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In this paper, a spatially adaptive retinex variational model for the uneven intensity correction
of remote sensing images is proposed. In the model, the spatial information is used to constrain
the TV regularization strength of the reflectance. In the edge pixels, a weak regularization
strength is enforced to preserve detail, and in the homogeneous areas, a strong regularization
strength is enforced to eliminate the uneven intensity. The relationship and the fidelity term
between the illumination and reflectance are also considered. Moreover, the split Bregman
optimization algorithm is employed to solve the proposed model. The experimental results
with both simulated and real-life data demonstrate that the proposed method is effective,
based on both the visual effect and quantitative assessment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the remote sensing image acquisi-
tion process is complicated, which usually results in radio-
metric errors. The two main reasons for the errors are sensor
malfunction and the external interference. Even if the
imaging system is in working order, radiometric errors will
still accompany the external interference. The external
factors include: non-uniform illumination; atmospheric
attenuation brought about by atmospheric scattering and
absorption; and terrain attenuation brought about by terrain
elevation, aspect, slope, and so on. Therefore, remote sensing
images usually have an uneven intensity distribution, color
cast, etc. In this paper, we are concerned with the uneven
intensity distribution that is caused by the non-uniform
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illumination in aerial remote sensing images. Since remote
sensing data is very important for image classification,
change detection, and other applications [1-3], it is extre-
mely important to carry out radiometric correction.

The traditional correction methods are either absolute or
relative radiometric correction. Most forms of absolute radio-
metric correction are based on physical theory, which is
extremely complex. This often requires huge amounts of
information, including atmospheric and sensor properties for
the acquisition date of the satellite scene, and so on. For the
majority of the archived satellite images, this information is
not available [4-6]. Thus, relative radiometric correction has
been developed, which normalizes multiple satellite scenes to
match a referenced one. To date, a few methods based on
single-scene image enhancement have been applied to adjust
uneven illumination, including the homomorphic filter (HF)
and histogram equalization (HE). The HF can adjust the
illumination, but it suffers from the problem of color distortion
[7-9]. The HE can redistribute the intensity distribution [9-13];
however, the results may sometimes turn out to be even more
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uneven [9]. Furthermore, a unique solution does not exist for
multiband histogram matching [14].

Color perception techniques based on the human visual
system (HVS) have also been developed to correct the uneven
intensity distribution [6]. When the illumination level is very
low, the rods in the retina play a leading role. Thus, the HVS
cannot identify the color very well [15-17]. However, the HVS
has the ability to perceive the colors of a scene almost
independently of the spectral electromagnetic composition
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of uniform illumination, ie., color constancy [6]. The first
contribution in this field was the retinex theory proposed by
Land and McCann [18,19]. Subsequently, other path-based
algorithms have been proposed based upon different path
geometry [20-22]; however, these approaches can be time-
consuming.

In the image processing field, PDE-based models and
variational techniques have been very popular [23-26], and
have also been developed for uneven intensity correction.
According to retinex theory, researchers have decomposed the
image intensity as a product of the illumination and reflec-
tance intensity. With the assumption that the illumination
varies smoothly, Poisson equation type retinex algorithms
have been proposed [27-30]. Based on this assumption, a
variational framework for the retinex was proposed by
Kimmel et al. [31]. In this framework, the illumination
intensity is first estimated by a variational model, and it is
then removed to obtain the reflectance intensity. Recently,
according to the reflectance piecewise constant assumption,
Michael et al. [32] and Li et al. [6] proposed a total variation
(TV) model and a perceptually inspired variational method for
the retinex, respectively. In [32], the relationship and the
fidelity term between the illumination and reflectance are
considered. In [6], both the L2 norm prior and the TV prior are
used; furthermore, the “gray world” (GW) assumption [33]
is also considered. Although these methods did show
improvements, there are still shortcomings with both models.

In this paper, a spatially adaptive retinex variational model
is proposed. Here, the spatial information is used to constrain
the TV regularization strength of the reflectance. In the edge
pixels, a weak regularization strength is enforced to preserve
detail, and in the homogeneous areas, a strong regularization
strength is enforced to eliminate the uneven intensity.
In addition, we take the essentials features of both [6,32], in
that the GW assumption and the fidelity term between the
illumination and reflectance are also considered in the
proposed model. Moreover, the split Bregman optimization
algorithm is employed to solve the proposed model.

Fig. 2. The original standard images. (a) Wuhan in China. (b) Washington DC.
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The remainder of this paper is organized as follows. In
Section 2, we review retinex theory and the perceptually
inspired retinex variational framework. The spatially adaptive
retinex variational model is described in detail in Section 3.
The experiments are presented in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. The retinex framework
2.1. Retinex theory
Recently, more attention has been paid to color percep-

tion techniques based on the HVS [6,34]. Here, we review
the first contribution in this field: retinex theory. The basic

a

model is as follows:
S=L-R (@)

where S is the observed image, L is the uneven or even illu-
mination distribution, and R represents the object reflectance
(0 <R < 1), which is related to the physical characteristics of
the material object. In order to reduce the product expression,
(1) is converted into the logarithmic form, as shown:

s=Il+r ()

where s = log(S), [ = log(L), and r = log(R). For a multiband
image, the retinex generates the reflectance component,
channel by channel [6,18]. Accordingly, all the correction
models in this paper are also carried out channel by
channel.

Fig. 3. The four different cases of degradation: (a) horizontal, (b) vertical, (c) Gaussian-1 and (d) Gaussian-2.
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Fig. 4. The corrected results for the four degradation cases. Top row: The corrected results for the horizontal degradation. Second row: The corrected results
for the vertical degradation. Third row: The corrected results for the Gaussian-1 degradation. Bottom row: The corrected results for the Gaussian-2
degradation.
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Fig. 5. Detailed regions cropped from the original image of Figs. 2(a) and 4. The detailed regions (a), (e), and (i) are cropped from Fig. 2(a). Horizontal: the
detailed regions (b)-(d) are cropped from Fig. 4(a)-(c), respectively. Vertical: the detailed regions (f)-(h) are cropped from Fig. 4(d)-(f), respectively.

Gaussian-1: the detailed regions (j)-(1) are cropped from Fig. 4(g)-(i), respectively. Gaussian-2: the detailed regions (m)-(p) are cropped from Fig. 4(j)—(1),
respectively.
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2.2. The perceptually inspired variational model

Li et al. [6] proposed a perceptually inspired variational
model to directly restore the reflectance and to adjust the
uneven intensity distribution in remote sensing images.
The perceptually inspired variational model can be shown
as follows:

min E(r) = g(nwr—s)u2 +21[1VI|P+ 22[exp(r) — 1/21%)

2 if xe Nonedges
p= ,str<0 3)

1 if xeEdges

where 1; and A, are positive parameters to trade off the
contribution rates of the second and the last terms in the
energy function (3). The constraint r <0 is derived from
the physical characteristics of the reflectance 0 <R < 1.

However, the relationship and the fidelity term between
the illumination and reflectance are not considered. This
may result in the recovered value deviating significantly
from the actual reflectance. Besides, Li et al. [6] divided the
spatial domain into edges and non-edges in the regulariza-
tion term, which belongs to hard segmentation. Thus, we
propose a spatially adaptive retinex variational model,
which is described in the next section.

3. The spatially adaptive retinex variational model
3.1. The proposed model

In [32], Michael et al. assumed that the reflectance
component was piecewise constant, and used the TV prior
as the regularization term. In this paper, the same assump-
tion is adopted.

In addition, it is very important to note that the TV
regularization strength of the reflectance should be asso-
ciated with the spatial information of the reflectance. In
the edge pixels, a weak regularization strength is enforced
to preserve detail, and in the homogeneous area, a strong
regularization strength is enforced to eliminate the uneven
intensity [35-39]. Thus, we construct a spatially adaptive
regularization parameter w according to the gradient infor-
mation. The proposed spatially adaptive retinex variational
model can therefore be shown as follows:

min E(r, 1) = Y[lIs— =11 +al|VI||> +uwl|| Vr|| + Blexp(r) — 0.5]]
Q

st. I>sr<0 “4)

where «, u, and g are positive parameters, which control
each item in the proposed model, and the term Y ol||s—
I—r||? is used for the fidelity term between the illumination
and the reflectance. The constraints are derived from the
physical characteristics of the reflectance 0 <R < 1.

The constructed w is a weight parameter, which con-
trols the TV regularization strength of the reflectance, as
defined in the following:

1

W) = T wreolk

)
where k is a nonnegative parameter, which is set to the
standard deviation of the reflectance’s gradient image, i.e.,
k = std(||Vr|]). Therefore, in the cost function (4), there is

a unique weight w(x) corresponding to each pixel x. The
larger the gradient ||Vr(x)|| is, the smaller the correspond-
ing weight w(x) is, i.e., a weaker regularization strength is
enforced to preserve detail. Thus, according to the differ-
ent gradient information, the regularization strength is
spatially adaptive, which is superior to the hard segmenta-
tion approach in the work of Li et al. [6].

3.2. The split Bregman algorithm for the proposed model

Here, our aim is to minimize the cost function (4). Since
two unknown variables exist in (4), an alternating mini-
mization scheme [32,40-43] is used. The minimization
problem (4) is converted to two subproblems in the
following:

min Ey(r) = Zllls 1= 111” +Alexp(n) - 0.5 +uwIVri]l - (6)

min Ez(h = Xlis— =11 +al [ VIII’] )

The basic procedure for the alternating minimization is
shown in Fig. 1. The next task is to solve the two
subproblems (6) and (7).

The split Bregman algorithm [32,44] is a very efficient
way to solve the minimization subproblem in (6). By
introducing a new variable, the subproblem (6) is con-
verted into the following constrained problem:

an{Z[Hs—Ii — 112+ plexp(r) — 0.5 +,uw\|d||]} st.d=vr
T Q

®)

In order to solve the constrained problem, an L2

penalty term is added to get an unconstrained problem:

n;jjn{zmsfl"fr||2+ﬂ[exp(r)70‘5]2+uwnd||Hudfwfbnzl}
B Q

9)

where 1 is a nonnegative parameter, and b is the Bregman
parameter. The other parameters in (9) are the same as in
(4). The computation procedure is detailed in Algorithm 1.

Table 1
The quantitative evaluation results for the Wuhan image.

Case Method PSNR MSE SSIM GSIM

Horizontal Li's 21.15 499.38 0.9525 0.9916
Michael’s 22.55 361.24 0.9671 0.9935
Proposed 2336  300.31 0.9716 0.9938

Vertical Li's 20.97 519.52 0.9529 0.9916
Michael’s 22.23 389.11 0.9649 0.9936
Proposed 22.95 329.31 0.9722 0.9939

Gaussian-1 Li’s 21.23 489.75 0.9484 0.9925
Michael's 22.88 334.65 0.9651 0.9946
Proposed 23.87 266.90 0.9735 0.9953

Gaussian-2 Li’s 22.62 355.63 0.9621 0.9941
Michael'’s 24.96 207.47 0.9802 0.9968
Proposed 25.97 164.39 09862  0.9977
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Algorithm 1.

Step 1: Initialize u®=0, j=0, and b°=(b),b%)=0,
where “h” and “v” stand for the horizontal axis and
the vertical axis, respectively. .

Step 2: Firstly, given 1/ and I/, update @ *' as follows:

TR AW
& _shrmkage(Vu’+b’, 2/1) (10)
where shrinkage is the soft shrinkage operator, defined as

shrinkage(z,0) = ——

izl - max {||z|]| —6, 0} (11)

Secondly, update /+! by minimizing the differentiable
optimization problem in the following:
min {Z[Hsfl'?ullz+/3[ex1:v(u)70.5]2 FAldT Vufbfllzl}
Q
(12)

which can be solved by the Fourier transform, the Gauss—
Seidel method, etc. Here, we use the Fourier transform to
solve it by

g1 o1 JFG=I)—p(F(exp) - (exp)—0.5)) +1G
T+ AF(VF (V) +F(V)F(Vy)

(13)
Table 2
The quantitative evaluation results for the Washington DC image.
Case Method PSNR MSE SSIM GSIM
Horizontal Li's 23.36 300.28 0.9613 0.9920

Michael’s 2441 235.78 0.9645 0.9932
Proposed 25.28 192.78  0.9739 0.9952

Vertical Li's 24.84 21317 0.9696 0.9942
Michael’s 25.72 174.41 0.9734 0.9953
Proposed 26.31 15224 09796  0.9962

Gaussian-1 Li's 2318 312.88 0.9691 0.9960
Michael’s 24.29 24237 0.9721 0.9963
Proposed 25.14 199.15 0.9760 0.9971

Gaussian-2 Li's 23.76 273.27 0.9560 0.9914
Michael’s 25.26 193.69 0.9671 0.9937
Proposed 26.07 160.83  0.9738 0.9954

Michael’s

where F and F~! are the Fourier transformation and the
inverse Fourier transformation, respectively. G is denoted
as

G=F*(Vp)F(d," ' —bl)+F*(V,)F(d," ' —b)) (14)
Thirdly, update as follows:

Prl=p (@ —viith (15)
Step 3: If (Jud+1 —wd||/||W 1)) < ey, T2 =i+ 1; other-
wise, go back to Step 2.

Since the subproblem (7) is a differentiable optimization
problem, it can also be solved by the Fourier transform, the
Gauss-Seidel method, etc. The solution is shown in the
following by Fourier transform:

[i+1/2 _ 71< F(s—ri*1) )
1+ a(F*(Vp)F(Vy)+F*(Vy)F(Vy))

Finally, we give the overall procedure for solving the
proposed model in the following:

(16)

(1) Given the input image s, initialize I°=s. For i=0,
1.2,

(2) Given I', solve the subproblem (6) to get rit1/2 by
using Algorithm 1. Then, update ri*+! by ri+! = min
{ri+1/2,0}.

Given ri*1, solve the subproblem (7) to get I'"'/* by
(16). Then, update ['*! by I''! = max {I'*'/2,s}.

(3) Go back to (2) until (||ri+!—ri||/||r*1|]) <e and

(||l'+1 —l’H/Hl’”ll) < ¢ are satisfied.

By the alternating minimization scheme and the split
Bregman algorithm, the minimization problem (4) is
solved. Thus, the reflectance component r is recovered in
the logarithmic domain. It is then converted to the
reflectance R in the spatial domain.

4. Experimental results and discussion

In this section, extensive simulated experiments and
real-life experiments are presented to verify the effective-
ness of the proposed model. In this paper, we compare
the results of the proposed model with the models of

Propose

‘e

Fig. 6. The corrected results for the horizontal degradation case.



X. Lan et al. / Signal Processing 101 (2014) 19-34

26

Proposed

S

3
<
_=
2
=

Original

Fig. 7. Detailed regions cropped from the original image of Figs. 2(b) and 6.
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Michael’s model [32] and Li’'s model [6]. In the simulated
experiments, four common quantity evaluation indexes
(PSNR [6,45], MSE [6,46], SSIM [47], GSIM [48]) based on
the reference image are used to evaluate the recovery
results. Since clear images in real-life experiments are hard
to obtain, the above quantity evaluation indexes based on
a reference are invalid. Thus, a non-reference image
evaluation indicator, the Q-metric [38,49,50], is selected
as the objective evaluation for the real-life experiments,
which is defined as

S1—52
S1+S2

Q=5 a7

where s; and s, are the singular values of the gradient
matrix Gr over an N x N patch (window) w;. The gradient
matrix is defined as

Gr=|Va(@ Vv@ |, qew; (18)

where g denotes the gth pixel in the patch (window) w;.
In all the experiments, the regularization parameter and

a
: |-=— PSNR(dB)
234

23.2-:
23.0: . ]
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2262
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220 +

218 o
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GSIM

the other parameters are heuristically adjusted until the
best result is obtained.

4.1. Simulated experiments

A Landsat TM image from Wuhan in China was chosen
as the standard image. A 200 x 200 subset from the
standard image was selected for the subsequent simulated
experiments, as shown in Fig. 2(a). Four different cases of
degradation were applied, comprising horizontal, vertical,
Gaussian-1 and Gaussian-2 degradation, as shown in Fig. 3
(a)-(d), respectively. The parameters were set as a=4,
4,2,3, p=0.06,0.06,0.03,0.01, = 0.04,0.03,0.001,0.001,
and 1=0.02,0.019,0.015,0.015 for the four different cases
of degradation, respectively.

For the four degradation cases, Fig. 4 shows the
corrected results by Michael’s model [32], Li’'s model [6],
and the proposed model. It is shown that the corrected
result by the proposed method is close to the original
image. In order to better display the comparative visual
results, detailed regions cropped from the original image
Figs. 2(a) and 4 are depicted in Fig. 5. It is found that
the proposed method can effectively preserve edges and

460 -
] f-=— MSE]
420

380 +
360 A

340

280 T g T v T T T v T T
1 2 3 4 5 (5]

Parameter(alpha)

0.9940 - |~m—GsIM|
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08915 o

T T T T T T T 4 T T

1 2 3 4 5 &

Parameter(alpha)

Fig. 9. Quantitative assessment of different values of parameter « for the horizontal degradation of the Wuhan image: (a) PSNR, (b) MSE, (c) SSIM, and

(d) GSIM.
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correct the intensity so that it is close to the original
standard intensity. The reason for this is as follows. Firstly,
the spatially adaptive regularization is adopted in the
proposed method. The TV regularization strength of
the reflectance varies with the spatial information in the
process, and thus both details and edges are preserved.
Secondly, the GW is used to control the global intensity
dispersion. Thirdly, the relationship and the fidelity term
between the illumination and reflectance are considered,
which ensures that the intensity of the corrected results is
close to the original standard intensity. In addition, it can
be seen that the visual effect in Fig. 4 is consistent with the
quantitative evaluation results in Table 1. That is to say, the
proposed method outperforms the other comparative
methods, based on both the visual effect and the quanti-
tative assessment.

In order to further test the effectiveness of the pro-
posed method, another simulated data set was applied.
The second original image was chosen from a Washington
DC data set acquired by the HYDICE sensor. A 307 x 280
subset and one band from the original standard image
were selected for the subsequent simulated experiments,
as shown in Fig. 1(b). Four different cases of degradation

a
[~=— PSNR(dB)

248 o

PSNR(dB)

247 A

245

T T T T T T T T T T T

1 2 3 4 5 6

Parameter(alpha)

[~m—ssIM|
0974 . i
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0.871 1

SsSiM

0970 4
0.969 -

ogee 1 o

0.967 T T T T T T
1 2 3 4 5 1]

Parameter(alpha)

MSE

GSIM

were applied, comprising horizontal, vertical, Gaussian-1
and Guassian-2 degradation. The parameters were set
as a=4,4,3,4, $=0.02,0.02,0.03,0.02, »=0.2,0.2,0.09,
0.07, and 4 =0.022,0.019,0.03,0.03 for the four different
cases of degradation, respectively.

A quantitative comparison of the results using the four
common quantity evaluation indexes is shown in Table 2.
From the comparison of the results, it can be clearly seen
that the proposed method performs better than the other
methods. Moreover, a visual comparison of the results is
also given. To save space, only the horizontal case of
degradation is displayed in Fig. 6. To clearly display the
comparative visual results, detailed regions cropped from
the original image of Figs. 2(b) and 6 are depicted in Fig. 7.

Table 3
The quantitative evaluation results for the three real-life experiments.

Image Li's Michael'’s Proposed

Data 1
Data 2
Data 3

63.92
60.11
14.65

66.93
61.12
16.34

68.25
62.98
17.72

[-m—Msg

210
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Fig. 10. Quantitative assessment of different values of parameter « for the horizontal degradation of the Washington DC image: (a) PSNR, (b) MSE, (c) SSIM,

and (d) GSIM.
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It can again be seen that the proposed method outper-
forms the other methods, which is consistent with the
quantitative evaluation results in Table 2. In summary, the
proposed method can efficiently adjust the uneven inten-
sity distribution, preserve the details, and restore the valid
information in remote sensing images.

To test the spectral fidelity of the proposed method, it
was applied to process multiband images. The three
selected bands are shown in Fig. 8. The horizontal case
of degradation is shown in Fig. 8(a). To evaluate the
spectral quality of the corrected images, the spectral angle

(SA) is selected, which is defined as

X *Y
0(x)= cos ~! {ﬁ] (19)
X IFNY ]
— —
where X and Y are the spectral vector in each pixel x in
the original image and the corrected image, respectively.
The mean of the spectral angle (MSA) is used to evaluate
the corrected results. A lower MSA value can reflect
a better spectral fidelity. From the results in Fig. 8, it can
be seen that the proposed method has the lowest MSA

Fig. 11. Results for the first real image: (a) original aerial image, (b) Li’'s method, (c) Michael’s method and (d) the proposed method.
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value, which demonstrates that the proposed method is experiments, each parameter is varied within a certain
better at preserving the spectral fidelity than the other range. Here, we give an example to study the performance
methods. with different values of parameter «. In Fig. 9, the perfor-

Finally, we intend to discuss how the performance is mance curve is shown with different values of parameter «
influenced by the parameters. Through a series of different for the Wuhan image. In Fig. 10, the performance curve

a ginal
. w,

u

Proposed

Fig. 12. Detailed regions (a)-(d) cropped from Fig. 11(a)—(d).
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Fig. 13. Histograms of Fig. 11(a)-(d).
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is shown with different values of parameter o« for the
Washington DC image. In both cases, it can be seen that
the optimal performance is acquired at a certain point on
the curve.

4.2. Real-life experiments

In order to verify the performance of the proposed
method with real data, the proposed method was tested
on three real aerial remote sensing images. A quantitative
comparison of the results using a non-reference image
evaluation indicator, the Q-metric, is shown in Table 3.
Here, it is again found that the proposed method outper-
forms the other methods. The comparison details are
shown in the following.

The first real image, with a size of 1000x 1000, is shown
in Fig. 11(a). Due to the uneven distribution of the ambient
lighting, the luminance of the buildings in the lower-right
corner is darker than that of the buildings in the top-left
corner. This results in color distortion and the details
being lost.

For the first real image, the parameters were set as
a=2, #=0.02, x=0.1, and 41=0.01. Fig. 11(b)-(d) show
the corrected results by Li's model [32], Michael’s model
[6], and the proposed model, respectively. The results
demonstrate that the three methods can all adjust the
uneven intensity distribution in the original image, but
some regions in Fig. 11(b) are more exposed than the ones

in Fig. 11(c) and (d). In order to illustrate this point,
detailed regions cropped from Fig. 11 are shown in
Fig. 12. The result in Fig. 12(b) is brighter than the result
in Fig. 12(c) and (d). Objectively, from the histograms
shown in Fig. 13, it can be seen that Fig. 13(b)-(d) are flatter
than Fig. 13(a), but a leap exists in the tail of Fig. 13(b), which
results in the overexposed phenomenon in Fig. 11(b),
whereas both Fig. 13(c) and (d) have a high similarity to
the Gaussian distribution. However, the curve in Fig. 13(d) is
much smoother and much more similar to the Gaussian
distribution than Fig. 13(c). This is attributed to the spatially
adaptive regularization in the proposed model, which is used
to constrain the TV regularization strength of the reflectance,
according to the spatial information. In addition, we can see
that the proposed method produces the highest Q-metric
values, as shown in Table 3, which is consistent with the
visual results.

The second real image, with a size of 950 x 600, is
shown in Fig. 14(a). The parameters were set as a=3,
p=0.03, x=0.4, and 1= 0.01. The corrected results of the
Li’s method, Michael’s method, and the proposed method
are shown in Fig. 14(b)-(d), respectively. Detailed regions
cropped from Fig. 14 are shown in Fig. 15.

The third real image, with a size of 600 x 400, is shown
in Fig. 16(a). The parameters were set as a=2, = 0.04,
u=0.3, and 1=0.025. The corrected results and their
detailed regions are shown in Figs. 16 and 17, respectively.
The quantitative evaluation results using the Q-metric

7
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Fig. 14. Results for the second real image. (a) Original aerial image. (b) Li’'s method. (c) Michael’s method. (d) the proposed method.
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index for these three real-life experiments are shown in
Table 3. It can again be seen that the proposed method
outperforms the other methods and produces the highest
Q-metric values. From the detailed regions in Figs. 15 and 17,
it can also be seen that the proposed method preserves the
color more effectively.

5. Conclusion

This paper presents a spatially adaptive retinex varia-
tional model for uneven intensity correction. In this model,
the spatial information is used to constrain the TV reg-
ularization strength of the reflectance, which effectively
preserves the details. The relationship and the fidelity
term between the illumination and reflectance are also
considered. Moreover, the split Bregman optimization
algorithm is employed to solve the proposed model.
Extensive experiments were undertaken with both simu-
lated data and real-life data. In summary, the proposed
method can efficiently adjust the uneven intensity dis-
tribution in remote sensing images, based on both the
visual effect and quantitative assessment. In this paper, we
are concerned with the adjustment of the uneven intensity
distribution in aerial remote sensing images. For the
spectral degradation issue, especially in hyperspectral
images, we will study the spectral information in our
future work.
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