𝑘𝑘 = 𝑀𝑀𝑆𝑆𝑘𝑘� + 𝛽𝛽𝑘𝑘(𝑃𝑃 − 𝐼𝐼) (5) 

where 𝑘𝑘 = 1,⋅⋅⋅,𝑁𝑁, 𝑀𝑀𝑀𝑀 is the fused high-spatial-resolution multispectral (HR-MS) image and 𝑀𝑀𝑀𝑀�  is 
the low spatial resolution multispectral (LR-MS) image upsampled to the scale of the panchromatic 
(PAN) image. 𝑁𝑁 is the band number of the multispectral image, and the subscript 𝑘𝑘 indicates the 
𝑘𝑘th spectral band. 𝐼𝐼 is the intensity component of 𝑀𝑀𝑆𝑆� , which is calculated by a linear combination 
of spectral bands in 𝑀𝑀𝑀𝑀� , where the linear combination coefficient kw  is obtained by Equation (6). 𝑃𝑃 
represents the PAN image. The histogram match is performed between 𝑃𝑃 and 𝐼𝐼 to make 𝑃𝑃 and I 
have the same mean and variance values, which can reduce the spectral distortion [83] caused by the 
gap between the two data levels. 𝛽𝛽 is the band-dependent injection weight, which is calculated by 
the average gradient of each spectral band in the LR-MS image, as shown in Equation (7). 

𝑃𝑃𝑙𝑙 =  ∑ 𝑤𝑤𝑘𝑘𝑀𝑀𝑀𝑀𝑘𝑘𝑁𝑁
𝑘𝑘=1 , (6) 

where lP  is the PAN image downsampled to the size of the LR-MS image, that is, kMS  in Equation 
(6). The linear combination coefficient kw  is obtained on the basis of least square fitting. 

𝛽𝛽𝑘𝑘 =
𝑔𝑔𝑔𝑔𝑔𝑔(𝑀𝑀𝑆𝑆𝑘𝑘�)
𝑔𝑔𝑔𝑔𝑔𝑔(𝐼𝐼)

 (7) 

where ( )gra ⋅  is the function for obtaining the average gradient of the image. The average gradient 
is the mean value of the gradients of all pixels in the image. 
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Figure 7. Flowchart of the used pansharpening method. 

The used pansharpening method includes three main parts: (1) spectral band combination, (2) 
spatial structure information extraction, and (3) spatial information injection. Initially, the intensity 
component is calculated by a linear combination of the spectral bands of the upsampled multispectral 
image. The high-frequency spatial details that only exist in the panchromatic image are then extracted 
by subtracting the intensity component from the histogram-matched PAN image. Finally, the 
extracted spatial structure information is injected into the multispectral image by the band-dependent 
injection weight. 

3.5. Mosaicking 

The images are registered in the pre-processing step; thus, registration is not conducted here. 
The radiometric differences of the neighbouring images should be reduced to make the mosaicked 
images as similar as possible visually. Radiometric normalization is selectively implemented because 
additional subtle radiometric adjustments will be implemented later. Seam line detection is helpful 
to obtain a boundary line where small radiation differences between the images are to be mosaicked. 
Around the seam line, image blending is operated, which aims to achieve a uniform transition on 
both sides of the seam line. However, in this section, emphasis is put on image blending, as the seam 
line detection can be automatically conducted in ENVI, or the image edge can be utilized as a seam 
line. 

The radius for the image blending is then set on the basis of the overlapped area of the 
neighboring images. For image blending, as shown in Figure 8, the following equation is used to 
obtain the natural mosaicked images: 

𝑀𝑀(𝑖𝑖, 𝑗𝑗) = �
𝑓𝑓𝑙𝑙(𝑖𝑖, 𝑗𝑗)    (𝑖𝑖, 𝑗𝑗) ∈ 𝑓𝑓𝑙𝑙
𝜔𝜔𝑙𝑙(𝑖𝑖, 𝑗𝑗) × 𝑓𝑓𝑙𝑙(𝑖𝑖, 𝑗𝑗) + 𝜔𝜔𝑟𝑟(𝑖𝑖, 𝑗𝑗) × 𝑓𝑓𝑟𝑟(𝑖𝑖, 𝑗𝑗)    (𝑖𝑖, 𝑗𝑗) ∈ (𝑓𝑓𝑙𝑙 ∩ 𝑓𝑓𝑟𝑟)
𝑓𝑓𝑟𝑟(𝑖𝑖, 𝑗𝑗)    (𝑖𝑖, 𝑗𝑗) ∈ 𝑓𝑓𝑟𝑟

 (8) 

where 𝑀𝑀  is the mosaicked image and 𝑓𝑓𝑙𝑙  and 𝑓𝑓𝑟𝑟  are the left and right images to be mosaicked, 
respectively. 𝜔𝜔𝑙𝑙  and 𝜔𝜔𝑟𝑟  are the weights of the left and right images, respectively. (𝑖𝑖, 𝑗𝑗)  is the 
coordinate of the mosaicked image. Furthermore, if we set the feathering distance as 𝑞𝑞, then the 
weight can be calculated as follows: 

𝜔𝜔𝑟𝑟(𝑖𝑖, 𝑗𝑗) =
�(𝑖𝑖 − 𝑖𝑖𝑙𝑙)2 + (𝑗𝑗 − 𝑗𝑗𝑙𝑙)2

𝑞𝑞
 (9) 

𝜔𝜔𝑙𝑙(𝑖𝑖, 𝑗𝑗) = 1 − 𝜔𝜔𝑟𝑟(𝑖𝑖, 𝑗𝑗),  𝑖𝑖𝑙𝑙 ≤ 𝑖𝑖 ≤ 𝑖𝑖𝑟𝑟 , 𝑗𝑗𝑙𝑙 ≤ 𝑗𝑗 ≤ 𝑗𝑗𝑟𝑟 (10) 

where (𝑖𝑖𝑙𝑙 , 𝑗𝑗𝑙𝑙) and (𝑖𝑖𝑟𝑟 , 𝑗𝑗𝑟𝑟) are the coordinates of the left and right feathering edges. In this way, the 
grey value in the feathering distance gradually transitions from the left to the right image, thereby 
eliminating the seam line. 
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Figure 8. Illustration of image blending of left–right relation. 

3.6. Post-Processing 

In the post-processing steps, the main city area is clipped from the mosaicked image. In addition, 
the image is linearly stretched to ensure that the clipped urban image has good visual effects and to 
trim extreme values from both ends of the histogram using a specified percentage. Thus, the image 
contrast is improved for the final high-quality seamless urban image generation. 

4. Experiments and Results 

Section 4.1 presents a case application of urban map generation with the introduction to the 
experimental images and the final and intermediate results. Comparative experiments are conducted 
in Section 4.2 to evaluate the performance of the proposed thin and thick cloud removal methods. 

4.1. Urban Map Generation Experiments and Results 

The experimental images consisted of two types of Chinese high-resolution satellite images, 
namely Beijing-2 and Gaofen-2. The Beijing-2 images are delivered by the commercial TripleSat 
constellation, which is composed of three high-resolution satellites launched in 2014. Beijing-2 offers 
1-m panchromatic and 4-m multispectral ground sampling distance imagery with a swath width of 
23 km. Gaofen-2 is one of a series of high-resolution optical Earth observation satellites launched by 
the China National Space Administration. Moreover, Gaofen-2 is configured with two identical 
cameras and has been operational since October 2015. The two cameras on Gaofen-2 are capable of 
collecting images with 0.81-m panchromatic and 3.24-m multispectral bands, on a combined swath 
width of 45 km. The multispectral images of Beijing-2 and Gaofen-2 share a similar spectral band 
setting and spatial resolution, and both have three visible channels and a near-infrared channel. The 
Beijing-2 and Gaofen-2 images have been extensively used to provide Earth observation information 
for applications, such as monitoring land and water resources, agriculture, urban development, and 
environmental impact assessment. 

The experimental images covered the main city areas of Nanning in Guangxi Zhuang 
Autonomous Region, China. Nanning is the capital city and the largest city of the Guangxi region, 
which is located in the southwest of China. All available images were classified into two categories, 
namely, the target images used to generate the final urban image of Nanning City and the auxiliary 
images used to remove cloud in the target images.  

Table 1 shows the selected experimental images, in which the location, date and cloud cover 
percentages are provided, and the target and auxiliary images are numbered as T1–T5 and A1–A2, 
respectively. Specifically, the five Beijing-2 images acquired in October and December 2017 were 
considered as the target images to composite the main urban area of Nanning. Moreover, a Beijing-2 
image acquired in May 2017 and a Gaofen-2 image acquired in October 2016 were used as the 
auxiliary images. All experimental images were level-1 data, that is, raw digital products with the 
process of homogenized radiation calibration. Figure 9 shows the distribution of the target images, 
in which the five Beijing-2 images cover the entire main city area of Nanning, and the yellow 
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boundary is the G7201 Nanning Ring Expressway. The adjacent images are mismatched at the 
borders and have evident radiometric inconsistencies. All four images are contaminated by haze and 
cloud, to different degrees. 

Table 1. Experimental images for urban map generation of Nanning City. 

Image 
Type 

No. Image ID Centre 
Location 

Date Cloud 
Coverage * 

Target 

T1 TRIPLESAT_2_PMS_0010DDVI_007 E108.3_N22.8 
9 October 

2017 
4.8% 

T2 TRIPLESAT_2_PMS_0010DDVI_008 E108.2_N33.0 
9 October 

2017 0.3% 

T3 TRIPLESAT_3_PMS_001397VI_006 E108.5_N22.7 
2 

December 
2017 

0.1% 

T4 TRIPLESAT_3_PMS_001397VI_007 E108.5_N22.9 
2 

December 
2017 

0.3% 

T5 TRIPLESAT_3_PMS_0013D6VI_007 E108.3_N22.7 
17 

December 
2017 

Clear 

Auxiliary 
A1 TRIPLESAT_1_PMS_000F58VI_002 E108.5_N22.9 27 May 

2017 
Clear 

A2 GF2_PMS1_0001881842 E108.3_N22.8 
11 October 

2016 1.0% 

* The actual percentages of cloud cover are slightly higher than the given percentages, which were 
derived from the image header files. 

 

Figure 9. Study area and the distributions of the target experimental images. 

Following the above procedure, a 0.91-m high-quality seamless main urban image of Nanning 
city was obtained. Generating this image took approximately 18 hours, which was implemented on 
a computer with an Intel Core i7-8700K 3.70 GHz CPU in the Windows 10 environment with 32 GB 
RAM. Notably, the necessary manual processing, which benefits the accuracy improvement and 
mainly includes manual interaction and mask correction, takes approximately 10% of the total 
processing time. In this subsection, the final experimental and intermediate results are shown to 
demonstrate the effectiveness and necessity of each step in the proposed procedure. Figure 10 shows 
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the generated urban image of Nanning City. The urban image generated by the proposed procedure 
is of high quality (cloud-free and clear), seamless (spatially continuous), and of high resolution (0.91-
m resolution). In detail, no clouds can be found, and even by a careful check of the entire urban image, 
the buildings and roads are clear, as well as the open spaces, including the park, sports field and 
leisure square. The seam lines are eliminated well and cannot be visually identified. Thus, the 
generated image is spatially seamless. The pansharpened image has a high spatial resolution and 
keeps the abundant spectral information. The color of the water body of the Yongjiang River, which 
flows across the main city area of Nanning, is uniform. 

 
Figure 10. Generated a large-scale high-quality seamless urban image of Nanning City. 

Examples are given by comparing the results before and after the specific processing, in terms 
of dehazing and thin cloud removal, thick cloud and shadow removal, image pansharpening and 
image mosaicking. The objective is to illustrate the local details of the generated image. 

Haze and thin clouds are common in optical satellite images and result in information being 
partially missing in the image. A method of dehazing and thin cloud removal is utilized to recover 
the information in haze-covered areas. Figure 11 shows that the hazy images are enhanced, and the 
haze distributed over the urban and vegetated areas is removed. Moreover, the haze-free areas are 
unaffected and the details are well kept. However, the haze removal method cannot handle thick 
clouds and may cause residual cloud. Thus, thick cloud removal is subsequently undertaken. 
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Figure 11. Examples of dehazing and thin cloud removal. 

Differing from haze or thin clouds, thick clouds or shadows in images usually lead to 
information that is totally missing. In this case, we reconstruct the missing areas in the cloud-
contaminated images with the aid of the auxiliary images of the same area, and thick cloud detection 
and cloud removal are utilized for reconstruction. Figure 12 displays the examples of cloud and 
shadow removal, in which cloud-contaminated images distributed over urban and vegetated areas 
are used. The cloud-removed images seem natural and have good color consistencies. In addition, 
the spatial details of the missing areas are well recovered, even where the missing areas are large, 
which indicates the effectiveness of the proposed cloud and shadow removal method. 
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Figure 12. Examples of thick cloud and shadow removal. 

Image pansharpening is essential for spatial resolution improvement, and it involves fusing the 
abundant spectral information in the multispectral image and the spatial details in the panchromatic 
image. Figure 13 shows the examples of the image pansharpening undertaken in this study, which 
show evident spatial detail improvements. In the first example, the cars on the bridge can be seen, 
and the outlines of the ships on the river are clear after pansharpening. The second and third 
examples are of a train station and circular interchange, respectively, in which the spatial details are 
clearly enhanced. The last example is a vegetated area, in which the colors of the trees and water are 
well kept from the original multispectral images. These examples demonstrate that the 
pansharpening method is an effective way to improve the spatial resolution of multispectral images. 
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Figure 13. Examples of fast image pansharpening. 

Mosaicking the neighboring images is a key step for the generation of the final urban image. In 
our implementation, the overlapping areas of the neighboring images are first registered. The order 
of mosaicking the images is then determined by the image date and the percentage of valid coverage, 
which means that an image which is closer to the target date and has a high coverage percentage of 
the target area has a higher priority. Finally, the images are mosaicked as described in Section 3.5. 
Figure 14 shows examples of image mosaicking in complex urban areas and a vegetated area. The 
misalignments between neighboring images are obvious, as well as the color differences, while the 
mosaicked images are seamless (spatially continuous) and have good color consistency. The results 
confirm that the applied image registration and mosaicking methods are effective. 
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Figure 14. Examples of image mosaicking. 

4.2. Comparative Experiments and Results 

4.2.1. Comparisons of Dehazing and Thin Cloud Removal Methods 

To validate the effectiveness of the haze removal method, two existing methods were selected 
for comparison, including the classical DCP method (CDCP) [21] and the dark channel-saturation 
prior method (DCSP) [84]. For a fair comparison, all parameters in these methods were set to be 
optimal via iterative adjustment. 

Figure 15 shows the haze removal result for an urban area using different methods. Clearly, 
most of the image is covered by haze, making the brightness of the ground features higher than the 
actual values. The haze effects were largely eliminated, but certain residual haze can still be seen in 
the top left corner as indicated by the CDCP’s result. Compared with CDCP, the haze removal 
capability of DCSP was weaker and the haze was still significant in the result. Figure 15d depicts the 
result of the proposed method. The high brightness caused by haze is completely eliminated, and the 
ground details were recovered well. Thus, the proposed method shows better performance than the 
comparison methods in removing haze for urban regions. 

Figure 16 shows a haze removal instance for a forest area. The haze in the image was scattered 
and the intensity varies in spatial. Similar to Figure 15, CDCP removes the light haze but the dense 
one still remains. By contrast, DCSP’s result is worse, where the haze cannot be removed but the 
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spectral of clear regions altered. The result of the proposed method indicates that the uneven haze 
contamination completely vanished, whereas the spectral of clear regions remains. The reason is that 
the proposed method fully considers the scattering variation spatially, and the non-uniform 
atmospheric model accurately describes the change. In summary, the proposed method holds 
superior capability in removing uneven haze and maintaining the spectral of clear regions, and 
benefits for generating high-quality and high-resolution seamless satellite imagery for large-scale 
urban regions. 

 
        (a) Hazy urban image 

 
(b) CDCP 

 
          (c) DCSP 

 
(d) Proposed 

Figure 15. Haze removal for an urban area using different methods. (a) Hazy urban image. (c–d) are 
haze removal results of CDCP, DCSP and the proposed method, respectively. 

 
            (a) Hazy forest image 

 
(b) CDCP 

 
           (c) DCSP 

 
(d) Proposed 

Figure 16. Haze removal for a forest area using different methods. (a) Hazy forest image. (c–d) are 
haze removal results of CDCP, DCSP and the proposed method, respectively. 
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4.2.2. Comparisons Thick Cloud Removal Methods  

In order to quantitatively evaluate the performance of the proposed SLMM method in cloud 
removal for high-resolution images, we simulated cloud-contaminated images by adding thick 
clouds to cloud-free Beijing-2 images used in this study, and measured the differences between the 
cloud removal results of SLMM and ground truths (i.e., original cloud-free images). Thick cloud 
removal methods, including localized linear histogram match (LLHM) [85] and modified 
neighborhood similar pixel interpolator (MNSPI) [86], are used for method comparisons. Correlation 
coefficient (CC), root-mean-square error (RMSE), universal image quality index (UIQI), and 
structural similarity (SSIM) index are utilized as the quantitative metrics for the accuracy evaluation 
of different methods. 

We conduct two groups of simulated experiments, in which simulated thick clouds are added 
to vegetation and urban areas. Figure 17 shows the cloud removal results, and Table 2 lists their 
quantitative evaluation results. Accuracies are calculated only on the basis of the cloud removed areas 
and are the averaged values of four multispectral bands in Beijing-2 images. It can be seen that the 
proposed SLMM method achieves the best visual as well as quantitative results amongst the 
compared methods. Specifically, color distortion exists in the cloud removal results of LLHM (regions 
marked in red in Figure 17). By contrast, the results of MNSPI are influenced by the produced noises 
and artefacts, which lead to the loss of spatial details (regions marked in yellow in Figure 17). Thus, 
LLHM and MNSPI achieve lower CC and SSIM than SLMM. The cloud removal results of SLMM 
well preserve the spatial details and appear visually seamless in the recovered areas. Benefiting from 
the efficient implementation, SLMM is more effective than the other methods and takes 1.95 seconds 
to recover the two cloud-contaminated images in Figure 17 in total. By contrast, LLHM and MNSPI 
take 11.20 seconds and 166.31 seconds to accomplish the same tasks, respectively. 

Although SLMM acquired the best cloud removal result, notably, the recovered spatial details 
in cloud removal results of SLMM are linearly transformed from the auxiliary image. Thus, the 
recovery accuracy will be influenced by the land cover changes between the cloud-contaminated and 
auxiliary images. Considering that SLMM is used to support the generation of yearly/seasonally 
urban geographical maps, the errors bringing from land cover changes between multitemporal 
images can be accepted to a certain degree. 

 
Figure 17. Simulated cloud removal experiment results of different methods. 
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Table 2. Quantitative evaluation results for the simulated cloud removal experiments. 

 Method CC (↑) RMSE (↓) UIQI (↑) SSIM (↑) 

Exp.1 in Figure 17 
LLHM 0.747  0.045  0.735  0.820  
MNSPI 0.816  0.032  0.809  0.823  
SLMM 0.835  0.031 0.833  0.850  

Exp.2 in Figure 17 
LLHM 0.818  0.026  0.814  0.863  
MNSPI 0.860  0.020  0.847  0.879  
SLMM 0.886  0.019  0.886  0.890  

5. Discussion 

In the proposed procedure, a series of steps are utilized to achieve improvements in image 
quality and spatial resolution. However, errors are inevitable in each step; thus, the error sources and 
their influences were analyzed. The limitations of the applied methods were also discussed. 

Image registration is a fundamental step that is aimed at eliminating the geometric misalignment 
and is of critical importance for multi-temporal thick cloud and shadow removal, as well as image 
mosaicking. Minor misalignment may remain between local regions of two temporal images, which 
may result in a slight spatial discontinuity in the boundaries of the cloud-removed areas and the 
seams of the images to be mosaicked. 

In terms of dehazing and thin cloud removal, we only conduct this step on the hazy images. As 
the haze removal method is based on the concept of dark pixel, the approach will be efficient when 
the dark pixel exists and is sufficient in the study regions. However, when the dark pixel is lacking, 
for example, the bright soils, the method will be invalid and may cause color distortion (see Figure 
18). Moreover, the method estimates the haze intensity with a slide overlapping window, assuming 
that the haze is uniform in local regions. Thus, for the haze contamination which varies violently in 
spatial, the over- or underestimated intensity will decrease the accuracy of the method, in which 
radiometric difference may occur in bright surface covered areas, but the radiometric normalization 
in the mosaicking reduces this kind of difference. 

 
(a) 

 
(b) 

Figure 18. Haze removal result with poor performance. (a) Hazy image. (b) Haze-removed image. 

For thick-cloud detection and removal, manually corrections of cloud and clouds shadow masks 
are necessary in certain cases to ensure the complete recovery of contaminated areas. We instead use 
the similar pixel regression-based method of SLMM to preserve spatial details in the cloud-removed 
image, which are transformed from the auxiliary image, without changing the land-cover types. In 
this case, the abrupt temporal changes of land cover between the areas of the target cloudy image 
and auxiliary image may lead to spatial discontinuity around the boundaries of the cloud-removed 
areas. 
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The pansharpening method used in this study is effective and suitable for fast fusion large-scale 
remote sensing images. However, local spectral distortion may occur in large-scale image fusion, as 
shown in Figure 19a,b. Evident spectral inconsistencies exist between the observed LR-MS image 
(Figure 19a) and the fused HR-MS image (Figure 19b). Such inconsistencies may be due to the 
difference between the overall brightness and the local brightness of large-scale images and can be 
solved by residual correction. However, Figure 19a,b show that, in most cases, the local area with 
spectral distortion seems natural and consistent with human visual perception. Thus, no strategy has 
been applied. Furthermore, as an intermediate step in the entire process, the accuracy of 
pansharpening can be affected by the previous steps. Figure 19c,d present an example of low fusion 
accuracy. Figure 19c exhibits the blurry fusion result caused by low registration accuracy, and Figure 
19d shows a clear fusion result after improving the registration accuracy. 

Given that the experimental images may be different in other applications, the above errors are 
dependent on the actual cases of used images and applied methods. Our experience suggests that 
simple but effective methods are important for the processing of large-area and high-resolution 
satellite images. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. Fusion results with poor performance. (a) Observed LR-MS image. (b) Fused HR-MS 
image. (c) Blurry fusion result. (d) Clear fusion result. 

6. Conclusions 

Degradation factors, including haze, cloud, and cloud shadow, reduce the quality of optical 
remote sensing images, as well as the issues of geometric misalignment and radiometric 
inconsistency, making the generation of large-scale high-quality and seamless urban imagery a 
challenging task. In this study, a robust procedure for generating high-quality and seamless urban 
imagery is proposed. Specifically, a spatially adaptive method considering the uneven atmospheric 
scattering and a new algorithm (SLMM) are proposed to remove thin and thick clouds, respectively, 
and their effectiveness is verified by comparative experiments. A case application in Nanning City, 
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China, showed that the proposed procedure and methods are effective and can handle the complex 
issues of geometric misalignment, haze and cloud cover, pansharpening, and radiometric 
inconsistency. In our future study, additional effective methods in the presented procedure will be 
investigated to improve the generated urban image. Quality bands for the generated image, which 
track the processing errors in each step and mark the pixel quality, will also be constructed. 
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