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Abstract— Synthetic aperture radar (SAR) images are inher-
ently affected by speckle noise, for which deep learning-based
methods have shown good potential. However, the deep learning-
based methods proposed until now directly map low-quality
images to high-quality images, and they are unable to char-
acterize the priors for all the kinds of speckle images. The
variational method is a classic model optimization approach that
establishes the relationship between the clean and noisy images
from the perspective of a probability distribution. Therefore,
in this article, we propose the recursive deep convolutional neural
network (CNN) prior model for SAR image despeckling (SAR-
RDCP). First, the data-fitting term and regularization term of
the SAR variational model are decoupled into two subproblems,
i.e., a data-fitting block and a deep CNN prior block. The gradient
descent algorithm is then used to solve the data-fitting block,
and a predenoising residual channel attention network based
on dilated convolution is used for the deep CNN prior block,
which combines an end-to-end iterative optimization training.
In the experiments undertaken in this study, the proposed model
was compared with several state-of-the-art despeckling methods,
obtaining better results in both the quantitative and qualitative
evaluations.

Index Terms— Convolutional neural network (CNN), despeck-
ling gain (DG) loss, residual channel attention, synthetic aperture
radar (SAR) image despeckling, variation.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active remote
sensing system, which has the advantages of all day and

night and all-weather ability. It plays an important role in the
earth observation field and provides source data for terrain
classification, target detection, physical parameter extraction,
and scene interpretation [1], [2]. Nevertheless, because of
the coherent interference of radar waves reflected from many
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basic scatterers, the SAR images are inherently affected by
speckle noise [3]. This has a great impact on the subsequent
application accuracy. Therefore, despeckling for SAR images
is essential to improve the quality before the application of
SAR images. In the past few decades, many researchers have
attempted to solve this ill-posed inverse problem, and many
different methods have been proposed.

Generally, the existing despeckling methods fall into three
broad categories: the filtering methods, the variational meth-
ods, and the deep learning-based methods. The early filtering
works on despeckling were Bayesian methods in the spatial
domain. One of the classical strategies was minimizing the
root-mean-square error (MSE) between the real and estimated
values based on the local statistics properties, such as the
Lee filter [4], Kuan filter [5], Frost filter [6], and so on. For
Bayesian methods in the transform domain, most filters exploit
the discrete wavelet transform and have superior performance
over conventional spatial filters, which are represented by
homomorphic or nonhomomorphic filtering in the wavelet
domain [7]–[9]. However, recently, the most popular meth-
ods do not follow a Bayesian method [10]–[17]. The sigma
filter [8] is a conceptually simple noise smoothing algorithm,
which averages the selected similar pixels in the local window
with the center pixel according to the sigma probability of the
speckle probability density function. The nonlocal filter is one
of the most promising algorithms, which further demonstrates
the importance of similar pixel selection [11]–[13]. Compared
to the sigma filter, it defined the similar pixels and weights
by measuring the similarity between a local patch centered
at the reference pixel and the other local patch centered at a
given nonlocal neighborhood pixel, such as the probabilistic
patch-based filter (PPB) [11] and SAR block-matching 3-D
(SAR-BM3D) [13] are excellent methods.

The variational method is another popular denoising
method [18]–[20]. The difference with the filtering method
is that it establishes and solves the energy functional between
the real value and the observed value to solve the ill-posed
inverse problem. A detailed introduction of the methods
is given by Aubert and Aujol [18] (the AA model), Shi
and Osher [19] (the SO model), and Ma et al. [20] (the
adaptive nonlocal functional (ANLF) model). These varia-
tional methods have a high degree of stability and flexibility
by adjusting the parameters of different images. However,
the despeckling effects of the AA, SO, and ANLF mod-
els are different, mainly because of their different priors.
The AA and SO models used a local total variation (TV)
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prior to the original or logarithmically transformed domain.
The local TV prior assumes that the image is piecewise
smooth, which leads to the staircase effect and oversmoothing
in the restored image. The ANLF model introduces a nonlocal
self-similarity prior, which achieves a certain balance between
the original information maintenance and smoothness. How-
ever, since the existing SAR variational despeckling priors
are estimated by a traditional approach, they are not accurate
enough to describe the nonlinear characteristics of the SAR
speckle, resulting in detailed loss. Therefore, to obtain better
a priori knowledge, the deep mining of the relationship
between the clean image and the contaminated SAR image
is potential and promising.

With the in-depth study of deep learning in the field
of image restoration, the deep learning-based methods
for SAR image despeckling are also emerging. First,
Chierchia et al. [21] proposed a homomorphic transform
method, using logarithmic and exponential operations, to trans-
form a multiplicative noise into an additive noise, and used
a 17-layer fully convolutional residual network to learn the
data characteristics (SAR-CNN). Wang et al. [22] proposed
to use a componentwise division-residual layer with skip
connection to estimate the denoised image in the network
(IDCNN), which uses the combination of European loss and
TV loss for an end-to-end training; and Zhang et al. [23] used
a seven-layer lightweight network based on a dilated residual
network (DRN) for the speckle removal of SAR images.
The multilayer perceptron neural network [24] and a CNN
combined with guided filtering [25] have also been proposed.
These methods have a strong nonlinear fitting ability and fast
speed. Nevertheless, the data-driven deep learning methods
have difficulty in fully simulating all the noise conditions,
which limits the ability of the noise suppression.

To address the shortcomings of the deep learning-based
methods, a model-driven framework, constructing the relation-
ship between the noisy and clean images from the perspective
of a probability distribution, is one possibility. Thus, it would
be interesting to investigate the integration of data-driven and
model-driven methods, to leverage their respective merits and
obtain a more stable, flexible, and efficient method. There-
fore, in this article, the recursive deep CNN prior model for
SAR image despeckling (SAR-RDCP) is proposed. The main
contributions are summarized as follows:

1) A novel SAR image despeckling model employing an
RDCP is proposed. The whole model can be divided into
two recursive subblocks: the data-fitting (fidelity) block
and the deep CNN prior block, which perform joint end-
to-end training with a novel despeckling gain (DG) loss.
The model adopts a joint iterative optimization, which
is equivalent to a recursive neural network. We also
analyze and summarize the optimal strategy for real data
with different noise levels.

2) For the deep CNN prior block, a predenoising residual
channel attention network (PRCA) based on dilated con-
volution is used. The before–after symmetric multiscale
dilated convolutional unit is used to extract and recon-
struct the multiscale information. In addition, the feature
denoising block (FDB) and residual channel attention

block (RCAB) are added to enhance the accuracy of
information extraction.

The rest of this article is organized as follows. Section II
introduces the AA variational model for SAR images and
provides an analysis of the deep learning prior. In Section III,
the proposed model and the related details are presented. Then,
in Section IV, we describe the experiments conducted on both
simulated and real SAR images to validate the performance
of the proposed method. Finally, our conclusion is provided
in Section V.

II. RELATED WORK

A. AA Variational Model for SAR Images

The SAR data degradation model can be described as
f = uv, where f and u are the observed image and noise-free
image, respectively, and v is the multiplicative noise, which
follows a gamma law with mean = 1. Its density function [18]
is defined as

P(v) = L L

�(L)
vL−1e−Lv1{v≥0} (1)

where L denotes the number of looks.
In order to obtain the optimal value of u, according to

the maximum a posteriori (MAP) estimator, P(u| f ) needs
to be maximized. Based on Bayes’ rule, we have P(u| f ) =
P( f |u)P(u)/P( f ). Maximizing P(u| f ) is equivalent to min-
imizing the log-likelihood, which can be written as

u = arg min{− log P(u| f )}u
= arg min{− log P( f |u)− log P(u)} (2)

where log P( f |u) and log P(u) denote the data fidelity and
prior terms, respectively. P(u) is the a priori knowledge of u,
and P( f |u) can be formulated as [18]

P( f |u) = LL

uL�(L)
f Le−

L f
u . (3)

Therefore, (2) can be rewritten as

u = arg min

{
λ

(
log u + f

u

)
+�(u)

}
(4)

where λ is the regularization parameter, (log u+ ( f/u)) is the
fidelity item, and �(u) is the prior term.

B. Analysis of the Deep CNN Prior

The optimization of deep learning is characterized by a
strong nonlinear fitting ability but has an excessive reliance
on the data. The variational method has a strong mathematical
basis and can be applied to different kinds of situations
by adjusting the parameters and different priors. The prior
term of the variational method plays a key role in image
restoration performance. Embedding a deep CNN as a prior
to the variational method has been used to tackle some
inverse problems. For example, in natural image restoration,
a number of successful models have been proposed. In [26],
the deep learning prior was first plugged into the optimization
procedure of a Gaussian white noise variational model. The
variable splitting technique and half-quadratic splitting (HQS)
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Fig. 1. Overall framework of the proposed SAR-RDCP method.

method are then usually adopted to decouple the optimization
model. In this model, a pretrained deep learning model is
used, which can then be plugged into different image restora-
tion tasks. For the super-resolution and image enhancement
tasks [27]–[29], Dong et al. [27] proposed a feed-forward
recursive deep neural network, wherein the denoisers and the
back-projection modules can be jointly optimized. For optical
remote sensing image fusion, Shen et al. [30] combined a
deep neural network with the variational model, wherein the
difference is that the network outputs the gradient informa-
tion of the high-resolution images. A unidirectional variation
model and a deep CNN denoiser prior model have also been
integrated for simultaneous destriping and denoising [31]. All
the above-mentioned methods have shown that deep CNN
priors are suitable for different image restoration tasks and
have obtained positive results with optical images [26].

Recently, some deep CNN methods have played a certain
role in SAR despeckling [21]–[25]. The common idea behind
these methods is to directly train an end-to-end network,
wherein the main difference lies in the network structure.
Meanwhile, it also proves the validity of deep CNN in SAR
despeckling. Therefore, based on the deep CNN idea with
model-driven thought, it is reasonable and possible to apply
a deep CNN prior to SAR image despeckling. In this article,
an RDCP for SAR despeckling is proposed.

III. METHODOLOGY

A. Framework of SAR-RDCP

In SAR despeckling, because of the limitations of the prior
term in the traditional variational methods and the training data
in the deep learning methods, neither of these two approaches
can maintain a good balance between detail preservation and
noise reduction. Differing from the deep learning methods that
completely rely on the data and the traditional variational
methods that need to achieve a good effect by adjusting
parameters, we propose SAR-RDCP. The proposed method
takes into account the distribution characteristics of the SAR
speckle to tap into the potential of the deep CNN prior. The
overall framework of the proposed method is shown in Fig. 1.

SAR-RDCP learns the nonlinear end-to-end mapping between
the noisy data and the label to jointly optimize the data-fitting
block and the deep CNN prior. Details of the joint optimization
are provided below.

The deep CNN prior needs to be plugged into the variational
model shown in (4). The first step here is to decouple the
fidelity term and regularization term of (4), so that the auxiliary
variable x is introduced, and (4) can be rewritten as

u = arg min

{
λ

(
log u + f

u

)
+�(x)

}
, s.t. x = u (5)

where �(x) is the deep CNN prior term. Then, in order
to solve (5), a penalty term is introduced to transform the
constrained optimization problem into a nonconstrained opti-
mization problem. The HQS method is used to alternately
solve the two variables, which are given by

(u, x)=arg min

{
λ

(
log u + f

u

)
+ γ ‖u − x‖2

2+�(x)

}
(6)⎧⎪⎨

⎪⎩
ût = arg min

{
λ

(
log u + f

u

)
+ γ

2

∥∥u − x̂ t−1
∥∥2

2

}

x̂ t = arg min
{γ

2

∥∥ût − x
∥∥2

2 +�(x)
} (7)

where γ is the penalty coefficient and t is the iteration number.
Note that (7) alternates the minimization problems with

respect to the data-fitting term (u) and deep CNN prior
term (x). To solve the iterative optimization problem, a recur-
sive network structure is used. The data-fitting term and
deep CNN prior term constitute the two recursive units of
the proposed method. Because the AA model is developed
for the SAR intensity image, for the proposed SAR-RDCP
model, the intensity image is used in the data-fitting term.
However, the amplitude image is used in the deep CNN term
with a PRCA because the nonlinear relationship is better fitted
by using the amplitude image owing to the smaller difference
of the clean image and the speckled image, which makes
it easier to train. In addition, the speckle strength of the
amplitude image is lower than the intensity image on the visual
effects. Therefore, it should be converted into the following
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Fig. 2. Architecture of the proposed deep residual gradient CNN network.

equation:⎧⎪⎪⎨
⎪⎪⎩

ût = arg min

{
λ

(
log u + f

u

)
+ γ

2

∥∥∥u − (x̂ t−1
A

)2
∥∥∥2

2

}
ût

A = sqrt
(
ût
)

x̂ t
A = PRCA

(
ût

A

) (8)

where ûA and x̂A represent the format of amplitude and are
the sqrt of û and x̂ .

The recursive structure is unfolded as shown in Fig. 1 and
Algorithm 1 shows the implementation steps, wherein the
input of each recursion is the previous output. The reason
for using a recursive structure is that the number of network
parameters can be reduced while solving the problem of
iterative optimization. Differing from [27], the positions of
the two recursive units can be alternated. In the SAR-RDCP
framework, the data-fitting block is the input unit and the deep
CNN prior is the output unit. Then, for the subproblem of the
data-fitting block (u), the traditional method is used, while for
the subproblem of the deep CNN prior term (xA), the PRCA
is used to fit its nonlinear relationship, as shown in Fig. 2. The
specific solutions for the two parts are given as follows:

B. Data-Fitting Block Subproblem

For the data-fitting block, we focus on the first subproblem
of (7). In order to simplify the subproblem, parameters λ and
γ are unified as one parameter η

ût = arg min

{
η

(
log u + f

u

)
+ 1

2

∥∥∥u − (x̂ t−1
A

)2
∥∥∥2

2

}
. (9)

For this part, the simple and efficient method of gradient
descent is used to solve the subproblem, which can then be
converted into the following equation:

ût= ût−1−δ

(
η

(
1

ût−1
− f(

ût−1
)2

)
+
(

ût−1−(x̂ t−1
A

)2
))

(10)

where δ is the step length of the updating. Because it is embed-
ded in the whole framework as a training block, the parameters
of this block can be adjusted with the training of the network.
In this article, η is set as a trainable parameter and δ as a fixed
value.

C. PRCA Block Subproblem

For the deep CNN prior block, the second subproblem of (8)
can be regarded as

x t+1
A = PRCA

(
ut+1

A

)
(11)

where PRCA refers to the predenoising residual channel
attention network based on dilated convolution. The overall

Algorithm 1 SAR Image Despeckling Employing a Recursive
Deep CNN Prior (SAR-RDCP)

Train
Input: noisy amplitude image f A

clean amplitude image u A

Initialization:

(1) Set parameters T , δ, η the parameters of PRCA

(2) Initialize û as û0 = f 2
A , x̂ A as x̂0

A = f A

(3) Set û A = sqr t (û), f = f 2
A

for t form 1 to T

ût ← ût−1 − δ(η(
1

ût−1
− f

(ût−1)2
)+ (ût − (x̂ t−1

A )2))

ût
A ← sqr t (ût)

x̂ t
A ← P RC A(ût

A)

return x̂ A ← x̂ T
A

loss ← DG(x̂ A, u A, fA)

loss.back() update the parameters of PRCA and η

Output: the SAR-RDCP model

Test
Input: test amplitude image f A

Initialization: û as û0 = f 2
A , x̂ A as x̂0

A = f A

for t form 1 to T

ût ← ût−1 − δ(η(
1

ût−1
− f

(ût−1)2
)+ (ût − (x̂ t−1

A )2))

ût
A ← sqr t (ût)

x̂ t
A ← P RC A(ût

A)

return x̂ A ← x̂ T
A

Output: x̂ A

architecture of the PRCA is shown in Fig. 2. It consists of nine
layers with four different blocks, i.e., “dilated convolution +
rectified linear unit (ReLU)” in the first layers, “FDB” and
“RCAB” in the middle layers, and “dilated convolution +
ReLU” and “dilated convolution” in the last layers. A residual
strategy and skip connection are also adopted, which can
effectively help the network to converge faster and perform
better in the training. The number of feature maps in each
middle layer is set to 64. The detailed configuration of the
PRCA block is provided in Table I.

1) Dilated Convolutional Layers: It is well known that con-
textual information facilitates the reconstruction of a degraded
image. In addition, dilated convolution is an effective way to
improve the receptive field size and capture fuller contextual
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TABLE I

DETAILED CONFIGURATION OF THE PRCA BLOCK

information at the same parameter size. In PRCA, the sym-
metric dilated convolutional structure is used in the first
and last three layers, as shown in Fig. 2. The first part is
composed of three layers of dilated convolutions with ReLU
nonlinear activation, and their dilation factors are 1, 2, and 3,
respectively. It generates 64-channel feature maps with a filter
size of 3 × 3. The dilated factors of the convolutional layers
of the last part are 3, 2, and 1, respectively, and the ReLU
nonlinearity is only used in the first two layers. The output
image is reconstructed from the 64-channel feature maps with
the 3× 3 kernel.

2) Feature Denoising Block: The FDB can effectively
remove the unnecessary “noise” in a feature map [32]. For
noisy images, the noise can also be regarded as adding a
kind of perturbation, which will also have an impact on the
feature extraction, thus, generating feature maps with noise.
Therefore, the FDB is added into the middle of the PRCA
to correct the feature maps. The FDB wraps the denoising
operation with a 1 × 1 convolution and skip connection,
as shown in Fig. 3(a). For the denoising operation, the mean
filter is used. Theoretically, the mean filter can smooth out
details while removing noise, but it was proven in [32] that it
can also improve the adversarial robustness, so the problem of
the loss of some small details is not considered here. Moreover,
the mean filter is simple and easy to implement (average
pooling with a stride of 1) in the network, while not increasing
the parameters and allowing fast training.

3) Residual Channel Attention Block: Images usually con-
tain both high-frequency and low-frequency information.
However, it is more difficult to reconstruct and recover the
high-frequency information. In general, CNNs treat different
information equally and lack some flexibility, which leads to
them paying less attention to the high-frequency information.
Recently, the attention mechanism has been used in image
restoration, the key point of which is to distinguish between
the different channel-wise and spatial-wise features [33]–[36].
In the process of SAR image despeckling, the recovery of
high-frequency information, such as details, is one of the key
points. In the proposed method, the RCAB [32] is used in the
PRCA block, as shown in Fig. 3(b), for the details, which
allows the network to attach importance to high-frequency
channel-wise features. The RCAB is composed of a channel

Fig. 3. (a) FDB. (b) RCAB.

attention module and a residual block. If we let Fl−1 and Fl

be the input and output feature maps of the RCAB, then Fl

can be formulated as

Fl = Fl−1 + CA(X) · X (12)

where CA denotes the channel attention function. In channel
attention, the first thing to do is to transform the channel-
wise global spatial information into the channel description
factor by using global average pooling, and then use a gating
mechanism (sigmoid gating) to capture the channel’s statisti-
cal information from the aggregated information, and finally
rescale the input features. X is mainly obtained by two stacked
convolutional layers

X = W 2
l · δ

(
W 1

l · Fl−1 + b1
)+ b2 (13)

where W and b are the weight and bias of the convolution,
and δ is the ReLU activation function.

D. Overall Network Training

Because of the recursive network structure, the PRCA does
not need to be pretrained. The whole neural network training
procedure, as shown in Fig. 1, is end-to-end. Therefore, all the
data-fitting blocks use the same network parameters, and the
same applies to the PRCA. In the presence of a reference
image, the obvious measure of choice for noise rejection
is the MSE. However, in order to meet the multiplicative
characteristics of speckle, a logarithmic scale by means of
the related DG measure is used to improve readability [38].
The DG measure is defined as

DG = 10 log10

(
MSE(u, f )

MSE(u, û)

)
(14)

where u, û, and f are, respectively, the clean image, the fil-
tered image, and the speckled image. In order to make the DG
indicator more consistent with the convergence characteristic
of the loss function, the DG loss function is formulated as

Loss = arg min

(∑N
i ‖Net( fi ; η, {w, b})− ui‖2

2∑N
i=1 ‖ fi − ui‖2

2

)
. (15)

DG loss is equivalent to dividing MSE loss by a fixed value.
Usually, data are normalized before the network training.
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As a result, the loss value is small and the convergence
is slow. However, DG loss can solve the problem. In
Section IV-C2, we discuss the practicality of DG loss.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, to verify the performance of the proposed
SAR-RDCP method, the results obtained with both real
and simulated SAR images are described. The proposed
method was compared with three traditional methods and
one deep learning method: PPB [11], patch ordering-based
SAR image despeckling via transform-domain filtering
(SAR-POTDF) [14], SAR-BM3D [12], and the DRN for
SAR despeckling (SAR-DRN, training with the same data set
as the proposed SAR-RDCP method) [23]. For the simulated
experiments, the following classic evaluation indices were
used: the peak signal-to-noise ratio (PSNR, as high as
possible) and the structural similarity index (SSIM, as closer
to 1 as possible). PSNR and SSIM are defined as follows:

PSNR(x, y) = 10 log10
2k−1

MSE(x, y)
(16)

SSIM(x, y) =
(
2μxμy + c1

)(
2σxy + c2

)(
μ2

x + μ2
y + c1

)(
σ 2

x + σ 2
y + c2

) (17)

where x and y are, respectively, the despeckled image and the
reference image; μx and μy represent the mean of x and y;
σx and σy represent the variance of x and y; σxy is the
covariance between x and y; and c1 and c2 are constants. The
equivalent number of looks (ENL) and the edge-preservation
degree based on the ratio of average (EPD-ROA) are listed
for comparison purposes in the real-data experiments [1].
The larger the ENL, the better the quality of the speckle
reduction. The ENL for SAR amplitude images is defined as

ENL(A) = 0.52272 · x̄2

var(x)
(18)

where A stands for the amplitude image, and x̄ and var(x),
respectively, represent the image mean and variance in a
homogeneous region. EPD-ROA should be as close to 1 as
possible and is defined as

EPD-ROA =
∑m

i |ID1(i)/ID2(i)|∑m
i |IO1(i)/IO2(i)| (19)

where i is the index set of the SAR image; ID1(i) and ID2(i),
respectively, represent the adjacent pixel values in the
horizontal and vertical directions of the despeckled image;
and IO1(i) and IO2(i) represent the adjacent pixel values
in the horizontal and vertical directions of the noisy image,
respectively. EPD-ROA clearly indicates the edges for
multiplicative speckle noise.

1) Parameter Settings and Network Training: The regular-
ization parameter η and the step length δ were initialized
as 0.55 and 0.001, respectively. The iteration number T was
fixed as 6. The Adam solver [39] was adopted as the gradient
descent optimization method, with momentum β1 = 0.9,
momentum β2 = 0.999, and ε = 10−8, where the learning
rate γ was initialized to 0.001. The proposed network was
trained for 20 epochs with a batch size of 64, and after

TABLE II

AVERAGE QUANTITATIVE EVALUATION RESULTS FOR THE TEST DATA SET

five epochs, the learning rate was reduced by being multiplied
by a descending factor of gamma = 0.1. We implemented the
different models in the PyTorch framework and trained the
models with an NVIDIA Quadro P4000 GPU.

2) Training and Test Data Sets: Because it is difficult to
acquire real noiseless SAR images, we used the UC Merced
land-use data set as the training data. In this data set, some
images were uniformly selected from each scene to form a
400-image training data set [40], and the data set was evenly
divided into five parts of 80 images each, simulating the SAR
speckled amplitude images with equivalent look numbers (L)
of 1, 2, 4, 8, and 10, which were used as input for the network
training. The training data were then cut into patch sizes of
40 × 40, with the stride equal to 10, and the rotation and
turnover operations were randomly carried out to expand the
data. The test data set was divided into two parts: simulated
data and real data. For the simulated test data set, we randomly
selected 21 images of different scenes from the UC Merced
land-use data set, which were not in the training data set,
and then five different levels of speckle (L = 1, 2, 4, 8,
and 10) were added, respectively. For the real test data set,
we selected the Flevoland and Death Valley four-look Airborne
SAR (AIRSAR) amplitude images, cropped to 500× 500.

A. Simulated Data Experiments

For the simulated SAR image despeckling experiments,
in order to allow a fair and comprehensive comparison,
a combination of quantitative and visual comparisons is used
to analyze the effects of the different methods.

Table II lists the average quantitative evaluation results for
the test data set, with the best performance marked in bold and
the second-best underlined. It can be seen from Table II that,
compared to the traditional methods, the deep learning-based
methods show a great advantage in quantitative evaluation.
However, the proposed SAR-RDCP method shows a more
obvious improvement in the degree of speckle removal (PSNR)
and the preservation of edge details (SSIM). Generally speak-
ing, detail preservation and smoothing are contradictory. For
example, when L = 10, 8, and 4, the SSIM of SAR-DRN
is lower than that of SAR-BM3D, while the PSNR indices
are higher. It is worth mentioning that the proposed method
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Fig. 4. Original images used in the test experiments. (a) Harbor. (b) Medium-
residential. (c) Chaparral.

performs the best in all the different looks in the PSNR and
SSIM, which indicates that it maintains a balance between loss
of details and speckle removal. Compared to the second-best
method, the PSNR of the proposed method shows a gain of
about 0.3–2 dB when L goes from 1 to 10. This proves that
the larger L, the greater the improvement of the quantitative
result. Therefore, the proposed method has more advantages
with regard to low noise. We will discuss the situation of
strong noise in Section IV-C1.

To give detailed contrasting results, three images (har-
bor, medium-residential, and chaparral, as shown in Fig. 4)
were selected from the test data set to show their visual
results in Figs. 5–7, which show the despeckled images and
zoomed despeckled images. As can be seen from Fig. 5,
with the increase in noise level, the loss of image details
becomes stronger and stronger, and the difficulty of despeck-
ling becomes greater and greater. Therefore, the detailed
recovery of the image after denoising becomes worse and
worse. However, it can be seen from the despeckled results
that the proposed method performs the best among all the
methods in detailed preservation. For example, in the enlarged
image, the detailed part of the ship shows the best restoration
effect, and the edge boundary of the ship is the clearest, even
with regard to one look with the strongest speckle. For the
SAR-DRN method, the biggest problem is that the edges are
blurry and not clear. In Fig. 5(b)–(d), the traditional methods
produce artificial effects while despeckling. The PPB method
shows obvious ringing effects at the edges, while the SAR-
BM3D method generates lattice artifacts in the homogeneous
area, in addition to oversmoothing. SAR-POTDF has the
problem of noise residue, particularly the pointwise artifacts
generated at the low look level.

Visual comparisons of the despeckling results for
the medium-residential and chaparral images are shown
in Figs. 6 and 7, respectively. The medium-residential image
covers an area with dense buildings mixed with a small amount
of vegetation. In such an area, which is very different from
water, the details and textures are more complex. Compared to
the other methods, the effect of the proposed method is supe-
rior. The chaparral image covers a sparse vegetation area with

more complex details. It can be seen from Figs. 6 and 7 that
some of the small nodular vegetation is oversmoothed by the
other methods, whereas the proposed method is able to restore
these areas, to a certain extent. This further demonstrates that
the proposed SAR-RDCP method can adapt to a variety of
different scenarios.

B. Real-Data Experiments

In order to further illustrate the practicability of this method,
the real data of two different scenes were used for the
experiments.

It is worth taking a closer look at the despeckled SAR
images of the different methods. In Fig. 8, which shows the
despeckled images for the Death Valley, oversmoothing is
apparent with some of the traditional models, such as PPB and
SAR-POTDF, with many strong points and linear targets lost in
the background. In addition, the SAR-DRN provides a blurry
result with some residual speckle. Compared to the other
traditional methods, the SAR-BM3D method performs better,
providing an acceptable balance between smoothing and detail
preservation. However, the proposed SAR-RDCP method pro-
vides some advantages over the SAR-BM3D approach. For
example, in the zoomed-in figures, some point structures are
well preserved in the results of SAR-RDCP, whereas there is
some blurring in the SAR-BM3D results. The results shown
in Fig. 9 are consistent with those in Fig. 8, again indicating
that the proposed method can obtain the best despeckling
effect and has the best detail-preserving ability among the five
methods. In addition to oversmoothing, the PPB method also
results in the so-called ringing phenomenon near sharp edges.
The results obtained with SAR-DRN contain more residual
speckles than the previous image. The SAR-BM3D performs
well in suppressing the speckle, but it also introduces linear
structures. Overall, the proposed method achieves the best
balance between controlling for artifacts, noise removal, and
detail retention.

In order to make a more accurate comparison, Table III lists
the quantitative evaluation indices of ENL and EPD-ROA for
the two images. The areas chosen for computing the ENL
are indicated by the red rectangles marked as I and II in the
original images of Figs. 8 and 9. The best and second-best
results are indicated by bold and underline, respectively. From
the quantitative results, it can be seen that the proposed
method performs well in EPD-ROA. The improvement in
ENL values is evident in all the methods, whereas the PPB
algorithm shows the largest increase. However, because ENL
only reflects the noise removal level of homogeneous regions,
it is unfair to blindly rely on the ENL for the evaluation. When
combined with the visual results, the PPB algorithm is not the
best.

Generally, the ENL can reflect the effectiveness of the algo-
rithm, to some extent, but perfectly homogeneous regions are
rare in an image. Therefore, to further illustrate the effective-
ness of the algorithm, an unsupervised estimated approach is
used, which is called the “ENL map,” which involves calculat-
ing small sample ENLs in a sliding window (set to 3× 3) until
the whole SAR image is covered [41]. Figs. 10 and 11 show
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Fig. 5. Despeckled images for the harbor image. (a) Noisy image. (b) SAR-PPB. (c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed method.

the ENL maps for the Flevoland and Death Valley images.
Because of the small ENL values in heterogeneous regions,
such as marginal details, and the large values in homogeneous

regions, the ENL values for homogeneous regions should show
a large increase, whereas the increase in the heterogeneous
regions should be small or even zero. This point is proven
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Fig. 6. Despeckled images for the medium-residential image. (a) Noisy image. (b) SAR-PPB. (c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed
method.

and shown in Figs. 10 and 11. The maps also show that the
despeckling ability of the SAR-DRN needs to be improved,
especially for the Flevoland image. Detail losses are apparent

in some of the methods, such as PPB, SAR-POTDF, and SAR-
BM3D. To sum up, the despeckling ability of the proposed
method is the best in the AIRSAR amplitude data.
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Fig. 7. Despeckled images for the chaparral image. (a) Noisy image. (b) SAR-PPB. (c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed method.

C. Further Discussion
1) Strong Noise Situation: In the simulated experiments,

we mentioned that the improvement of the proposed

SAR-RDCP method is not obvious with regard to strong
noise. Therefore, based on the overall framework, we fine-
tuned the SAR-RDCP method by adjusting the position of the
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Fig. 8. Despeckled images for the Death Valley image. (a) Noisy image.
(b) SAR-PPB. (c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed
method.

Fig. 9. Despeckled images for the Flevoland image. (a) Noisy image.
(b) SAR-PPB. (c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed
method.

TABLE III

QUANTITATIVE EVALUATION RESULTS FOR THE AIRSAR DATA SET

data-fitting block and the PRCA block to make the data-fitting
block the output block, which we call Switched-SAR-RDCP,
as shown in Fig. 12. In this regard, the regularization
parameter η can be fine-tuned to obtain better despeckling
results. To facilitate the display of the results, we selected

Fig. 10. ENL maps for the Death Valley image. (a) Noisy image.
(b) SAR-PPB. (c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed
method.

Fig. 11. ENL maps for the Flevoland image. (a) Noisy image. (b) SAR-PPB.
(c) SAR-BM3D. (d) SAR-POTDF. (e) SAR-DRN. (f) Proposed method.

Fig. 12. Overall framework of Switched-SAR-RDCP.

single-look RADARSAT-2 amplitude data of the city of
Quebec in Canada and Sentinel-1 HV channel amplitude
data of the city of Wuhan in China to compare the detail
preservation and speckle suppression shown in Figs. 13 and 14,
respectively. Fig. 13(c) and (d) shows that SAR-DRN
and SAR-RDCP achieve good performances in detail
preservation, but residual speckle is still visible in the images.
Fig. 13(b) and (e) shows that SAR-BM3D and Switched-SAR-
RDCP perform well in speckle suppression, but in strong point
preservation, the result of Switched-SAR-RDCP is better than
that of the SAR-BM3D. Fig. 14 shows the despeckling results
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Fig. 13. Despeckled RADARSAT-2 images. (a) Noisy image.
(b) SAR-BM3D. (c) SAR-DRN. (d) SAR-RDCP. (e) Switched-SAR-RDCP
(η = 0.35).

Fig. 14. Despeckled Sentinel-1 images. (a) Noisy image. (b) SAR-BM3D.
(c) SAR-DRN. (d) SAR-RDCP. (e) Switched-SAR-RDCP (η = 0.20).

of the four methods on the Sentinel-1 data. From Fig. 14(b),
we can see that there is a vagueness phenomenon in the results
of SAR-BM3D. Fig. 14(c) shows an obvious loss of detail
and blurring. Compared to SAR-BM3D and SAR-DRN, SAR-
RDCP and Switched-SAR-RDCP perform better, showing
more clear texture and structural information. From the
zoomed images in Fig. 14(d) and (e), the Switch-SAR-PDCP
method not only preserves details but also removes noise to
the maximum extent. Thus, overall, the despeckling effect of
Switched-SAR-RDCP is the best among all the methods.

2) Iteration Number t and DG Loss: As mentioned earlier,
in the proposed method, the iteration number t is set to 6 and
the DG loss is used. In order to verify the reliability of these
settings, we designed three sets of comparative experiments
in the proposed framework, i.e., t = 6 with DG loss, t = 3
with DG loss, and t = 6 with MSE loss. For the number of
iterations t , only 3 and 6 iterations were compared because
when the number of iterations is too large, the network
training efficiency and test efficiency rapidly fall and the
stable performance is reduced. Fig. 15 shows the quantitative

Fig. 15. (a) and (b) PSNR and SSIM, respectively, for the SAR
image despeckling results under different looks, iteration numbers, and loss
functions.

Fig. 16. With/without FDB and the RCAB for the AIRSAR Flevoland
image. (a) Original (marked III ENL: 6.46). (b) Without FDB and RCAB
(ENL: 67.17). (c) With residual attention block (ENL: 166.98). (d) With FDB
and RCAB (ENL: 177.78).

evaluation results (PSNR and SSIM) with different speckle
levels. It can be clearly seen that the results using DG loss are
better, especially when t is equal to 6. This further illustrates
that the DG loss can effectively improve the accuracy of the
network. Moreover, we find that training is more stable and
less prone to gradient explosion when DG loss is used as the
optimization loss function in the process of network training.
This is because the DG loss increases the overall loss value
compared with MSE loss, to make the gradient update more
robust.

3) FDB and the RCAB: In deep learning image restoration,
feature extraction and enhancement are very important, and are
directly related to the learning ability of the network. However,
some noise features and weak features will inevitably appear
in the process of network feature extraction, which is not
conducive for feature reconstruction. Furthermore, SAR data
features are more complex, and extraction and recovery are
more difficult. In order to verify the impact of the FDB
and RCABs, three comparison experiments were implemented
with the AIRSAR Flevoland data, as shown in Fig. 16. In the
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absence of FDB and RCAB, the details are blurred and
the residual noise is serious, whereas the structural details
are clearly sharpened in Fig. 16(c) with RCAB. Fig. 16(d)
shows that the proposed method can suppress the image
noise while effectively highlighting the image details. What is
more, a homogeneous area marked III with the red rectangle
in Fig. 16(a) was selected for the calculation of the ENL,
wherein the highest ENL value is obtained by the proposed
method. The proposed method also achieves the best visual
effect, which demonstrates the validity of the predenoising
residual channel attention module.

V. CONCLUSION

In this article, we have proposed an RDCP despeckling
model, by learning a nonlinear end-to-end mapping between
the speckled and noise-free SAR images. A number of innova-
tions have also been proposed in terms of the network structure
and loss function, wherein FDB and RCAB can enhance the
features extracted from the network, while the new DG loss
function has also been proposed, the effectiveness of which
was verified in the experiments. The simulated- and real-data
experiments proved that the proposed SAR-RDCP method
outperforms the many mainstream methods, and with regard
to strong noise, we suggest using the switch position for the
SAR-RDCP method.

In our future work, we will devote ourselves to developing a
data-driven method combining imaging mechanisms to achieve
more complex and important full-polarization SAR despeck-
ling and consider the utilization of the phase information.
Due to the complexity of the full-polarization SAR data, it is
difficult to achieve nonlinear mapping at present, and the data
are also a problem [42]–[43].
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