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H I G H L I G H T S  

� A total of four AOD products from MODIS and VIIRS were evaluated and compared against 80 AERONET sites in Asia. 
� The evaluation and comparison results were analyzed considering aerosol loadings, time sequence, and AOD-related factors. 
� A novel grid-based merging framework was proposed to absorb the strengths of the four AOD products from MODIS and VIIRS. 
� The incorrect estimations for all AOD products in forest and for DB_M and DB_V in arid lands are mitigated after merging.  
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A B S T R A C T   

The first purpose of this paper is to evaluate and compare four aerosol optical depth (AOD) products from the 
MODerate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite 
(VIIRS) during 2013–2018 in Asia. In our study, a total of 81 AERONET sites are considered and land cover maps 
are utilized as well. The results show that the AOD product of deep blue from VIIRS (DB_V) achieves the best 
performance in the study areas, with the R of 0.91 and the RMSE of 0.14. Meanwhile, the deviations for the AOD 
products of deep blue from MODIS (DB_M), dark target (DT), DB_V, and environmental data record (EDR) 
periodically fluctuate with different levels as time moves forward. In general, DB_V overcomes others with the 
smallest overall deviation, while the largest positive and negative deviations are observed in DT and EDR, 
respectively. The performance of each AOD product is different in the regions with diverse land cover types. 
Especially, all AOD products will generally underestimate the AOD values in forest; DB_V performs better than 
DB_M in croplands and urban, while the overestimation of DB_V is larger than that of DB_M in arid lands. The 
distribution of high AOD values for DT and EDR shows difference in four seasons, which is dominated by multiple 
factors. With regard to DB_M and DB_V, apart from the seasonal variations, the high AOD values also distribute in 
arid lands from March to August. For the coverage of valid AOD values, the annual AOD completeness of DB_M 
and DB_V tends to be large in the Southwest (arid lands). As for DT and EDR, the large annual AOD completeness 
principally distributes in India, where the primary land cover type is croplands. Next, a novel grid-based merging 
framework (SL-SGW) is proposed to acquire the AOD product with the best performance and the largest AOD 
completeness of DB_M, DT, DB_V, and EDR as much as possible. The experiment results (2017–2018) show that 
the R and the RMSE for the merged AOD product are 0.904 and 0.13, respectively. It’s believed that the merging 
framework could effectively absorb the strengths of DB_M, DT, DB_V, and EDR. In the meantime, the un
derestimations of the AOD values for all AOD products in forest and the overestimations for DB_M and DB_V in 
arid lands are both mitigated after merging. The AOD completeness of the merged exceeds those of other AOD 
products for all land cover types, particularly in croplands and urban.  
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1. Introduction 

Aerosol includes tiny liquid and solid particles suspended in the air 
(Kaufman et al., 2002; Ramanathan et al., 2011), which affects the 
global climatic system directly and indirectly (Bingen et al., 2017; 
Cappucci and Gobron, 2017). Aerosol not only exerts direct effect 
through altering the radiation reaching the ground surface (Li et al., 
2017b; Lohmann and Feichter, 2001; Yang et al., 2016) but also causes 
indirect effect by acting as cloud condensation nucleus, which mediately 
changes the cloud and precipitation (Guo et al., 2016, 2018; Twomey, 
1977), even though it has an inconclusive effect on weather and climate 
systems (Fan et al., 2016; Rosenfeld et al., 2014; Li et al., 2019). 
Meanwhile, aerosol is considered as the main pollutant in the atmo
sphere, which has an influence on the air quality (Butt et al., 2017; 
Huang et al., 2014; Li et al., 2014). For instance, particulate matters 
(Guo et al., 2017a; Yang et al., 2019; Zou et al., 2019) at an aerodynamic 
equivalent diameter of less than 2.5 μm (PM2.5) are capable of carrying 
and transporting toxic and noxious substances (Li et al., 2017a; Shen 
et al., 2018). Typically, one of the crucial parameters, i.e., aerosol op
tical depth (AOD), which is defined as the vertical integral of light 
extinction by aerosol in the atmospheric column, could describe aerosol 
optical properties (Della Ceca et al., 2018; Giles et al., 2012; Holben 
et al., 2001). Ground-based sites are commonly regarded as the most 
reliable and accurate approach to acquire AOD products (Giles et al., 
2019; Holben et al., 1998), while they offer measurements at small 
center regions and fail to provide a global view of AOD distribution. 
Therefore, remote sensing satellites have been employed for retrieving 
AOD products to enlarge the AOD spatial coverage (Ahn et al., 2014; 
Kaufman et al., 2005; Kahn et al., 2010; Sayer et al., 2012; Zhang et al., 
2019). 

The MODerate Resolution Imaging Spectroradiometer (MODIS) is a 
passive remote sensing sensor onboard the Terra and Aqua satellites 
(Barnes et al., 1998), which is able to generate daily AOD products at 
both locally and globally distributed scales (Levy et al., 2013; Sayer 
et al., 2014). To be specific, the team of MODIS provides AOD products 
at 10-km spatial resolutions of the dark target (DT) algorithm (Levy 
et al., 2007, 2013; Gupta et al., 2016) and the MODIS deep blue (DB_M) 
algorithm (Hsu et al., 2004, 2013, 2019). Considering the fact that the 
Terra and Aqua satellites have served for more than ten years in excess of 
their design life, the Visible Infrared Imaging Radiometer Suite (VIIRS) 
sensor onboard the Suomi National Polar-Orbiting Partnership (Suomi 
NPP) satellite was launched in 2011 (Xiong et al., 2014), seen as the 
successor of MODIS. By contrast, VIIRS has a wider swath width of 3060 
km, which avoids the scanning gaps of MODIS (2330 km) between two 
adjacent orbits in the low-latitude areas (Hsu et al., 2019; Sayer et al., 
2015, 2019). Similarly, the team of VIIRS also provides AOD products at 
6-km spatial resolution based on the environmental data record (EDR) 
algorithm (Jackson et al., 2013; Liu et al., 2014) and the VIIRS deep blue 
(DB_V) algorithm (Hsu et al., 2019; Sayer et al., 2019). Although the 
procedures of DB_V are similar to DB_M, several significant distinctions 
still exist in DB_V compared to DB_M, which result from the differences 
between MODIS and VIIRS, such as the spectral bands, aerosol models, 
sensor zenith angle ranges, and spatial resolutions. 

The quality of AOD products is always a hot topic for the scientific 
community. In the past few years, numerous scholars have researched 
on the works related to the performance and spatiotemporal distribution 
(e.g., seasonal) of AOD products from MODIS and VIIRS. For example, 
Mhawish et al. (2017) validated the MODIS collection 6 (C6) AOD 
products over Indo-Gangetic plain and offered the abundant analyses of 
DT, DB_M, and DT&DB_M merged AOD products; Wang et al. (2019a) 
provided the detailed evaluation of the MODIS collection 6.1 (C6.1) 
AOD products over China and the assessed the improvements of AOD 
retrieval algorithms; Wei et al. (2017) compared MODIS C6 and VIIRS 
EDR AOD products in China and concluded that the DT and DB_M AOD 
products are more robust than EDR; Sayer et al. (2019) first evaluated 
the latest DB_M and DB_V AOD products at both global and regional 

scale and presented lots of valuable conclusions. However, there has not 
yet been a methodical evaluation of these latest DB products against 
other AOD products from MODIS and VIIRS, i.e., DT (C6.1) and EDR. 
Furthermore, the researches usually only indicated the strengths and 
defects of the AOD products rather than improved the quality of them 
after evaluation and comparison, which lack further significance for 
atmospheric science field. As is known to us, merging multiple AOD 
products could obtain the one with the best performance and the largest 
AOD completeness as much as possible. To date, lots of works have 
spared no effort to them, such as the Bayesian maximum entropy (BME) 
method (Tang et al., 2016), the customized methods (Bilal et al., 2017), 
and the spatial-temporal aerosol variation mitigation (ST-AVM) method 
(Wang et al., 2019b). As a result, it’s a good choice to merge the AOD 
products from MODIS and VIIRS after evaluation and comparison to 
absorb the strengths of DB_M, DT, DB_V, and EDR, which is conducive to 
acquiring better AOD product from these two sensors. 

The purpose of our study firstly aims at evaluating and comparing 
the latest AOD products from MODIS and VIIRS (DB_M, DT, DB_V, and 
EDR) during 2013–2018. Next, a novel grid-based merging framework, 
i.e., sub-grid weighting considering seasonality and land cover types 
(SL-SGW), is proposed to absorb the strengths of them, inspired by the 
methods of evaluation and comparison. Meanwhile, Asia is selected as 
the study areas in this paper for owning plenty of polluted regions and 
the diverse underlying surface, which is specifically illustrated in Sec
tion 2.1. The rest of our study is structured as follows. Section 2 in
troduces the study areas and datasets in our study. The evaluation and 
comparison results are given in Section 3, which are separated into the 
analyses according to three parts: aerosol loadings, temporal sequence, 
and AOD-related factors. Section 4 discusses the AOD spatiotemporal 
distribution and AOD completeness. The methodology and experiment 
results of SL-SGW are provided in Section 5. At last, Section 6 presents 
the conclusions. 

2. Study areas and datasets 

2.1. Study areas 

In this paper, Asia with the largest population in seven continents is 
selected as the study areas (see Fig. 1). On the one hand, the aerosol 
properties of Asia are multiple and complex (Alam et al., 2014; Eck et al., 
2005; Guo et al., 2017b), which is beneficial to the examinations of 
aerosol models hypotheses in the AOD retrieval algorithms. On the other 
hand, the land cover types of Asia are abundant as demonstrated in 
Fig. 2, which is favorable for the tests of surface reflectance estimations 
in the AOD retrieval algorithms. Meanwhile, Asia includes several 
typically polluted regions where plenty of works related to space-borne 
AOD evaluation have done in the past few years (Bilal et al., 2016; Che 
et al., 2018; Mhawish et al., 2017, 2019; Wei et al., 2019). In conclusion, 
it’s reasonable to consider Asia as the study areas for the evaluation, 
comparison, and merging of the AOD products from MODIS and VIIRS. 
What is worth mentioning is that some regions in Fig. 1, which fall 
outside of Asia, are also considered in our study to obtain better 
analyses. 

2.2. Datasets 

In our study, the AOD products of DB_M, DT, DB_V, and EDR over 
land in Asia (1–78�N, 26–170�E) during 2013–2018 are employed. For 
DB_M and DT, since the overpass time of VIIRS is similar to the MODIS 
onboard Aqua instead of Terra, only the AOD products from Aqua- 
MODIS are considered. Meanwhile, the swaths of all AOD products are 
stitched and remapped to the geographical projection of World Geodetic 
System 1984) (WGS84) using the nearest neighbor interpolation (Parker 
et al., 1983) (0.1� � 0.1�for MODIS and 0.06� � 0.06�for VIIRS) in the 
range of study areas. In addition, the overlap regions are filled with the 
swath at the maximum overpass time. The ground-based measurements 
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(providing ground truth-values of AOD) and land cover maps (providing 
land cover types) are utilized as well to acquire a comprehensive study. 

2.2.1. AEROsol robotic NETwork (AERONET) 
The AERONET is a collection of ground-based Cimel Electronique 

Sun–sky radiometers, which has provided global measurements of 
aerosol products in the spectral range from 0.34 μm to 1.06 μm for more 
than two decades (Holben et al., 1998, 2001). At present, the AERONET 
database of Version 3 (Giles et al., 2019) includes separate three levels 
for data quality: Level 1.0 (prescreened), Level 1.5 (cloud-cleared and 
instrument-anomaly-controlled), and Level 2.0 (cloud-cleared, 
instrument-anomaly-controlled, and quality-assured). All of them could 
be obtained at the AERONET official website (https://aeronet.gsfc.nasa. 
gov). Due to the high accuracy and low uncertainty, the AOD mea
surements (Level 1.5 and Level 2.0, Version 3.0) of AERONET are 
regarded as the ground truth-values to evaluate the AOD products of 
DB_M, DT, DB_V, and EDR in our study. In addition, the measurements 
related to the spectral gradient of AOD across the wavelength range of 
440–870 nm (AE440-870) are also acquired from the AERONET database 
for further analyses. The distribution of AERONET sites over land in Asia 
is demonstrated in Fig. 2, with the marks of rectangles. Similarly, the 
AERONET sites distributed in the study areas (1–78�N, 26–170�E) but 
not in Asia are utilized as well. Hence, a total of 80 AERONET sites (see 
Table s1 in the supplementary materials) are used in our study, which 
contain various aerosol properties and land cover types. 

2.2.2. The AOD products from MODIS and VIIRS 

2.2.2.1. The MODIS DT AOD product. In summary, the DT algorithm in 
C6 makes use of the short-wave infrared (SWIR, 2.13 μm) band slightly 
influenced by the aerosol to recognize the regions over dark surface (low 
surface reflectance), following the procedure of screening (cloud and 
snow/ice). As per the surface modeling, the surface reflectance at 0.47, 
0.65, and 1.24 μm is calculated in the DT algorithm. The top-of- 
atmosphere (TOA) reflectance at the 0.47 and 0.65 μm is then ac
quired to retrieve the AOD values at 0.55 μm using the look-up table 
(LUT), consisting of the aerosol models for coarse and fine particles 
(Levy et al., 2007). All the steps are employed with the single windows 

of 20� 20 pixels at a 500-m spatial resolution. In the latest C6.1, 
considering the urban percentage as one part of the surface reflectance 
calculation, the DT algorithm modified the surface reflectance estima
tions on condition that the urban percentage exceeds 20% (Gupta et al., 
2016). In our study, the record of DT in C6.1 with the highest quality 
assurance (QA ¼ 3) over land is selected. 

2.2.2.2. The MODIS and VIIRS DB AOD products. For MODIS, the DB_M 
algorithm initially was devised to retrieve aerosol properties over arid 
lands and urban areas, where the surface reflectance of the red and near- 
infrared bands usually shows a high degree. Nevertheless, the surface 
reflectance in these regions is greatly darker at the deep blue band (Hsu 
et al., 2004). Unlike the DT algorithm, DB_M firstly acquires AOD re
trievals at a 1-km spatial resolution with the predetermined surface 
reflectance database and then aggregates them to a 10-km spatial res
olution. After ten years, an enhanced algorithm that employs the com
bination of the precalculated database and the normalized difference 
vegetation index (NDVI) to obtain the surface reflectance has been 
developed (Hsu et al., 2013). As a consequence, the completeness of the 
AOD coverage has been extended to all land areas except snow/ice. In 
the latest C6.1, DB_M has been improved once more with some major 
updates, e.g., the modified surface modeling in elevated terrains and the 
heavy smoke detection (Hsu et al., 2019). As for VIIRS, the procedures of 
DB_V are similar with DB_M in C6.1, while some great distinctions still 
exist due to the differences of the spectral bands, the swath width, the 
sensor zenith angle range, and the spatial resolution between MODIS 
and VIIRS (Hsu et al., 2019). For instance, a modified near-infrared 
(NIR) technique is adopted for the estimation of surface reflectance in 
croplands, which results from the excess gas absorption of the VIIRS band 
at 2.25 μm compared to the MODIS band at 2.12 μm; New non-spherical 
dust models are considered in DB_V to mitigate the discernible discon
tinuity of AOD spatial distribution in low-latitude areas caused by the 
forward and backward side-scattering direction. In our study, we 
consider the records of DB_M (C6.1) and DB_V with QA � 2 over land as 
the appropriate data. 

2.2.2.3. The VIIRS EDR AOD product. The EDR algorithm can generate 
the global and regional AOD products over both land and ocean, of 

Fig. 1. The distribution of the AERONET sites in the study areas. The base-map in this figure is the natural earth shaded map.  
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which the procedures are similar to the DT algorithm (Jackson et al., 
2013). For land, a total of three separate aerosol models based on 
geographic locations are assumed in this algorithm, including dust, 
low/high-absorption smoke, and clean/polluted urban. The regions over 
bright surface (high surface reflectance) and affected by cloud will be 
screened. In the EDR algorithm, the AOD values are retrieved using the 
LUT of a precomputed database for several atmospheric parameters to 
simplify the radiative transfer calculations. Meanwhile, the surface 
reflectance of the blue and red bands are estimated with the pre
determined relationships from that of the SWIR band. The AOD values 
are firstly acquired at the original spatial resolution of 750 m and then 
aggregated (8*8 pixels) to a coarser spatial resolution of 6 km. At last, 
the AOD values are stored at three levels for data quality: low (QA ¼ 1), 
medium (QA ¼ 2), and high (QA ¼ 3). In our study, the record of EDR 
with the high level (QA ¼ 3) over land is adopted. 

2.2.3. MODIS land cover map 
The MODIS land cover map (MCD12Q1) includes the datasets of 

global land cover classification in five different schemes (Al-Hamdan 
et al., 2014) at a 500-m spatial resolution and a 1-year temporal reso
lution, depicting the land cover properties originated from the combined 
Terra- and Aqua-MODIS observations. In our study, the first land cover 
scheme of MCD12Q1 is utilized, which contains the 17 land cover types 
defined by the International Geosphere Biosphere Programme (IGBP). 
For convenience, the specific types of land cover in Asia are simplified to 
six major types: forest, savannas, grasslands, croplands, urban, and arid 
lands. The details with respect to IGBP are illustrated in Fig. 2 (see 
specific types). In our study, the land cover map is remapped to the 
geographical projection (WGS84) of 0.005� � 0.005�using the nearest 
neighbor interpolation (Parker et al., 1983). 

3. Evaluation and comparison results of the AOD products from 
MODIS and VIIRS 

Generally, AERONET sites repeatedly provide the point-shaped 
measurements, while remote sensing sensors offer the AOD products 
of a certain spatial resolution at the overpass time. Therefore, the 
measurements of AERONET sites and the AOD products of remote 
sensing sensors are bound to be matched both spatially and temporally 
(Virtanen et al., 2018). In our study, the approach, which averages the 
AERONET measurements within an interval of �30 min at the MODIS 
and VIIRS overpass time and the grids within a diameter of ~30 km 
(matching range) at each AERONET site center, is employed to obtain 
the matched points. The matching range is determined by calculation 
according to the parameters of WGS84 and the differences of longitude 
and latitude. Although AERONET sites acquire AOD measurements at 

diverse spectral bands, many of them are different from the MODIS (550 
nm). Hence, the Ångstr€om exponent (α) is utilized to calculate the 
true-values of AOD at 550 nm, which is defined as shown in Eq. (1). 

α¼ �
ln
�

τ1=τ2

�

ln
�

λ1=λ2

� (1)  

where τ1 and τ2 represent the AOD at the spectral bands of λ1 (440 nm) 
and λ2 (870 nm), respectively. The results are evaluated with the ex
pected error (EE), which is only based on the expected performance of 
DT over land (Levy et al., 2013), as shown in Eq. (2); the Pearson cor
relation coefficient (R); the root-mean-square error (RMSE), as shown in 
Eq. (3); the bias, as shown in Eq. (4); the mean absolute percentage error 
(MAPE), as shown in Eq. (5), and the relative mean bias (RMB), as 
shown in Eq. (6). 

EE¼ � ð0:05þ 0:15� τAEROÞ (2)  

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðτðSENÞi � τðAEROÞiÞ

2

s

(3)  

Bias¼
1
n

Xn

i¼1

 

τðSENÞi � τðAEROÞi

!

(4)  

MAPE¼
1
n

Xn

i¼1

jτðSENÞi � τðAEROÞij

τðAEROÞi
(5)  

RMB¼
Pn

i¼1τðSENÞi
Pn

i¼1τðAEROÞi
(6)  

where τSEN and τAERO denote the AOD from remote sensing sensors 
(MODIS and VIIRS) and AERONET sites, respectively. 

3.1. Evaluation and comparison of DB_M, DT, DB_V, and EDR according 
to aerosol loadings 

As demonstrated in Fig. 3, the AOD products of DB_M, DT, DB_V, and 
EDR are evaluated for a total of 16,654, 11,580, 15,270, and 15,948 
matched points in Asia, respectively. Overall, the AOD product of DB_V 
achieves the best performance, with the R of 0.91 and the RMSE of 0.14. 
At the same time, the performance of DB_M and DT are acceptable, with 
similar metrics. On the contrary, the AOD quality of EDR is considered 
poor, of which the fraction within the EE is only 55.05%. For the EDR 
algorithm, the AOD range used in the LUT is [0, 2] (Jackson et al., 2013) 

Fig. 2. The land cover types of the study areas. In the right part, the number represents the area percentage of each major land cover type.  
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Fig. 3. The evaluation results (scatter plots and tables) of DB_M, DT, DB_V, and EDR against AERONET. In the scatter plots, the black solid line represents the 
standard line (1:1), the dash lines denote the EE lines, and the range of EE is painted with the shade of light gray. The tables show some metrics for different aerosol 
loadings and the color bars illustrate the count of matched points within a radius of 0.1 (AOD). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 4. The RMBs for DB_M, DT, DB_V, and EDR against AERONET for different aerosol loadings.  
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and consequently a large underestimation will emerge at the AOD values 
of more than 2, which is also reflected in Fig. 3. For diverse aerosol 
loadings (see tables in Fig. 3), it’s discovered that the MAPEs for all AOD 
products are much larger at the AOD values of less than 0.5 compared to 
those at other ranges. Therefore, the uncertainty of each AOD product 
from DB_M, DT, DB_V, and EDR is supposed to contain a constant de
viation, which doesn’t change with the variation of AOD values and is 
also reflected in Eq. (2). Meanwhile, it’s found that the Rs and the 
MAPEs for DB_V during all aerosol loadings are better than those for 
DB_M, indicating that the improvements in the DB_V algorithm are 
effective. In addition, as depicted in Fig. 4, all AOD products will 
generally overestimate the AOD values at the numbers of less than 0.5. 
Especially, an obvious underestimation is observed in EDR when the 
AOD values exceed 0.5. 

Next, the deviations distribution for all AOD products is presented in 
Fig. 5, in the form of box plots. To be specific, the matched points are 
sorted in the ascending order of the AERONET AOD values and then 
sampled with a fixed interval, which could generate 80 boxes for each 
AOD product of DB_M, DT, DB_V, and EDR, respectively. Overall, the 
boxes showing the deviations for DB_M, DT, and DB_V remain well 
within the EE lines following the increment of the aerosol loadings. The 
deviations distribution for DB_M and DB_V are small, while the de
viations ranges for DB_V between the whisker vertexes are shorter, 

suggesting better performance. For the AOD product of DT, a slight 
overestimation is observed in almost all AOD values, which is likely 
caused by the inaccurate assumptions in aerosol models and surface 
reflectance (Bilal et al., 2014, 2016; He et al., 2010; Wang et al., 2019a). 
With regard to EDR. it’s discovered that the boxes decline as the AOD 
values rise and exceed the EE lines at the numbers of more than 0.5, 
requiring improvements. The frequency distribution of DB_M, DT, DB_V, 
and EDR is illustrated in Fig. 6. The x axis is truncated at 2 since the 
percentages that the AOD values exceed 2 are less than 7‰ for all AOD 
products. As can be seen, the frequency of all AOD products differs from 
AERONET with diverse levels, which change with the variation of AOD 
ranges. From Fig. 6, the frequency distribution of DB_M is generally the 
closest to AERONET. However, the AOD product of DT shows a large 
difference of frequency at the AOD values of less than 0.2 compared to 
AERONET. Meanwhile, the frequency of DT is always larger than that of 
AERONET when the AOD values exceed 0.3. It can be inferred that the 
large difference between DT and AEROENT at the AOD values of less 
than 0.2 likely results from the overestimation of DT. The frequency 
distribution of DB_V is similar with DB_M, with the frequency difference 
of less than 0.02 for all AOD ranges. With regard to EDR, which is 
developed based on DT (Jackson et al., 2013), the frequency distribution 
is different from that of DT. It can be observed that the difference be
tween EDR and AEROENT at the AOD values of less than 0.2 is smaller 

Fig. 5. The evaluation results (box plots) of DB_M, DT, DB_V, and EDR against AERONET. The black horizontal dash line denotes the zero-line and the red dot dash 
lines represent the EE lines. For each box, the middle line, azure dot, top and bottom hinges, and whisker vertexes are the median, mean, 25th and 75th percentiles, 
and 1.5 times the interquartile range (IQR) of AOD deviations, respectively. τ: AOD. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Y. Wang et al.                                                                                                                                                                                                                                   



Atmospheric Environment 230 (2020) 117548

7

compared to DT. 

3.2. Evaluation and comparison of DB_M, DT, DB_V, and EDR according 
to temporal sequence 

At first, the time series and annual cycle for DB_M, DT, DB_V, and 
EDR are displayed in Fig. 7 to show the variation of deviations between 
each AOD product and AERONET with the change of time. From Fig. 7 
(top), the deviations for DB_M, DT, DB_V, and EDR fluctuate with 
different levels as time moves forward. Generally, the AOD product of 
DB_V overcomes others with the smallest overall deviation. Meanwhile, 
the largest positive and negative deviations are observed in DT and EDR, 

respectively. It’s discovered that the variation of deviations for each 
AOD product is periodic, which is obviously reflected in the annual cycle 
plot. As shown in Fig. 7 (bottom), the deviations for DT and EDR is 
considered large and greatly differs from that for DB_M and DB_V in 
serval months. It’s clear that significant deviations mainly exist in the 
period of May to Jul for DT and Nov to Mar for EDR, respectively. This 
likely results from the inaccurate suppositions of aerosol models and 
surface reflectance for DT and EDR in these months (Bilal et al., 2014, 
2016; He et al., 2010; Wang et al., 2019a). 

Previously, it’s has been discovered that the performance of AOD 
products is related to the significant seasonality (Mhawish et al., 2017, 
2019), which inspires us to compare DB_M, DT, DB_V, and EDR in 

Fig. 6. The frequency distribution of AERONET, DB_M, DT, DB_V, and EDR. The negative AOD values of DT (down to � 0.05) are discarded.  

Fig. 7. Time series and annual cycle of the deviations of DB_M, DT, DB_V, and EDR against AERONET. In the annual cycle plot, the bars represent the means, the red 
marks denote the medians, and the ranges of dash lines include 68% of the data. τ: AOD. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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different seasons. In our study, the months throughout one year are 
divided into four seasons: DJF (Dec., Jan., and Feb.), MAM (Mar., Apr., 
and May.), JJA (Jun., Jul., Aug.), and SON (Sep., Oct., and Nov.). As can 
be seen from Table 1, each AOD product achieves different performance 
with the variation of seasons. For DJF, the surface reflectance likely 
increases in vegetation regions (Canisius et al., 2007; Wang et al., 2014) 
and also in urban (Li et al., 2012). As a result, the number of matched 
points for DT is significantly less than that for DB_M and DB_V in DJF due 
to the bright surface. On the contrary, the number of matched points for 
EDR is still considerable, while the AOD quality is worse with the R of 
0.853 and the bias of � 0.049, respectively. The distinction of the 
matched points number and the AOD quality may be caused by the 
different procedures and the QA criteria in the DT and EDR algorithms 
(Gupta et al., 2016; Jackson et al., 2013). With regard to JJA, more 
cloud exists in the South (except the arid lands) with the increment of 
temperature compared to other seasons (see a case of 2018 in Fig. s1 
from the supplementary materials). It’s observed that the MAPEs are 
poor for all AOD products in JJA and the RMBs also exceeds 1 (especially 
for DT), which likely results from the inaccurate assumptions in AOD 
retrieval algorithms (Bilal et al., 2014, 2016; He et al., 2010; Wang et al., 
2019a) and the leak detections in cloud masks (Gupta et al., 2016; Wang 
et al., 2019a; Hsu et al., 2019; Jackson et al., 2013). In addition, it’s 
found that the fractions within EE and the MAPEs for DB_V in the four 
seasons are better than those for DB_M, further suggesting the effec
tiveness of the improvements in the DB_V algorithm. 

3.3. Evaluation and comparison of DB_M, DT, DB_V, and EDR according 
to AOD-related factors 

The AOD-related factors are of great importance for retrieving AOD 
products. For instance, the methods of surface reflectance estimations in 
the DB algorithm are hybrid based on the land cover types (Hsu et al., 
2019); The aerosol models in the DT algorithm are dynamic and blend 
two modes: coarse particles and fine particles (Gupta et al., 2016). 
Hence, it is instrumental to consider these factors in the procedures of 
evaluation and comparison. 

The first AOD-related factor that our study considers is the land cover 
types. The ratio of each land cover type in the matching range (~30 km) 
is calculated and only the type of which the ratio exceeds 80% will be 
deemed as a single type. As demonstrated in Fig. 8, the performance of 
each AOD product is different in the regions with diverse land cover 
types. For forest, the Rs for the AOD products of DB_M, DT, DB_V, and 
EDR all exceed 0.9, suggesting good correlations with the AERONET. 
However, as shown in Fig. 9, the RMBs of them are less than 1, which 
means that all AOD products will generally underestimate the AOD 
values in forest. Taking all metrics into account, DT outperforms other 
AOD products in forest, with the smallest bias, the largest RMB, and the 
largest fraction within EE. Similar to forest, the AOD products of DB_M, 
DT, DB_V, and EDR show high correlations with the AERONET in 

savannas, while underestimations are also discovered. In Asia, the re
gions of grasslands usually distribute in the plateaus with high elevation. 
As can be seen, the Rs for DT and EDR are much poorer than those for 
DB_M and DB_V, indicating that the surface reflectance estimations and 
the aerosol models hypotheses of DT and EDR may be not appropriate 
(Bilal et al., 2014, 2016; He et al., 2010; Wang et al., 2019a) in grass
lands. It’s worth mentioning that the RMB for DT is significantly larger 
compared to other AOD products and greatly exceeds 1, which further 
indicates that serious issues likely exist in DT for grasslands. On the 
contrary, DB_V achieves the best performance in grasslands with the R of 
0.935 and the fraction within EE of 78.54%. As for croplands, a modified 
NIR technique is adopted for the surface reflectance estimations in the 
DB_V algorithm (Hsu et al., 2019). Therefore, it’s clear that DB_V per
forms better than DB_M in croplands, reflected in the metrics of the 
RMSEs, the MAPEs, and the fractions within EE. The accuracy of AOD 
products in urban is of great importance and widely receives attention 
from scholars (Kaskaoutis et al., 2009; Kharol et al., 2011; Wang et al., 
2015). From Fig. 9, it’s found that the AOD products of DB_M, DT, and 
EDR will universally overestimate the AOD values in urban, especially 
for DT and EDR. Actually, in the C6.1 DT algorithm, the method of 
surface reflectance estimations in urban has been modified with the 
urban percentage (Gupta et al., 2016). Meanwhile, the modification has 
been also effectively evaluated in Beijing (Bilal et al., 2019; Tian et al., 
2018; Wang et al., 2019a). However, the overestimation of DT is still 
considerable in urban over Asia at the urban percentage exceeds 80%, 
requiring further improvements. In urban, there is no doubt that the 
performance of DB_V is the best, with the R of 0.965 and the RMSE of 
0.12. Considering the fact that DT and EDR are not devised for bright 
surface, only DB_M and DB_V will be evaluated in arid lands. In the DB_V 
algorithm, the new non-spherical dust models are used to mitigate the 
discernible discontinuity of AOD spatial distribution in low-latitude 
areas (Hsu et al., 2019). As illustrated in Figs. 8 and 9, the R for DB_V 
exceeds that for DB_M in arid lands, while the bias and the RMB for DB_V 
are poorer, indicating that larger overestimation exists in DB_V. 

Next, considering the fact that aerosol columns are optically domi
nated by coarse particles (AE440-870�0.7), mixed distributions (0.7 <
AE440-870�1.3), and fine particles (AE440-870>1.3) (Mhawish et al., 
2017, 2019; Sayer et al., 2014), the aerosol particles are categorized into 
these three types for further analyses. As depicted in Fig. 10, fine par
ticles are the major aerosol particles in forest, with the largest propor
tion. Meanwhile, it’s obvious that a great overestimation in DB_M exists 
compared to other AOD products when the AE440-870 exceeds 1.3, which 
denotes that the aerosol models of fine particles assumed for DB_M are 
may be inexact in forest. Similarly, for savannas, fine particles are also 
the primary aerosol particles, while significant underestimations are 
mainly observed in DB_M and EDR during the fine particles. With regard 
to grasslands, the variation trends of deviations for DB_M and DB_V are 
relatively stable by comparison to DT and EDR. To be specific, an 
overestimation and underestimation are generally discovered during 

Table 1 
The evaluation results of DB_M, DT, DB_V, and EDR against AERONET in different seasons. τA: the AOD from AERONET sites.  

Season N R Bias 

DB_M DT DB_V EDR DB_M DT DB_V EDR DB_M DT DB_V EDR 

DJF 4206 2281 4145 3663 0.870 0.893 0.906 0.853 0.013 0.005 0.002 � 0.049 
MAM 5359 4093 4940 4977 0.880 0.899 0.904 0.822 � 0.005 0.031 0.028 � 0.024 
JJA 3074 2542 2284 3587 0.899 0.932 0.893 0.811 0.031 0.065 0.016 0.042 
SON 4015 2664 3901 3721 0.907 0.921 0.930 0.830 0.009 0.020 0.010 � 0.018 

Season MAPE (%) Within EE (%) RMB 
DB_M DT DB_V EDR DB_M DT DB_V EDR DB_M DT DB_V EDR 

DJF 46.23 34.38 37.49 48.68 55.75 63.79 64.85 54.98 1.04 1.01 1.00 0.88 
MAM 38.78 38.60 37.36 41.04 60.87 58.29 64.92 56.66 0.99 1.07 1.07 0.94 
JJA 49.34 50.97 42.14 65.09 64.83 60.35 68.30 55.20 1.11 1.22 1.06 1.16 
SON 41.75 42.03 35.09 56.30 69.41 68.69 74.78 52.84 1.03 1.06 1.03 0.94  
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almost all aerosol particles in grasslands for DT and EDR, respectively. As 
mentioned above, a modified NIR technique of DB_V is adopted for the 
surface reflectance estimations in cropland (Hsu et al., 2019). As a result, 
from Fig. 10, the box sizes for DB_V are smaller than those for DB_M 
during all aerosol particles in croplands, also suggesting the better per
formance. It’s found that a visible underestimation emerges in EDR 
during coarse particles and mixed distributions in croplands, requiring 
further improvements of aerosol models for it. As for urban, the AOD 

products of DB_M, DT, and EDR except DB_V will generally overestimate 
the AOD values during all aerosol particles. In arid lands, it’s known that 
the new non-spherical dust models are used to mitigate the discernible 
discontinuity of AOD spatial distribution for DB_V in low-latitude areas 
(Hsu et al., 2019). Surprisingly, a larger overestimation emerges in DB_V 
compared to DB_M during coarse particles, which likely means that the 
new dust models are improvable and need modifications in arid lands. 

Fig. 8. The evaluation results (scatter plots) of DB_M, DT, DB_V, and EDR against AERONET for diverse land cover types. The black solid line represents the standard 
line (1:1), the dash lines denote the EE lines, and the range of EE is painted with the shade of light gray. The color bar illustrates the count of matched points within a 
radius of 0.1 (AOD). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4. Analyses of AOD spatiotemporal distribution and AOD 
completeness 

In the past, the researches about the seasonal AOD spatial distribu
tion are always hot topics (Della Ceca, 2018; He et al., 2016; Mhawish 
et al., 2017, 2019). In our study, the AOD products of DB_M, DT, DB_V, 
and EDR in each season during 2013–2018 are averaged to show the 
seasonal AOD spatial distribution in Fig. 11. As can be seen, the AOD 
values of DB_M, DT, DB_V, and EDR are missing in the North due to the 
long-time series of snow cover in DJF. Even in MAM, the AOD values are 
still invalid caused by the same reason when the latitudes exceed 70�. 
For JJA, the AOD coverage of them is much increased in the North. 
Surprisingly, the valid AOD values of EDR are absent at the latitudes of 
more than 70�in SON, likely resulting from the small threshold of dark 
surface recognition or the QA filter in the algorithm (Jackson et al., 
2013). The distribution of high AOD values for DT and EDR shows dif
ference in four seasons, which is dominated by multiple factors, such as 
anthropogenic activities. With regard to DB_M and DB_V, apart from the 
seasonal variations, the high AOD values also distribute in arid lands in 
MAM and JJA. Meanwhile, the seasonal AOD value of DB_V is usually 
larger than that of DB_M in these seasons (MAM and JJA) over bright 
surface, especially the deserts in Asia. This discovery further indicates 
that the new dust models are improvable and modifications are required 
for DB_V in arid lands, which has been mentioned in Section 3.3. Except 
for the bright surface, the seasonal AOD spatial distribution is similar for 
the AOD products of DB_M, DT, DB_V, and EDR. For all seasons, the valid 
AOD values of DB_M and DB_V distribute in most of the study areas, 
except some regions with the year-round snow cover. Nevertheless, a 
long-term (2013–2018) absence of valid AOD values for DT and EDR can 
be observed in the regions over bright surface, such as the Takla Makan 
Desert and Saudi Arabia. 

Generally, the seasonal AOD spatial distribution shows significant 
difference, which is related to the land cover types of the underlying 
surface. For instance, the AOD values of MAM and JJA tend to be larger 
than those of DJF and SON in arid lands. Although the quality of each 
AOD product is different, yet the seasonal variation trends of AOD values 
should be similar for the same land cover type. Otherwise, the unique 
seasonal variation trends would indirectly suggest the distribution of 
AOD values far from other AOD products in this land cover type. To 
analyze this issue, the statistical charts of all AOD products for diverse 
land cover types in different seasons are presented in Fig. 12. The 
simplified land cover types at the spatial resolution of 0.005� �
0.005�are aggregated to 0.1� � 0.1�and 0.06� � 0.06�to be consistent 
with the AOD products (only the type of which the ratio exceeds 80% in 
the grids will be considered as a single type). As can be observed, some 
seasonal variation trends of DB_M, DT, DB_V, and EDR are similar for 
one land cover type with a slight discrepancy, such as forest and sa
vannas. Nevertheless, the seasonal variation trends of DT and EDR 

greatly differ from those for DB_M and DB_V for grasslands. As described 
in Section 3.3, the performance of DT and EDR is much worse compared 
to DB_M and DB_V in grasslands. Meanwhile, the update of DB_V is re
flected in Fig. 12d for croplands as well. The distinctions of seasonal 
variation trends can be discovered for urban (e.g., larger overestimation 
in DT) and arid lands (e.g., larger overestimation in DB_V), which are 
also consistent with the analyses in Section 3.3. 

In addition to the AOD spatial distribution, the completeness of valid 
AOD values is also one of the hot spots for the scientific community (He 
et al., 2017; Liu et al., 2019; Wang et al., 2019a). The annual AOD 
completeness, i.e., the percentage of valid AOD values in each grid 
during 2013–2018, of DB_M, DT, DB_V, and EDR is mapped in Fig. 13. 
It’s well known that the AOD completeness of all AOD products is mainly 
affected by the contaminations from cloud and snow cover. As shown in 
Fig. 13, the small annual AOD completeness of them usually distributes 
in the North and Tibet due to more cloud and snow cover (see a case of 
2018 in Fig. s2 from the supplementary materials). For DB_M and DB_V, 
the annual AOD completeness tends to be large in the Southwest, where 
the major land cover type is arid lands. It’s obvious that arid lands are 
often lack of moisture compared to other regions and consequently the 
probability of cloud emerging significantly decreases (Wang et al., 
2019a). The regions, where the annual AOD completeness of DB_V ex
ceeds that of DB_M, largely distribute in the north of India as expected 
(no scanning gaps between two adjacent orbits in low-latitude areas like 
MODIS). However, the annual AOD completeness of DB_M is still larger 
than that of DB_V in many other regions (especially the arid lands). This 
likely results from some distinctions in the DB_M and DB_V algorithms, 
such as the aerosol models, wavelengths of spectral bands used to 
retrieve AOD values, and sensor zenith angle ranges. Furthermore, it’s 
worth noting that the overlap regions are only filled with the swath at 
the maximum overpass time in our study. In other words, the AOD 
completeness will increase provided that all the swaths in the overlap 
regions are utilized, particularly for VIIRS due to the wider swath width 
compared to MODIS (Sayer et al., 2019). Nevertheless, this circumstance 
is not adopted and discussed in this paper. As for DT and EDR, the large 
annual AOD completeness principally distributes in India, where the 
primary land cover type is croplands. A comparison of the average AOD 
completeness in the study areas for DB_M, DT, DB_V, and EDR is then 
made according to different seasons. As listed in Table 2, the largest 
average AOD completeness is observed in DB_M for annual and four 
seasons. Meanwhile, the variations of the average seasonal AOD 
completeness are diverse for the AOD products of DB_M, DT, DB_V, and 
EDR. For instance, the largest average seasonal AOD completeness exists 
in SON for DB_M and DB_V but in JJA for DT and EDR. 

Fig. 9. The RMBs for DB_M, DT, DB_V, and EDR against AERONET for diverse land cover types.  
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Fig. 10. The evaluation results (box plots) of DB_M, DT, DB_V, and EDR against AERONET for diverse land cover types considering different aerosol particles. The 
black horizontal dash line denotes the zero-line and the red solid lines represent the demarcation lines for different aerosol particles, where are painted with three 
shades of gray. For each box, the middle line, azure dot, top and bottom hinges, and whisker vertexes are the median, mean, 25th and 75th percentiles, and 1.5 times 
the interquartile range (IQR) of AOD deviations, respectively. τ: AOD. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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5. Merging of the AOD products from MODIS and VIIRS 

5.1. Methodology 

To date, numerous works have spared no effort to merge multiple 
AOD products (Bilal et al., 2017; Tang et al., 2016; Wang et al., 2019b). 
As is known to us from the previous sections, the AOD products of DB_M, 
DT, DB_V, and EDR show the different performance and AOD 
completeness. This is deemed as a good potential for merging, which 
could acquire the AOD product with the best performance and the 

largest AOD completeness as much as possible. In conclusion, a novel 
grid-based merging framework (SL-SGW) is proposed in our study, 
inspired by the methods of evaluation and comparison. It’s worth noting 
that all AOD products, AERONET measurements, land cover types, etc. 
during 2013–2016 are employed to establish the merging framework, 
while the datasets during 2017–2018 are used to evaluate the merged 
AOD product. 

As demonstrated in the flowchart (Fig. 14), the AOD products of 
DB_M, DT, DB_V, and EDR and the AERONET measurements 
(2013–2016) are firstly matched with the approaches described in 

Fig. 11. The seasonal AOD spatial distribution of DB_M, DT, DB_V, and EDR during 2013–2018. The base-map in this figure is the natural earth shaded map and the 
color bar illustrates the AOD values. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. The statistical charts of DB_M, DT, DB_V, and EDR for diverse land cover types in different seasons. The hollow marks represent the means and the ranges of 
solid lines include 68% of the data. 
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Section 3 for different seasons and diverse land cover types. Next, the 
improvable AOD products (for each season and land cover type) will be 
selected to calculate the correction parameters of themselves with the 
polynomial fitting as Eq. (7). 

τAERO ¼
Xn

i¼0
Aiτi

SEN (7)  

where τSEN and τAERO denote the AOD from remote sensing sensors 
(MODIS and VIIRS) and AERONET sites, respectively; A represents the 
correction parameters. The list of correctable AOD products is provided 
in the supplementary materials (Table s2). After correction, the AOD 
products for each season and each land cover type will be sorted ac
cording to the performance and deemed as the sequence template (see 
Table s3 in the supplementary materials) for merging. When the 
sequence template is completed, the datasets during 2017–2018 could 
be utilized to validate the merging framework. First of all, the AOD 
products of DB_M and DT should be resampled to 0.06�with the nearest 
neighbor interpolation (Parker et al., 1983) to eliminate the influence 
from different spatial resolutions. Similarly, the improvable AOD 
products are processed as per the correction parameters (only the data 

falls in the range of AOD values used to calculate the correction pa
rameters will be corrected). For the sequence template, they are ob
tained for the underlying surface of nearly pure single types (>80%), 
while the actual land cover types are usually mixed in each grid (0.06�). 
It seems that the sequence template could not be directly applied. 
However, the spatial resolutions of the AOD products (0.06�) and the 
land cover types (0.005�) differ widely. Therefore, the percentage of 
each land cover type in the grids (0.06�) cloud be calculated, which is 
exactly considered as the weight (see Eq. (8)) to acquire the ideal AOD 
products in the mixed surface. 

τM ¼
X6

l¼1
plτSENðs;lÞ (8)  

where τSENðs;lÞ represents the first valid AOD value from remote sensing 
sensors (MODIS and VIIRS) in the sequence template of the season s and 
land cover type l; plis the percentage of land cover type l; τMdenotes the 
merged AOD product. Compared with the commonly used empirical 
methods, e.g., the customized methods (Bilal et al., 2017), the proposed 
merging framework considers the prior information from ground 
truth-values and adapts an unmixing-like technique (Nascimento et al., 
2005) according to land cover types. An example of merging DB_M, DT, 
DB_V, and EDR for one grid (i, j) is presented in Fig. 15 to clearly show 
the procedure. In this grid, a total of three land cover types are assumed 
and the season is supposed as DJF. On account of the invalid value of 
EDR and the valid range of DB_M, only uncorrected DB_M, DT, and DB_V 
(bold in the sequence template) are merged for this example. 

5.2. Experiment results and discussions 

To roundly evaluate the result of the proposed merging framework, 

Fig. 13. The annual AOD completeness of DB_M, DT, DB_V, and EDR during 2013–2018. The base-map in this figure is the natural earth shaded map and the color 
bar illustrates the AOD completeness. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
The average AOD completeness of DB_M, DT, DB_V, and EDR during for annual 
and different seasons.  

Name Annual DJF MAM JJA SON 

DB_M 20.84% 19.82% 19.21% 21.24% 23.11% 
DT 8.09% 7.41% 7.65% 9.23% 8.05% 
DB_V 18.71% 18.62% 18.08% 17.71% 20.44% 
EDR 8.51% 7.81% 7.94% 10.49% 7.74%  
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the land cover types are considered in the evaluation (similar to Section 
3.3). As listed in Table 3, the merged AOD product achieves a good 
performance, seen from the counts of the top two metrics (bold and 
underlined). Overall, the R and the RMSE for the merged AOD product 
are 0.904 and 0.13, respectively. Meanwhile, the number of matched 
points (6086) is significantly improved compared to other AOD products 
(4048, 2831, 3862, and 4013). It’s believed that the merging framework 
could effectively discard the dross and select the essence from the AOD 
products of DB_M, DT, DB_V, and EDR. To be specific, the un
derestimations of AOD values for all AOD products in forest are miti
gated after merging, with the fraction within EE of 72.18% and the RMB 
of 1.04. The overestimations of AOD values for DB_M and DB_V in arid 
lands are also reduced. However, the Rs for the merged AOD product are 
around 0.8 in savannas and grasslands, which likely results from the bad 
quality of DB_M (0.755) and DT (0.425). 

With regard to the completeness of valid AOD values, the annual 
AOD completeness during 2013–2018 of DB_M, DT, DB_V, EDR, and the 
merged AOD product is mapped in Fig. 16. As can be discovered, the 
annual AOD completeness of the merged AOD product exceeds those of 
DB_M, DT, DB_V, and EDR, with different degrees of improvement. For 
instance, the average annual AOD completeness is increased from 8.2% 
to 19.03%–28.69% for DT (20.49%) and DB_V (9.66%), respectively 
(see Table 4). By comparison to a single AOD product, the improvements 
of the annual AOD completeness after merging still vary in different 
regions of which the land cover types are diverse. As listed in Table 4, 
the most significant improvements are considered in the regions of 
croplands and urban. Even compared to the largest average annual AOD 
completeness in these land cover types, the increment of the average 
annual AOD completeness is more than 10% after merging. 

Fig. 14. The flowchart of SL-SGW. ※: only the data falls in the range of AOD values used to calculate the correction parameters will be corrected.  

Fig. 15. An example of merging DB_M, DT, DB_V, and EDR for one grid (i, j). The symbol * represents the corrected AOD product.  
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6. Conclusions 

The first purpose of this paper is to evaluate and compare the latest 
AOD products from MODIS and VIIRS (DB_M, DT, DB_V, and EDR) 

during 2013–2018 in Asia. The principal conclusions are as follows: 1) 
Overall, the AOD product of DB_V achieves the best performance, with 
the R of 0.91 and the RMSE of 0.14. At the same time, the performance of 
DB_M and DT are acceptable, with similar metrics. On the contrary, the 

Table 3 
The comparison of DB_M, DT, DB_V, EDR, and the merged AOD product against AERONET during 2017–2018 for diverse land cover types. The bold and underlined 
denote the best and the second-best metrics, respectively. The shade of gray highlights the merged AOD product. FA: the fraction above EE; FW: the fraction within EE; 
FB: the fraction below EE.  

Land cover Name N R RMSE Bias FA FW FB RMB 

All DB_M 4048 0.871 0.17 0.023 23.59 61.71 14.7 1.07 
DT 2831 0.909 0.14 0.035 25.57 62.13 12.29 1.1 
DB_V 3862 0.907 0.13 0.013 19.08 69.52 11.39 1.04 
EDR 4013 0.798 0.17 ¡0.003 24.35 54.9 20.76 0.99 
Merged 6086 0.904 0.13 0.032 24.35 68.49 7.16 1.1 

Forest DB_M 127 0.91 0.12 � 0.073 2.36 53.54 44.09 0.69 
DT 144 0.927 0.09 � 0.041 8.33 59.72 31.94 0.82 
DB_V 127 0.907 0.11 � 0.064 3.94 52.76 43.31 0.71 
EDR 230 0.894 0.11 � 0.032 15.65 56.96 27.39 0.86 
Merged 248 0.926 0.08 0.009 18.15 72.18 9.68 1.04 

Savannas DB_M 42 0.755 0.07 � 0.006 7.14 83.33 9.52 0.94 
DT 49 0.889 0.06 � 0.014 8.16 79.59 12.24 0.89 
DB_V 39 0.888 0.05 � 0.022 0 92.31 7.69 0.78 
EDR 49 0.875 0.06 � 0.028 4.08 85.71 10.2 0.76 
Merged 59 0.822 0.06 0.005 8.47 86.44 5.08 1.04 

Grasslands DB_M 120 0.819 0.07 � 0.024 8.33 71.67 20 0.82 
DT 100 0.425 0.14 0.105 69 30 1 1.75 
DB_V 177 0.877 0.06 0 12.99 79.66 7.34 1 
EDR 8 0.794 0.19 � 0.042 12.5 37.5 50 0.86 
Merged 219 0.815 0.07 0.022 22.37 73.97 3.65 1.16 

Croplands DB_M 339 0.815 0.29 0.016 22.12 51.33 26.55 1.03 
DT 331 0.919 0.18 0.053 25.68 62.84 11.48 1.1 
DB_V 336 0.891 0.17 ¡0.015 13.39 71.73 14.88 0.97 
EDR 441 0.748 0.27 � 0.129 9.3 44.67 46.03 0.75 
Merged 440 0.896 0.19 0.023 20.45 70.91 8.64 1.04 

Urban DB_M 437 0.928 0.23 0.109 38.67 57.44 3.89 1.29 
DT 155 0.927 0.26 0.212 74.84 24.52 0.65 1.53 
DB_V 466 0.97 0.1 0.024 14.59 79.61 5.79 1.06 
EDR 192 0.801 0.26 0.17 62.5 32.81 4.69 1.48 
Merged 484 0.957 0.14 0.043 17.15 79.55 3.31 1.1 

Arid lands DB_M 756 0.848 0.13 0.07 41.27 54.23 4.5 1.28 
DB_V 589 0.895 0.19 0.102 45.84 52.29 1.87 1.44 
Merged 846 0.87 0.11 0.01 20.09 69.86 10.05 1.04  

Fig. 16. The annual AOD completeness of DB_M, DT, DB_V, EDR, and the merged AOD product during 2017–2018. The base-map in this figure is the natural earth 
shaded map and the color bar illustrates the AOD completeness. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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AOD quality of EDR is considered poor, of which the fraction within the 
EE is only 55.05%. 2) The deviations for DB_M, DT, DB_V, and EDR 
periodically fluctuate with different levels as time moves forward. 
Generally, the AOD product of DB_V overcomes others with the smallest 
overall deviation. Meanwhile, the largest positive and negative de
viations are observed in DT and EDR, respectively. 3) The performance 
of each AOD product is different in the regions with diverse land cover 
types. Especially, all AOD products will generally underestimate the 
AOD values in forest; DB_V performs better than DB_M in croplands and 
urban, while the overestimation of DB_V is larger than that of DB_M in 
arid lands. 4) The distribution of high AOD values for DT and EDR shows 
difference in four seasons, which is dominated by multiple factors, such 
as anthropogenic activities. With regard to DB_M and DB_V, apart from 
the seasonal variations, the high AOD values also distribute in arid lands 
in MAM and JJA. Except for the bright surface, the seasonal AOD spatial 
distribution is similar for the AOD products of DB_M, DT, DB_V, and 
EDR. 5) The small annual AOD completeness of all AOD products usually 
distributes in the North and some islands in the South. For DB_M and 
DB_V, the annual AOD completeness tends to be large in the Southwest 
(arid lands). As for DT and EDR, the large annual AOD completeness 
principally distributes in India, where the primary land cover type is 
croplands. 

Next, a novel grid-based merging framework (SL-SGW) is proposed 
to acquire the AOD product with the best performance and the largest 
AOD completeness of DB_M, DT, DB_V, and EDR as much as possible. All 
AOD products, AERONET measurements, land cover types, etc. during 
2013–2016 are employed to establish the merging framework, while the 
datasets during 2017–2018 are used to evaluate the merged AOD 
product. The experiment results show that the R and the RMSE for the 
merged AOD product are 0.904 and 0.13, respectively. Meanwhile, the 
number of matched points (6086) is significantly improved compared to 
other AOD products. It’s believed that the merging framework could 
effectively absorb the strengths of the AOD products of DB_M, DT, DB_V, 
and EDR. At the same time, the underestimations of the AOD values for 
all AOD products in forest and the overestimations for DB_M and DB_V in 
arid lands are both mitigated after merging. The AOD completeness of 
the merged exceeds those of other AOD products for all land cover types, 
particularly in croplands and urban. 
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