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ARTICLE INFO ABSTRACT

Keywords: Satellite-based retrieval has become a popular PM, 5 monitoring method. To improve the retrieval performance,

PM; 5 multiple variables are usually introduced as auxiliary variables, in addition to aerosol optical depth (AOD). The

Retrieval different kinds of variables are usually at different resolutions, varying from sub-kilometer to dozens of kilo-

Aerosol optical depth meters. Generally speaking, when undertaking the retrieval, the variables at different resolutions are resampled

E‘llga}ll_;::éunon to the same resolution as the AOD product to ensure scale consistency (single-scale retrieval). However, a
drawback of doing this is that the information contained within the different resolutions (scales) is discarded. To
fully utilize the information contained in the different scales, a dual-scale retrieval approach is proposed in this
paper. In the first stage, the variables which influence PM, 5 concentration at a large scale are used for PM, 5
retrieval at a coarse resolution. Then, in the second stage, the variables which affect PM, s distribution at a finer
scale are used for the further PM, 5 retrieval at a high resolution (sub-km level resolution), with the retrieved
low-resolution PM, s from the first stage also acting as input. In this study, four different regression models were
adopted to test the performance of the dual-scale retrieval approach at both daily and annual scales: multiple
linear regression (MLR), geographically weighted regression (GWR), random forest (RF), and the generalized
regression neural network (GRNN). Compared with the traditional single-scale retrieval approach, the proposed
dual-scale retrieval approach can achieve PM, 5 mapping at a finer resolution and with a higher accuracy. Dual-
scale retrieval can utilize the information contained in different scales, thus achieving an improvement in both
resolution and retrieval accuracy. The proposed approach has the potential to be used for the generation of
quantitative remote sensing products in various fields, and will promote the quality improvement of these
quantitative remote sensing products.

Scale difference

1. Introduction

Fine particulate matter with an aerodynamic diameter of less than
2.5 um (PM,5) poses a great threat to the ecological environment and
public health (Cao et al., 2016; Chen et al., 2019; Ho et al., 2018;
Lelieveld et al., 2015). As a result, ground environmental monitoring
sites have been built worldwide for the measuring of PM,s con-
centration. However, site-based measurement cannot achieve large-
scale monitoring with continuous spatial coverage (Gupta et al., 2006;
van Donkelaar et al., 2010). As a supplement, satellite-based remote
sensing retrieval has become popular methods for PM, 5 monitoring in
recent years (de Hoogh et al., 2018; Hu et al., 2014; Stafoggia et al.,

2019; van Donkelaar et al., 2015).

The basic satellite product required for PM, s retrieval is the aerosol
optical depth (AOD), which usually holds a spatial resolution at the
kilometer level; for instance, 10 km (MODO04), 6 km (VIIRS EDR), 3 km
(MODO04_3K), 1 km (MAIAC), 750 m (VIIRS IP) (Ceca et al., 2018;
Jackson et al., 2013; Liu et al., 2019; Wang et al., 2019a; Wei et al.,
2019; Xiao et al., 2017). In addition to AOD, other variables such as
meteorological and topographical factors have also been included as
auxiliary variables, to promote the performance of the retrieval model
(Bi et al., 2019; Chen et al., 2018; Tai et al., 2010). Meteorological
variables are usually at a coarse resolution (dozens of kilometers level),
while topographical data (such as digital elevation models (DEMs) and
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land-cover data) are usually at a fine resolution (sub-kilometer level). In
fact, the resolution of the variables used for PM, 5 retrieval often varies
over a wide range, from sub-kilometer to dozens of kilometers. When
establishing the retrieval model, to keep the scale consistency, the input
variables are usually resampled to the same resolution as the AOD
product (which we call “single-scale retrieval”) (Boys et al., 2014; Li
et al., 2017a). To be more specific, the variables at a higher resolution
than AOD product are upscaled, and the variables at a lower resolution
than AOD product are downscaled, both to the resolution of AOD
product. However, the variables at different resolutions often contain
information at different levels of detail. Simple resampling to the same
resolution as AOD product may bring about information loss, especially
the loss of detail information at the sub-kilometer level, and therefore
make the final product at a relatively coarse resolution. As another
option, we may also resample all the data to the finest resolution of all
the input data, for example, to the resolution of topographical variables
in PM, 5 retrieval problem. However, this way can introduce large
uncertainties, and the model performance can be worse (refer to sup-
plementary material Text 5). Hence, studying how to consider the re-
solution differences of input variables into the retrieval model and
make better use of the detail information contained in the fine-scale
variables can be of vital importance for high-resolution PM, 5 mapping.

In a recent study by Peng et al. (2017), they claimed that the
dominant physical controls on the spatial variability of soil moisture
can be a function of scale, as shown in Fig. S1. This means that different
factors may dominate the spatial variations of soil moisture at different
scales. For PM, 5 concentration, this may also apply. For example,
meteorological factors usually dominate the spatial variation of PM, 5
at a large scale, and topographical factors usually dominate at a finer
scale. Based on this principle, we proposed the dual-scale retrieval
approach, which retrieves PM, 5 concentration through two stages. In
the first stage, PM, 5 concentration at a coarse resolution is retrieved
with the variables which mainly dominate the spatial variation of PM, 5
at a large scale. Then, in the second stage, the retrieved low-resolution
PM, s concentration, together with the variables which dominate the
fine-scale spatial variations of PM, s, are used for the retrieval at a fine
scale. In this way, the predictors are all making predictions at the scale
they dominate rather than mix-up, thus have the potential to show a
higher predicting ability. The two-stage dual-scale retrieval method
considers the difference of information embodied in the different scales
and therefore has the potential to bring improvement in both product
resolution and model performance.

In this study, we selected two linear retrieval models, i.e., multiple
linear regression (MLR) (Bottenberg and Ward, 1963; Xu et al., 2018)
and geographically weighted regression (GWR) (Brunsdon et al., 1996;
Jiang et al., 2017), and two machine learning (ML) based nonlinear
models, i.e., random forest (RF) (Breiman, 2001; Hu et al., 2017; Huang
et al., 2018) and the generalized regression neural network (GRNN)
(Cigizoglu and Alp, 2006; Li et al., 2017b), to test the performance of
the dual-scale retrieval method. For a fair comparison with the single-
scale retrieval approach, we used the same models in the two stages.
Nine meteorological variables and the Moderate Resolution Imaging
Spectroradiometer (MODIS) AOD product at a 0.1° resolution were used
for the first-scale retrieval. DEM and land-cover data were then used for
the second-scale estimation. The dual-scale retrieval model was then
built for China in 2015 at both daily and annual scales. Ten-fold cross-
validation and dense-point cross-validation were used for the quanti-
tative evaluation of the model performance. After the model building,
we mapped the PM, 5 concentration in 2015 for several typical cities in
China at the 0.003° X 0.003° resolution, and the spatial distribution of
the PM, 5 concentration was analyzed at a fine scale. The quantitative
evaluation and mapping results showed that the dual-scale method can
not only achieve a better model performance with a higher retrieval
accuracy, but can also output the PM, 5 product with a higher resolu-
tion and capture the fine-scale spatial variations better than the tradi-
tional single-scale retrieval approach.
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The rest of this paper is organized as follows. In Section 2, we in-
troduce the data sources and the methodology, and provide a flow chart
of the study design. The experimental results are provided in Section 3.
Then, in section 4, we make a discussion about the results and state the
limitations and future work. Finally, we make a summary of our work in
Section 5.

2. Data and method
2.1. Study area

China is a large country with dense population and broad territory.
The rapid economic development in recent decades has resulted in
serious pollution in China (Li et al., 2016; Ma et al., 2016). Since 2013,
multiple environmental monitoring stations have been built in China
for the monitoring of air quality, providing a foundation for air pollu-
tion research. Up to 2015, these stations covered 368 cities in China. In
this study, PM, 5 data from these stations were used as output for the
model training. As for the retrieval phase, we chose five typical cities in
China for the mapping of PM, s concentration. The selected cities were
Beijing, Wuhan, Shanghai, Guangzhou, and Chengdu, which are located
in the northern, central, eastern, southern, and western parts of China,
respectively. Beijing, the capital city of China, locates in the Northern
China Plain. Beijing is marked by its flatness and arid climate. There are
only three hills to be found in the city limits, and mountains surround
the capital on three sides. Affected by the rapid urbanization in recent
years and the unfavorable topographic conditions, PM, 5 pollution has
become an urgent problem for Beijing (Guo et al., 2017). Wuhan is the
largest city in Central China, with a dense population of 11,081,000.
With the Yangtze River running through the city, Wuhan has a humid
climate, and the dominant terrain is plain. Impacted by the heavy in-
dustry production, PM, 5 pollution is also a serious problem for Wuhan
(Zhang et al., 2018). Shanghai, which is the largest economic and
transportation center in China, locates in the Yangtze River Delta in
East China and sits on the south edge of the mouth of the Yangtze in the
middle portion of the eastern Chinese coast. As the cradle of China’s
modern industry, Shanghai undertakes much of the industrial produc-
tion in China. When combined with the rapid economic development,
PM, 5 concentration has been increasing in recent decades (He et al.,
2018). Guangzhou is the central city of South China and is located in
the flourishing Pearl River Delta region. With the Tropic of Cancer
passing north of the city and the Pearl River flowing through the city,
Guangzhou enjoys favorable weather, which is warm and humid. When
compared with the aforementioned cities, the PM, s pollution in
Guangzhou is less serious (Yang et al., 2017b). Chengdu is located at
the western edge of the Sichuan Basin and sits on the Chengdu Plain.
The dominant terrain in this area is plains, but the city is surrounded by
high mountains. Chengdu has a similar climate to Wuhan, i.e., adequate
precipitation, humid, and mild. Chengdu is also one of the most im-
portant economic centers and transportation/communication hubs in
Western China. The unique topography also makes the air pollution
situation in Chengdu unique (Ning et al., 2018). The selected cities
cover different topographies, climates, and pollution degrees, allowing
a comprehensive assessment of the model performance. The locations
and the topographies of these cities are displayed in Fig. 1.

2.2. Datasets

2.2.1. Ground site PM, 5 data

The ground-based PM, s concentration data from the environmental
monitoring stations were provided by the Ministry of Ecology and
Environment of the People’s Republic of China (http://www.mee.gov.
cn/). Hourly PM, 5 concentration data for more than 1400 sites in 2015
were collected. After outlier filtering, the hourly PM,s data were
averaged to daily and annual data for the daily and annual modeling,
respectively. The distribution of the monitoring sites is shown in Fig. 1.


http://www.mee.gov.cn/
http://www.mee.gov.cn/
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B Sclected cities

@ PM, s monitoring site

Fig. 1. Study area. The map shows the distribution
of PM, s monitoring sites (blue points) and the lo-
cations of the five selected cities (red polygons).
The satellite images show the topography of the
five cities, while the yellow lines are the adminis-
trative boundaries of these cities. The images were
provided by ArcGIS Online World Imagery.

2.2.2. AOD data

AOD represents the vertical integral of the aerosol extinction coef-
ficient on the atmospheric column (Chung, 2012). It can measure the
particles in the air indirectly and has thus been widely used for re-
trieving PM, 5 concentration (Chen et al., 2018; Guo et al., 2009; Yang
et al., 2018). The satellite AOD product used in this study was provided
by the Atmosphere Archive and Distribution System (LAADS) Dis-
tributed Active Archive Center (DAAC) of NASA (https://ladsweb.
modaps.eosdis.nasa.gov/). The 10 km MODIS Collection 6 Level 2
daily AOD data (MODO04_L2) retrieved from Dark Target algorithms
were used in this study (Levy et al., 2013; Levy et al., 2007; Wang et al.,
2019b). To ensure the data quality, only data with the best quality
(Quality flag = 3) was used.

2.2.3. Meteorological data

Many researchers have proved that meteorological conditions can
have a significant impact on PM, 5 concentration (Chen et al., 2017; Tai
et al., 2010; Yang et al., 2017a), and the introduction of meteorological
factors can improve the retrieval accuracy (Tian and Chen, 2010). In
this study, several commonly used meteorological variables were ob-
tained from the Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) dataset with a resolution of 0.5° x 2/
3° (daily) and considered in the retrieval model: 2-m air temperature
(TMP), surface pressure (PS), 2-m specific humidity (SH), 2-m eastward
wind speed (UWS), 2-m northward wind speed (VWS), lifting con-
densation level (LCL), vertical pressure velocity at 500 hPa (OME), total
precipitation (PR), and planetary boundary layer height (PBLH).

2.2.4. Topographical data

Although not used as much as meteorological factors in PM, 5 re-
trieval, topographical factors can also affect PM, s pollution, and can
help to improve the performance of the retrieval model (Beloconi et al.,
2016; Jung et al, 2018; Wang et al., 2017). Therefore, the
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topographical factors including land cover (LC) and elevation (DEM)
were also considered in this study. The land-cover product was pro-
vided by the European Space Agency (ESA) Climate Change Initiative
(CCI) (http://maps.elie.ucl.ac.be/CCI/viewer/index.php), with a spa-
tial resolution of 300 m. The original product is classified into 22
classes, and some classes were not found in the study area. Therefore, in
our study, the product was integrated into eight classes, i.e., farmland,
woodland, grassland, sparse vegetation, bare land, urban area, water
body, and snow and ice. The 30-m elevation data were obtained from
the Global Seamless DEM Based on Multi-Source Data Fusion product
(GSDEM-30) (Yue et al., 2015; Yue et al., 2017), which can be down-
loaded from http://sendimage.whu.edu.cn/res/DEM share/. For con-
sistency with the land-cover data, the 30-m DEM data were resampled
to 300 m through pixel aggregate method. Therefore, the used topo-
graphical data, i.e., the DEM and land-cover data, were all at a 300-m
resolution. To unify the coordinate system (the AOD and meteorological
data were in a geographic coordinate system and the topographical data
were in a projected coordinate system), the projected coordinate system
was reprojected into the World Geodetic System 1984 (WGS84) geo-
graphic coordinate system, and were then resampled into 0.003°
(10 km~=0.1°)".

A summary of variables used for PM, 5 retrieval and more details
about data preprocessing in this study can be found in the
Supplementary material (Table S1 and Text 1).

2.3. Methodology

2.3.1. Model development

For a full test of the performance of dual-scale retrieval, we devel-
oped the model at both daily and annual scales. Daily PM,s con-
centration, AOD, and other auxiliary variables were used for the daily
modeling, which can achieve the PM, 5 retrieval at the temporal re-
solution of daily. Then, the annual average values of these data were
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used for the annual modeling.

For both modeling scales, the process of the dual-scale retrieval
method can be similar, which included two main stages. In the first
stage, a low-resolution PM, 5 product was retrieved using the AOD and
meteorological factors. The meteorological data were resampled to
match the AOD grids through bilinear interpolation, and the retrieved
PMS, s product was then at the same resolution as the AOD. Considering
that PM, 5 concentration usually contains strong spatiotemporal auto-
correlation (Li et al., 2017a), the longitude and latitude information
were input into the model. Specially, for the daily model, the month
information was also input. Hence, the process of stage one can be
shown as:

PM; s 1 = f (lat, lon, AOD, TMP, PS, SH, UWS, VWS, LCL, OME, PR, PBLH, [month])

where PM,s; stands for the retrieved low-resolution PMys con-
centration, and f() represents the retrieval models, including MLR, RF,
and GRNN models. [ ] means that the variable inside was included in
the daily model but not included in the annual model. For GWR model,
longitude and latitude information are not used as input but used for
calculating the weights in the model, therefore, the process of stage one
for GWR is expressed as:

PMs_1, = fowr (AOD, TMP, PS, SH, UWS, VWS, LCL, OME, PR, PBLH, [month])

In the second stage, the final high-resolution PM, 5 product was
obtained with the low-resolution PM, 5 product produced in the first
stage as input. The PM, 5 ;, product from stage one was resampled to the
resolution of 0.003° using bilinear interpolation and then were input
into the second-stage retrieval model together with the 0.003° land-
cover and DEM data. At a higher resolution, spatial and temporal in-
formation may have a different impact on PM, s distribution, so the
longitude, latitude, and month were introduced into the model again.
Besides, considering that the main predictors (topographical data) used
in the second stage were all at a temporal resolution of annual and the
information about daily variations can be limited, we utilized the
temporal autocorrelation of PM, 5 and input a temporal term (Li et al.,
2017a) into the daily model. The calculation formula of the temporal
term can be expressed as:

n
2, WiPMys; 1
TTorps = = w; = i
2 Wi '
i=1

where TTpy, 5 represents the temporal term, w; is the weight for PM, 5
concentration on day i, dt; refers to the temporal distance of day i, n is
the number of neighboring days used for calculating temporal term and
is set to be 10 in this study (Li et al., 2017a). Then, the process of stage
two can be simply written as:

PM; s i = f(lat, lon, PM, 5 1, LC, DEM, [month, TTpy5])

where PM, s i1 stands for the final high-resolution PM, s product, fO
represents the retrieval models including MLR, RF, or GRNN model. [ ]
means that the variables inside were included in the daily model but not
included in the annual model. Similar to the first stage, in the GWR
model, longitude and latitude information were not used as input but
used for calculating the weights in the model, and the equation for GWR
is written as:

PM, s g = f(PMys 1, LC, DEM, [month, TTps))

LC stands for the land cover, which in this study was input in the
form of class percentage in a buffer. That is to say, it contained eight
variables in total, which represented the proportion of the eight land-
cover classes in the buffer. The buffer radius was set as 0.045°, namely
15 pixels after a parameter sensitivity test (refer to supplementary
material Text 2).

Taking the daily GWR model as an example, the two stages can be
represented as:
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(1) Stage one:

PMps 1,j= B (uj, v)AOD; + B, (uj, vj) TMP; + B3 (uj, vj)PSj + B4 (uj, vj)SHj+
Bs (uj, v)UWS; + Bg (uj, v)VWS; + B (uj, v)LCLj + By (uj, vj) OMEj+
Bo(uj, v)PRj + By (uj, v)PBLHj + By (uj, vjymonthj + B, (wj, vj) + ¢;

where §;(u;, v;) , i=1,2,..11 are the regression coefficients at loca-
tion j for variable i, and §,,(u;, v)) is the intercept, ¢; is the error term.
(2) Stage two:

PMps H,j = (uj, Vj)PMz.s,L,j + o (uj, v))LCj + a3(uj, v)DEM; + cta (uj, vj)month;
+os (i, v) TTpmzs + a6 (), vj) + ¢

where a;(w;, vj) , i =1, 2, ...5 are the regression coefficients at location
j for variable i, and a(u;, v)) is the intercept, ¢; is the error term.

A more detailed introduction to the four different retrieval models
(MLR, GWR, RF, and GRNN) and how they are combined with the dual-
scale retrieval can be found in the supplementary material Text 3.

For each stage, we first preprocessed the data to obtain data pairs
for the model training. The preprocessing procedure included simple
gap-filling and data matching. The AOD and DEM data missing in a
small spatial range was filled using inverse distance weighting (IDW)
interpolation. All the raster data were then matched with the ground
environmental stations, according to the longitude and latitude.
Secondly, the obtained data pairs were used for training the retrieval
model, with PM, s concentration from the ground sites as the output
and the other data as input. The overall workflow is shown in Fig. 2.

2.3.2. Model validation

To validate the performance of the proposed retrieval method, we
adopted the sample-based 10-fold cross-validation technique and cal-
culated the coefficient of determination (R?) for the quantitative in-
dication of the model performance (Li et al., 2017b; Ma et al., 2014). In
addition, considering the resolution difference between the single-scale
and dual-scale results, we also conducted another validation method,
which we call “dense-point cross-validation”. As the final generated
product had a higher resolution than the general product from the
single-scale retrieval, when several sites were located at the same pixel
on the general product, these sites can correspond to different pixels on
the high-resolution product from the dual-scale retrieval results. We
call these ground sites “dense points”. If the generated high-resolution
product can keep high consistency with the PM, 5 values of these dense
points, it means that the generated detail information in the high-re-
solution map can effectively capture the real fine-scale PM, 5 variations.
This process is explained in Fig. 3. When conducting the 10-fold cross-
validation, the Pearson correlation coefficient (r) between the PM, 5
concentration of these dense points and the corresponding grids of the
produced PM, 5 product was calculated as the indicator.

3. Results
3.1. Model performance

To fully verify the performance of the dual-scale retrieval method,
we selected the traditional single-scale retrieval method for a compar-
ison, which can be expressed as:

PMys5 s
= f(lat, lon, AOD, TMP, PS, SH, UWS, VWS, LCL, OME, PR, PBLH, LC, DEM,
[month, TTp2.5])

where PM, s s represents the PM, s retrieved from the single-scale
method, and f() represents the retrieval models, which are the same as
the models used for the dual-scale retrieval method. Specially, for GWR
model, lat and lon should be removed from the input, as has been de-
scribed in Section 2.3.1. It should be noted that the PM, s s product is at
the resolution of 0.1°x0.1°; that is to say, it is nearly 30 times lower
than the resolution of the dual-scale retrieval results, i.e., PMy s p.
The model fitting and validation performance are shown in Table 1.



Q. Yang, et al.

ISPRS Journal of Photogrammetry and Remote Sensing 165 (2020) 140-151

‘ Ground site ’

i1 Latitude,
1 longitude

Meteorological variables
(2.5°, resampled to 0.1°)

Data preprocessing
(gaps filling, data match)

[ /

Model Fitting
(MLR, GWR RF, GRNN)

Stage 1

I Fitted model [
!
0.1° PM:s product

(PM;51)

Ground site :
PMas

l

Data preprocessing
(gaps filling, data match)

/

Model Fitting
(MLR, GWR RF, GRNN)

Stage 11

I Fitted model I

0.003° PM2s product
(PM; 5 i)

/

Fig. 2. Flow chart of the dual-retrieval method. The upper (gray) part represents the first stage, and the lower (light blue) part represents the second stage.

We can find that, for most cases, the proposed dual-scale retrieval ap-
proach shows an improvement over the traditional single-scale retrieval
approach. Specifically, the cross-validation R? improves by 0.01, 0.06,
0.05, and 0.04 for the annual MLR, GWR, RF, and GRNN models, re-
spectively, and improves by 0.01, 0.02, 0.07, and 0.04 for the daily
MLR, GWR, RF and GRNN models, respectively. For annual model,
GWR performs best, with the fitting R* and cross-validation R? reaching
0.86 and 0.85, respectively. Then come the GRNN and RF model, with
the fitting R? being 0.74 for GRNN and 0.73 for RF, and the cross-va-
lidation R? being 0.73 for GRNN and 0.72 for RF. For daily model, RF
shows the best performance with the cross-validation R reaching 0.72.
GWR and GRNN follow. The MLR model shows the worst performance
among the four models at both modeling scales (daily and annual), with

Low-resolution product

High-resolution product

a cross-validation R? of 0.67 for annual model and 0.62 for daily model.
This proves that simple linear regression may not be able to describe the
complex relationship between PM, 5 and the multiple influencing fac-
tors at different resolutions well. For all the results of dual-scale re-
trieval, the fitting R? and CV R? were very close, with a difference no
more than 0.02, which is a very small difference and proved that over-
fitting problem didn’t exist in our dual-scale retrieval model. In the
GWR-based single-scale model, the overfitting problem can exist with
the difference between fitting and CV R? reach 0.06 for the annual
model and 0.05 for daily model. Dual-scale retrieval can reduce the
overfitting problem for the GWR-based model.

We also show scatter plots of the cross-validation results. Fig. 4
shows the results for annual modeling. Apart from having the highest

Fig. 3. Schematic for the dense-point validation.
The light blue square represents the low-resolution

product and the light orange square represents the

high-resolution product. Each grid represents one

pixel. The points (including green and red points)

represent the ground sites, while the red points are

the dense points. The pink grids are the corre-

sponding pixels to the dense points.

* Ground site dense point e Ground site
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not dense point
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Table 1
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The model fitting and cross-validation results. Fitting R? is the R? score for the model fitting, and CV R? represent the R? score for the cross-validation. S I and S II
represent the first and second stage of dual-scale retrieval respectively. Annual and daily refer to the annual modeling and daily modeling results.

MLR GWR RF GRNN

Fitting R? CV R? Fitting R? CV R? Fitting R? CV R? Fitting R? CV R?
Annual Dual-scale SI 0.59 0.58 0.84 0.78 0.74 0.72 0.61 0.60
SII 0.68 0.67 0.86 0.85 0.73 0.72 0.74 0.73
Single-scale 0.67 0.66 0.85 0.79 0.68 0.67 0.70 0.69
Daily Dual-scale SI 0.33 0.33 0.56 0.52 0.58 0.56 0.54 0.52
S1II 0.62 0.62 0.70 0.69 0.74 0.72 0.68 0.66
Single-scale 0.61 0.61 0.72 0.67 0.67 0.65 0.64 0.62

cross-validation R? score, the fitting line of the scatters of the GWR
model is also the closest to the 1:1 line, with the slope equaling 0.85,
indicating a small bias. As for the other three retrieval models, the
slopes for the fitting lines are 0.67, 0.64, and 0.68 respectively. The
scatter shape for RF model can be a little discontinuous, which indicate
that the mapping results may be unsmooth. Then Fig. 5 shows the re-
sults for daily modeling. The scatters of RF and GWR model were more
compact and the fitting lines were closer to the 1:1 line than other re-
gression models, with the slopes equaling 0.68. All the slopes in Fig. 4
and Fig. 5 are smaller than 1, which means that overestimation for
lightly polluted regions and underestimation for highly polluted regions
exist. This is a common problem for PM, 5 retrieval research (He and
Huang, 2018; Xue et al., 2019).

The results of the dense-point cross-validation are displayed in
Fig. 6 and Table 2. Fig. 6 shows the specific process for dense-point
cross-validation, taking the retrieval results of annual GWR-based
model in Guangzhou as an example. The two upper images are the

results of the single-scale and dual-scale retrieval in Guangzhou. We can
clearly see that the result of the single-scale retrieval is very coarse, and
there are many sites which have different PM, 5 concentration values
located in the same pixel (marked by the black rectangles). The detailed
spatial variations are covered up by the coarse pixels. In contrast, the
result of the dual-scale retrieval is much smoother, and contain more
detailed information about the spatial variations. The ground mon-
itoring sites also correspond to different pixels. Compared with the
traditional single-scale retrieval approach, the dual-scale retrieval
brings about a more than 30-times improvement on resolution, making
the PM, s mapping at the city level much smoother and containing rich
details. For a quantitative evaluation of the accuracy of the detail in-
formation built by the dual-scale retrieval approach, we calculated the
correlation coefficient between the PM, 5 concentration values of these
dense points and the corresponding pixels for single- and dual-scale
retrieval results in Guangzhou. The results are listed in the lower part of
Fig. 6. The correlation coefficient is 0.71 for the dual-scale retrieval,
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Fig. 4. The scatter plots for the cross-validation results of the four annual retrieval models. (a) MLR-; (b) GWR-; (¢) RF-; (d) GRNN-based dual-scale retrieval at annual

scale. The red lines are the fitted lines for the scatters. N is the sample number.

145



Q. Yang, et al.

Densit
300 4
——y=0.62x+19.13
2501 N=32947
R2=0.62 o
5200
b .
[+
B 150
S
Z 100

50
. (a) MLR
0
0 100 200 300 400
Observed PMzs D

300

——y=0.68x+15.32
250 N=34702

R?=0.72

100

200 300
Observed PMa2s

400

ISPRS Journal of Photogrammetry and Remote Sensing 165 (2020) 140-151

Density
300
C
—y=0.68x+16.05 0
250 1 N=32725 50
70
“
er-, 200 60
3 150 50
v
Z 100 30
5
50 ;
» (b) GWR 10
0
0 100 200 300 400
Observed PMas Density
300 ; 140
——y=0.53x+21.53
2501 N=34703 20
R?=0.66 100
3200 . L
z . c . / 80
B 150
,E: . 60
Z 100
= 40
50 20
(d) GRNN
0
0 100 200 300 400

Observed PM2s
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and for single-scale retrieval, the value is just 0.50. This means that,
with the resolution of the retrieval result improved from 0.1° to 0.003°,
the detail information is built and correctly incorporated in the dual-
scale retrieval results.

Table 2 displays the results of dense-point cross-validation for an-
nual modeling and daily modeling using the four different regression
models. The predicted values at these dense points were calculated at
each fold of the cross-validation. Both dense-points cross-validation
results for single- and dual-scale retrieval are listed for a comparison.
We can see that the dual-scale retrieval has a higher dense-point cross-
validation r value under all cases. For MLR, GWR, GRNN and RF, the r
values improve 0.01, 0.05, 0.02, and 0.03 for annual modeling, and
meanwhile, improve 0.01, 0.02, 0.04, and 0.02 for daily modeling. The
scatter plots for dense-point validation results can be found in the
supplementary material (Fig. S4 and Fig. S5). We found that dual-scale
also outperforms single-scale model in terms of scatter plots, with the
slopes closer to 1 and the intercepts closer to O than single-scale model.

3.2. PM, 5 mapping at the sub-km level

The proposed dual-scale retrieval method can not only acquire a
higher prediction accuracy, but it can also generate a final product with
a higher spatial resolution. We selected several typical cities in China
and drew the PM, 5 concentration distribution map at the resolution of
0.003° using the proposed method. For a comparison, the mapping
results of both the single-scale and dual-scale retrieval methods are
displayed. Fig. 7 displays the results of the annual models. We can
clearly see that the PM, s mapping results of the dual-scale retrieval
have similar spatially varying trends to the results of the single-scale
retrieval. In addition, more detailed information can be captured by the
dual-scale retrieval than the single-scale retrieval, and the mapping
results are more continuous and smoother. The results for daily
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modeling were displayed in Fig. S6 and Fig. S7. Daily retrieval results
suffer from serious data missing problem, but we can still find that the
results of dual-scale retrieval are smoother in spatial variations than the
results of single-scale retrieval. The annual distributions averaged from
daily estimates then show similar results to the annual model outputs
(Fig. S7). This indicates that the dual-scale retrieval approach can
greatly improve the mapping quality.

Although the proposed method has a strong expression ability of
spatial detail under all the retrieval models and at both modeling scales
(daily modeling and annual modeling), the retrieved values and map-
ping quality vary under the different retrieval models. In terms of the
retrieved values, MLR and GRNN tend to acquire higher PM, 5 con-
centrations than GWR and RF. RF shows the worst mapping perfor-
mance with the mapping results showing blocking and stratification
phenomena (consistent with the scatter shape of cross-validation in
Fig. 4(c)), although RF has a quite satisfying performance in the
quantitative evaluation. The bad mapping quality of RF in retrieval
problem has also been found by other researches in their work, and it
was reported that the feature of RF algorithm and the type of input
variables contribute to the bad mapping quality together (Yuan et al.,
2019; Zhao et al., 2017; Shi et al., 2015). For the other three retrieval
models, the PM, s concentration maps are spatially continuous and
show a high mapping quality. For the five cities with different climates,
topographies, and pollution degrees, the proposed method shows a
good stability in mapping quality. Overall, the retrieval experiments
under four retrieval models in five different cities prove that the dual-
scale retrieval method is a robust retrieval approach that has the po-
tential to be applied to multifarious regions.

For a clearer display of the details of the dual-scale retrieval results,
we selected two typical regions in Wuhan and used the annual retrieval
results to show the spatial details. The two regions are marked with red
rectangles in the GWR-based dual-scale retrieval results for Wuhan in
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Fig. 6. The dense-point validation results: an example of the retrieved results of annual GWR model for Guangzhou. The black rectangles are the grids where the
dense points are located. These grids are numbered from top to bottom, left to right. Points in the grids are also numbered by grid number-*, from top to bottom, left
to right. The LR and HR values are the estimated PM, 5 values of the single-scale and dual-scale retrieval results, respectively, and the S value is the ground site PM, 5
value. rgy (rs;) stands for the Pearson correlation coefficient between the dense-points-measured PM, 5 and the dual-scale (single-scale)-retrieved PM, 5 concentration.

Table 2

The dense-point cross-validation results of single- and dual-scale retrieval for
the four regression models. Annual and daily represent the results for annual
modeling and daily modeling.

MLR GWR RF GRNN
Annual Single-scale 0.82 0.88 0.82 0.83
Dual-scale 0.83 0.93 0.84 0.86
Daily Single-scale 0.78 0.81 0.80 0.79
Dual-scale 0.79 0.83 0.84 0.81

Fig. 7. As shown in Fig. 8, these regions can only be represented by less
than 2 pixels in the results of the single-scale retrieval, but in the results
of the dual-scale retrieval, there is rich detail information, which can
detect the locations of some typical emission sources and green belts
correctly. For example, in the results for East Lake, the regions marked
by red polygons in Fig. 8(c) are all mature green belt areas in Wuhan,
and in Fig. 8(b), they all show lower PM, s concentrations than the
adjacent regions. Thus, the protective effect of urban green belts on air
pollution can be detected in our results. Furthermore, in the results for
Qingshan Harbor, which is an industrial area of Wuhan, the PM, 5
emissions from factories can be detected. In Fig. 8(f), the regions
marked by the red polygons are mainly dense factories, and we can
even see the big chimney in the yellow box. Correspondingly, these

regions come with higher PM, 5 pollution levels, as shown in Fig. 8(e).

Finally, the GWR-based dual-scale retrieval model has also been
used for 2013 and 2014 for the high-resolution PM, s mapping at cor-
responding years. The specific model evaluation and mapping results
can be found in the supplementary material Text 4.

4. Discussion
4.1. Different regression models for different scales

In the experiments part, for a fair comparison with single-scale re-
trieval, we set the regression models for the two stages the same. But in
fact, the combination of different regression models at different stages
may worth exploration. Therefore, we make a further experiment to
find out the performance. We took the annual modeling as an example
and adopted different regression models in the two stages. The results
are listed in Table 3, the combinations with CV R? larger than 0.72 are
highlighted in bold font. Generally, the combination of ‘GWR + GWR’
shows the best performance. Besides, introduction of GWR to the model
(no matter at which scale) can improve the model performance. For
example, with the first scale regression model set to be MLR (see the
first two rows in Table 3), using GWR as the second-scale regression
model can improve the model performance a lot, with the CV R? im-
proves by 0.11 compared with MLR as regression model of second scale.
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Fig. 7. The PM, s concentration distribution maps for 2015 in five typical cities using four different annual retrieval models. The results of both the single- and dual-
scale retrieval are displayed for a comparison. The white areas in the dual-scale retrieval results are the watersheds, and the black lines are the administrative
boundaries for the cities.
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Fig. 8. The annual GWR-based single- and dual-scale retrieval results for East Lake and Qingshan Harbor in Wuhan. The first row are the results for the East Lake
region, and the second row are the results for Qingshan Harbor. (a) and (d) are the single-scale retrieval results; (b) and (e) are the dual-scale retrieval results; and (c)
and (f) are the topographic and satellite maps.
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Using RF and GRNN as the second-scale retrieval model can also im- four retrieval models varies a lot, which is worth further discussion.
prove the model performance compared with the ‘MLR + MLR’ com- Firstly, when conducting the retrieval using the MLR model, the
bination. dual-scale retrieval did not improve much when compared to the single-
scale retrieval, the fitting R* and cross-validation R? only increased by
4.2. Comparison of four regression models 0.01 for both annual and daily modeling (Table 1). We think this may
be explainable. A key point for retrieval is to accurately describe the
Under the dual-scale retrieval framework, the performance of the relationships between PM, s and its impacting factors. The relationships
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Table 3
The performances for models with different regression models at different
scales.

Model for scale 2

MLR GWR RF GRNN

Model for scale 1 MLR Fitting R2 0.678 0.839 0.722 0.724
CV R2 0.673 0.783  0.706 0.707

GWR Fitting R2  0.827 0.855 0.817  0.742

CV R2 0.826 0.848 0.808 0.730

RF Fitting R2  0.686 0.832  0.733 0.704

CV R2 0.677 0.753  0.716 0.694

GRNN Fitting R2 0.701 0.844 0.709 0.743

CV R2 0.695 0.778  0.698 0.725

are usually complex and nonlinear and therefore cannot be well cap-
tured by MLR model. Therefore, even though the retrieval approach
was optimized, the MLR model cannot display it well due to its poor
ability to describe complex relationships.

Secondly, the best-performing models change as the modeling scale
changes. The experiments of annual modeling showed that GWR ob-
tained the best performance, transcending the performance of the ML-
based models. In contrast, RF model got the highest quantitative eva-
luation score in daily modeling experiments. We believe that there are
two main reasons for this phenomenon. Firstly, when we built the
model at annual scale, the temporal information was not considered, so
only spatial predictions were made. GWR is a model known for con-
sidering spatial heterogeneity and perform satisfactorily for spatial
predictions; hence, it may show good performance in annual modeling.
Meanwhile, daily modeling contains large temporal information, which
is not well considered in GWR model. In this case, machine learning
models show their strong learning ability. Secondly, the number of
samples used for the annual model training was at around 1430. But for
daily model, the number is more than 30 thousand. The small amount
of training samples limits the data mining ability of the machine
learning algorithms in annual modeling, therefore, GWR can perform
better than the ML-based models. This remind us that, although the ML-
based model can achieve a decent performance in many cases, this may
not apply for all situations. For example, as a data-driven algorithm, ML
may not be suitable for studies without massive data. In addition, some
of the traditional models have potential that is worth deeper explora-
tion.

4.3. Why dual-scale retrieval?

In fact, if we want to achieve the high-resolution PM, 5 mapping
without extra high-resolution AOD as input, there is another simple and
direct solution-we can resample all the input data into 0.003° and then
conduct the single-scale retrieval (single-scale retrieval at 0.003°), why
should we propose the dual-scale retrieval? Resample from low re-
solution to high resolution (downscaling) is usually accompanied with
large uncertainties. Compared with resampling all the data to 0.1°,
resampling all the data to 0.003° can bring larger uncertainties with
little useful information introduced, which can usually result in the
decrease of model performance (the evidence from experiments can be
found in supplementary material Text 5, Fig. S11 and Table S5).
Therefore, if we want to improve the model performance while im-
proving the resolution of retrieved results, we need to decrease the
downscaling uncertainties or improve the information extraction
ability. Dual-scale retrieval aimed at improving the information ex-
traction ability. Through splitting the retrieval process into two stages
and using the dominant variables of this scale for retrieval at corre-
sponding scale, the information extraction ability may have been im-
proved because all the predictors are predicting at the scale they
dominate. Instead, in the single-scale model, all the predictors are
mixed, so none of them can predict at their best scales due to the bad
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inter-disturbance. We believe, that’s the reason for the improvement of
dual-scale retrieval compared with single-scale retrieval.

4.4. Limitations and future work

Although the proposed approach can achieve a great improvement
in resolution and retrieval accuracy, the number of variables with a
high resolution to help with the detail construction was small. In the
future, we would like to explore and introduce more variables with a
high resolution. The introduction of multisource high-resolution data
may be able to describe the detailed variations of PM, 5 concentration
in a better way. Furthermore, the experiments on daily modeling
showed that the daily retrieval results suffer from serious data missing
problem, which mainly attribute to the data missing of AOD product. In
the future, we would like to consider some gap filling approaches
(Wang et al., 2019b) for AOD data preprocessing, to improve the cov-
erage of daily retrieval results. In addition, in this study, we only tested
the performance of dual-scale retrieval. Retrieval using more scales,
i.e., multi-scale retrieval, was not attempted, for fear that the repeat
resampling of the low-resolution product may bring large uncertainties,
thus decreasing the model accuracy and the generalization ability of the
model. In fact, in the future, if we can obtain enough data at multiple
resolutions, it will be worth trying to expand the dual-scale retrieval to
multi-scale retrieval, to obtain a PM, s product at a higher resolution
than 0.003°. Finally, the proposed dual-scale retrieval method can not
only be used for PM, s concentration mapping, but it also has great
potential for the production of other quantitative remote sensing pro-
ducts, such as soil moisture and vegetation parameters. With both the
accuracy and resolution improved, the application value of the quan-
titative remote sensing products could be greatly improved.

5. Conclusions

The traditional satellite-based PM, s retrieval method achieves
PM, s mapping at the resolution of the AOD, with all the auxiliary
variables resampled to the resolution of the AOD, regardless of the fact
that the variables with a higher resolution than the AOD may contain
important detail information for capturing the spatial variations of
PM, 5 at a fine scale. In this paper, we have proposed a dual-scale re-
trieval method to make better use of the information contained within
the variables with different resolutions. Variables with a low resolution
are used for the first-scale retrieval at a coarse scale, and then the
variables at a higher resolution are used for the retrieval at a fine scale.
As the connection between the retrievals at the two scales, the PM, 5
product of the first stage is downscaled and input into the model in the
second stage. The results of the four regression models, i.e., MLR, GWR,
RF, and GRNN, at two different temporal modeling scales, i.e., annual
modeling and daily modeling, showed that the dual-scale retrieval can
achieve a higher estimation accuracy, and can map the PM, s con-
centration at a higher resolution than the single-scale retrieval. Fine-
scale spatial variations can be constructed correctly in the dual-scale
retrieval, which is a great improvement for PM, 5 mapping at the city
scale. To date, most of the studies researching PM, s mapping at the
sub-kilometer scale have concentrated on the use of high-resolution
AOD products. In this study, we achieved the mapping of PM, s con-
centration at sub-kilometer resolution without high-resolution AOD as
input, by changing the retrieval approach. Dual-scale retrieval solves
the problem of high-resolution AOD products often being difficult to
obtain, and make the high-resolution PM, s mapping at large extent
(national to global) more easily achievable.
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