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ARTICLE INFO ABSTRACT

This study attempted to develop a point-surface collaborative inversion (PSCI) method for the estimation of
regional surface soil moisture (SSM) using a generalized regression neural network (GRNN) trained on sparse
ground-based measurements. Specifically, GRNN was employed to establish a nonlinear relationship between
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Keywords: ground-based measurements from sparse network stations (SNSs) and passive microwave observations from the
Soil moisture Soil Moisture Active Passive (SMAP) satellite in the continental U.S. for April 2015 to March 2018. More im-
Data fusion portantly, the extended triple collocation (ETC) technique was applied to address the scale mismatch issue
GI?NN . resulting from the small spatial support of ground-based measurements, whereby individual SNSs’ reliability at
r&‘:‘;wave remote sensing the SMAP coarse footprint scale could be determined before fed into GRNN. The 10-fold cross-validation results

showed that the GRNN model trained on reliable SNSs obtained a satisfactory performance—the cross-validated
R and unbiased RMSE values were 0.88 and 0.050 cm® cm ™3, respectively, which outperformed the back-pro-
pagation neural network (BPNN) and the other GRNN model trained on all SNSs. Furthermore, temporal and
spatial comparisons between the PSCI-based SSM retrievals and other SSM datasets indicated the former agreed
the best with ground measurements both in time and space, suggesting the proposed PSCI method had shown
great potential in estimating reliable regional SSM climate records.

Triple collocation

1. Introduction

Soil moisture is a key climate variable in the global water cycle
budget and influences the partitioning of water and energy fluxes be-
tween the terrestrial surface and the atmosphere (Entekhabi et al.,
1996). An improved observational understanding of soil moisture will
therefore contribute to better monitoring of natural hazards, such as
drought (Trenberth and Guillemot, 1995) and flooding (Viterbo and
Betts, 1999), and give us a better idea of the plant growth (Williams and
Albertson, 2004), crop yield (Rosenzweig et al., 2002), future climate
change (Seneviratne et al., 2010), etc.

Microwave remote sensing provides a unique opportunity to esti-
mate regional/global-scale surface soil moisture (SSM hereinafter) with
satisfactory temporal coverage, thanks to the all-weather and all-time
sensing ability of microwave electromagnetic waves (Njoku and

Entekhabi, 1996; Wigneron et al., 1998). In particular, various micro-
wave sensors onboard satellites, including both passive (e.g., the Ad-
vanced Microwave Scanning Radiometer - Earth observing system
(AMSR-E) onboard the Aqua satellite, and its successor, AMSR-2 on-
board the Global Change Observation Mission for Water (GCOM-W)
satellite) and active (e.g., the Advanced SCATterometer (ASCAT) on-
board the series of Meteorological Operational (MetOp) satellites), have
been intensively exploited to estimate SSM in the past four decades.
Nevertheless, the first dedicated SSM mission—Soil Moisture and Ocean
Salinity (SMOS)—was not launched until 2009 by the European Space
Agency (ESA), then followed the Soil Moisture Active Passive (SMAP),
the second and the most recent SSM-dedicated mission launched by the
National Aeronautics and Space Administration (NASA) in 2015
(Entekhabi et al., 2010a; Kerr et al., 2010). By carrying the optimal L-
band instruments for sensing the moisture content for the top ~5cm
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depth of soil (i.e., SSM), these two missions are devoted to producing
long-term and global SSM products with the accuracy requirement of
0.04cm® cm ™2 volumetric soil moisture unbiased root-mean-square
error (ubRMSE) (Entekhabi et al., 2010a; Kerr et al., 2016).

Traditionally, the methodology used to produce the official SMOS
and SMAP SSM products is through the inversion of radiative transfer
models (RTMs) (Kerr et al., 2012; O’Neill et al., 2015). The RTM de-
scribes the thermal emission from the terrestrial surface, linking surface
soil moisture to satellite brightness temperature observations. However,
this emission process is affected by a large number of interacting factors
(e.g., soil texture, surface roughness, topography, temperature, and
vegetation coverage). The nonlinearity of this process also poses tech-
nical difficulties in quantifying the complex physical relationships.
Hence, in order to minimize the uncertainties and enhance the retrieval
accuracy from remote sensing data, artificial neural networks (ANNs)
have been widely employed for implementing the soil moisture re-
trieval algorithms over the past two decades (Aires et al., 2005; Chai
et al.,, 2009; Kolassa et al., 2013, 2016, 2018; Rodriguez-Fernandez
et al., 2015; Santi et al., 2016). ANNs present several advantages over
RTM inversions, including the potential in mapping any kind of in-
put-output relationship without an explicit parameterization of phy-
sical relationships, the ability to handle numerous data from nonlinear
systems, and the flexibility in combining information from different
sources.

In general, ANN-based algorithms for the retrieval of large-scale
SSM are implemented through using global land surface model (LSM)
simulations as references to train ANNS, given LSMs are able to provide
soil moisture estimates at the desired temporal and spatial resolution
(Bierkens et al., 2015). Several studies have utilized this approach to
retrieve SSM at global scale from either passive or active instruments or
a combination of the two (Aires et al., 2005; Jiménez et al., 2013;
Kolassa et al., 2013). Recently, the global retrieval of SSM for both
SMOS and SMAP using ANNs are accomplished by Rodriguez-
Fernandez et al. (2015) and Kolassa et al. (2018), taking the well-
known European Centre for Medium-Range Weather Forecasts
(ECMWF) model and the Goddard Earth Observing System version 5
(GEOS-5) model as references to train the algorithms, respectively. In
addition, there are also studies focusing on using ANNSs to test the a
priori merging of active and passive instruments, such as ASCAT and
AMSR-E (Kolassa et al., 2016, 2017). It was found that such synergy
strategy could give much better results than the a posteriori merging of
the individual retrievals from each sensor.

However, the problem to train an ANN with LSM simulations is that
every LSM is affected by significant uncertainties due to the errors of
model parameter estimates, since soil processes are extremely difficult
to parameterize (Vereecken et al., 2016). Hence, SSM retrievals using
LSM simulations as references are prone to suffering from uncertainties
too and should be treated with caution. In contrast, high-accuracy
ground-based soil moisture can be measured directly using in-situ de-
vices inserted into the soil at various depths. Although a great number
of large-scale (> 100%2km?) soil moisture networks (Vinnikov et al.,
1999) have been set up over the globe in the last few decades, they are
primarily served for the calibration/validation of satellite SSM products
as the site distribution is too sparse to produce soil moisture maps at
regional to global scales. Then arises the question: is there any possi-
bility to use ground-based measurements instead of LSM simulations as
references to train an ANN for the large-scale SSM retrieval?

To our knowledge, few studies have investigated the potential of
training an ANN with ground-based measurements for the regional/
global retrieval of SSM. For instance, (Rodriguez-Fernandez et al.,
2017) preliminarily used ground-based measurements from three
sparse soil moisture networks to train an ANN for the continental-scale
retrieval of SSM from SMOS observations in North America. In addition,
(Xu et al., 2018) proposed a multi-source data fusion method based on
the generalized regression neural network. They showed that it is ef-
fective to use this approach for the quality improvement of SMAP
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retrievals by training the SMAP Level 3 radiometer SSM product with
ground-based measurements from five sparse networks in the western
continental U.S. However, these studies didn’t try to address the spatial-
scale mismatch issue, the biggest problem to train a neural network
with ground-based measurements, resulting from the spatial re-
presentation difference between the point support (~1 m?) of in-situ
probes and large footprint (tens of km?) of microwave remote sensing
sensors. Certainly, this can add huge uncertainty to the training process
of neural networks that takes satellite observations as input and
ground-based measurements as references.

Solving the (spatial-)scale mismatch issue between in-situ and re-
motely-sensed data remains a major challenge. In response to this
problem, previous studies (Crow et al., 2012; Famiglietti et al., 2008)
have been earlier characterized the behavior of SSM variability across
spatial scales and analyzed the upscaling errors from the sparse ground-
based measurements for the validation of the coarse-resolution satellite-
based SSM products. The triple collocation (TC) technique (Stoffelen,
1998) was found more appropriate as an upscaling approach capable of
compensating for the impact of random measurement error on ground-
based measurements, after comparing it with other sophisticated SSM
upscaling strategies, such as the time stability approach and the block
kriging algorithm (Crow et al., 2012). Furthermore, Chen et al. (2017)
first applied the extended version of TC (ETC) method (McColl et al.,
2014) to assess the spatial representativeness of the sparse ground-
based measurements within the satellite footprint for the validation of
the SMAP Level-2 radiometer SSM product.

Another point worth noting is that in most of the above publications
that use ANNs to retrieve large-scale SSM, the back-propagation neural
network (BPNN) configuration is proposed. However, in spite of the
popular utilization of BPNN as shown by these studies, it has several
limitations such as slow convergence and easily being trapped by a
local minimum instead of finding the global minimum error surface
(Yu, 1992). In addition, BPNN needs too much human manipulation as
to the determination of the number of hidden layers and neurons. An
alternative to BPNN that avoids above weakness is the generalized re-
gression neural network (GRNN). GRNN is basically an associative
memory feed-forward type of ANN (Al-Mahasneh et al., 2018), which
possesses many advantages: the network is able to learn from the
training data by “one-pass” and does not require an iterative procedure;
there is only one free parameter (called the “spread” parameter) in the
network; GRNN estimation is always able to converge to a global so-
lution. Numerous studies have demonstrated the superiority of GRNN
over BPNN (Cigizoglu and Alp, 2006; del Rosario Martinez-Blanco
et al., 2016; Konate et al., 2015; Li et al., 2017b; Xu et al., 2018). This
makes GRNN one of the most popular networks in environmental
monitoring from remote sensing data, such as evapotranspiration
modeling (KISI, 2006), fine particulate matter (PM,s) estimation (Li
et al., 2017b), forest cover estimation (Boyd et al., 2002), solar radia-
tion derivation (Senkal, 2010), SSM retrieval (Ozerdem et al., 2017; Xu
et al., 2018), etc.

Inspired by these facts above, in this study we develop a novel
“point-surface collaborative inversion (PSCI)” method for estimating
regional SSM from SMAP brightness temperature (TB) observations and
other auxiliary data, using ground-based measurements from sparse
network stations (SNSs) as references to train GRNN in the continental
U.S. for April 2015 to March 2018. To address the scale mismatch issue,
the ETC technique is applied to select reliable SNSs before the GRNN
training, thereby the established TB-SSM relationship can become more
representative. The best trained GRNN model is then implemented
through the proposed PSCI process to produce regional SSM maps.

The rest of this paper is organized as follows. Section 2 summarized
the characteristics of CONUS, and datasets used for the development of
the proposed PSCI method as well as for the construction of the ETC
triplet. Section 3 describes the ETC method for the selection of reliable
SNSs and the PSCI procedure for SSM estimation based on GRNN.
Section 4 demonstrates the results of the selected reliable SNSs using
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ETC, the performance of the GRNN model validated through the 10-fold
cross-validation technique, and the spatial and temporal evaluation
results of the PSCI-based SSM retrievals. Section 5 provides a summary
and puts forward an outlook for future developments.

2. Study area and data
2.1. Study area

The study area of our research is the Continental U.S. (CONUS). The
CONUS, which borders both the North Atlantic and North Pacific
Oceans and is bordered by Canada and Mexico, has a varied topo-
graphy. The eastern regions consist of hills and low mountains while
the central interior is a vast plain (called the Great Plains region), and
the west has high rugged mountain ranges. There are three major
mountain ranges in CONUS that run north to south: the Appalachian
Mountains located in the east, the Rocky Mountains in the central west,
and the Sierra Nevada & Cascade Mountains in the west. Interspersed
throughout are the Great Lakes in the northeast, the Mississippi River in
the Midwest, the Great Salt Lake in the west, and the Grand Canyon in
the southwest. Like its topography, the climate of CONUS also varies
depending on location. It is considered mostly temperate but is tropical
in the southeastern regions (e.g., Florida), semiarid in the plains west of
the Mississippi River and arid in the Great Basin of the southwest. The
Pacific Northwest is one of the wettest parts of CONUS and is densely
forested. The Rocky Mountains, Sierra Nevada & Cascades have typical
highland climates and are also heavily forested.

There are several reasons why we chose CONUS as the study area.
To begin with, large-scale and long-term soil moisture networks, such
as the Soil Climate Analysis Network (SCAN) and the U.S. Climate
Reference Network (USCRN), are spread across the whole CONUS
(Fig. 1). Hence, enough ground samples that overlap with satellite-
based data sets can be obtained to perform the subsequent collaborative
inversion process. In addition, all soil moisture sites are evenly dis-
tributed in this region, though a relatively higher density appears in the
rugged west. Moreover, operational soil moisture networks using new
ground measurement technologies (namely the COsmic-ray Soil
Moisture Observing System (COSMOS) network and the PBO H20
network) that can provide larger spatial support of soil moisture

Journal of Hydrology 580 (2020) 124351

measurements than typical point measurements derived from in-situ
devices, are also deployed in this area. Such measurements are also
supposed to weaken the scale mismatch issue resulting from the small
spatial support of sparse ground-based measurements to a certain de-
gree.

2.2. SMAP brightness temperature (TB) observations

Launched on 31 January 2015, the SMAP mission is operated by
NASA and is equipped with both a radiometer (passive, 1.41 GHz) and a
high-resolution radar (active, 1.26 GHz), dedicated to measuring SSM
at L-band, with a fixed incidence angle of 40°, a revisit time of ~3 days
at the equator, and 6:00 a.m. (descending)/6:00p.m. (ascending) local
equatorial overpass times (Entekhabi et al., 2010a). Although the SMAP
radar has failed since 7 July 2015 (Chan et al., 2016), the SMAP
radiometer remains to operate as planned. This L-band radiometer
observes the earth on four different channels: horizontal (H) and ver-
tical (V) polarization as well as the 3rd and 4th Stokes parameter. The
first two channels are the primary science channels that are directly
sensitive to SSM, while the 3rd and 4th Stokes parameters are used to
help detect the radio frequency interference (Piepmeier et al., 2014).

The SMAP Level-3 global daily brightness temperature (TB) product
(SPL3TB, version 5) (O'Neill et al., 2018), which is resampled to a
global cylindrical 36-km Equal-Area Scalable Earth grid version 2
(EASEv2) (Brodzik et al., 2012), was used in this study for the esti-
mation of SSM. The observed TB has been adjusted for the presence of
water bodies and corrected for atmospheric and reflected Sky radiation
contributions from SMAP Level-1C TB observations (De Lannoy et al.,
2015). We utilized TB observations at both H and V polarizations only
from the 6:00a.m. descending overpass, for the reason that vertical
profiles of soil and canopy temperatures are expected to be more uni-
form during early morning overpasses than during other times of the
day (Basharinov and Shutko, 1975). Note the SPL3TB product is actu-
ally provided within the SMAP Level 3 radiometer SSM product in-
troduced below.
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Fig. 1. Study area of CONUS and distribution of eight ground-based soil moisture networks: the COsmic-ray Soil Moisture Observing System (COSMOS) network, the
interactive Roaring fork Observation Network (iRON), the PBO H20 network, the Real-time In-situ Soil Monitoring for Agriculture (RISMA) network, the Soil Climate
Analysis Network (SCAN), the SNOwpack TELemetry (SNOTEL) network, the Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) network, the U.S.

Climate Reference Network (USCRN).
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2.3. Surface soil moisture (SSM) datasets

2.3.1. Satellite-based SSM retrievals from SMAP

The SMAP Level-3 radiometer global daily 36-km EASEv2-grid soil
moisture (SPL3SMP, version 5), which is a composite of Level-2 half-
orbit soil moisture over one day, is available since 31 March 2015
(O'Neill et al., 2018). In fact, the retrieval of SSM from SMAP TB ob-
servations occurs in the Level-2 processing, which currently uses the V-
pol Single Channel Algorithm (SCA-V) as the baseline retrieval algo-
rithm (Chan et al., 2016; Zeng et al., 2016), developed on the basis of
the well-known physical tau-omega model (O’Neill et al., 2015;
Wigneron et al., 1995).

The SPL3SMP product was downloaded for the 31 March 2015 to 30
March 2018 period through the NASA National Snow and Ice Data
Center Distributed Active Archive Center (NSIDC DAAC): https://nsidc.
org/data/SPL3SMP. We only made use of SSM retrievals from the 6:00
a.m. descending overpass for the same reason as aforementioned
SPL3TB. In addition, only data pixels that are “recommended for re-
trieval” based on the SMAP quality flag (O’Neill et al., 2015) were used.

2.3.2. Ground-based SSM measurements from sparse network sites (SNSs)

The ground-based SSM measurements used as references for the
subsequent collaborative inversion process are from eight soil moisture
networks distributed across CONUS: the COSMOS network (Zreda et al.,
2008, 2012), the interactive Roaring fork Observation Network (iRON)
(Osenga et al., 2019), the PBO H20 network (Larson et al., 2008b), the
Real-time In-situ Soil Monitoring for Agriculture (RISMA) network (Ojo
et al., 2015), the SCAN network (Schaefer et al., 2007), the SNOwpack
TELemetry (SNOTEL) network (Leavesley et al., 2008), the Soil
moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) net-
work (Moghaddam et al., 2010, 2016), and the USCRN network (Bell
et al., 2013). All these networks are made up of Sparse Network Sites
(SNSs) (defined as the site that typically provides just one single point
measurement within a satellite footprint (Chan et al., 2016; Chen et al.,
2017; Colliander et al., 2017)), thus resulting in the scale mismatch
issue. It is worth noticing that measurements from COSMOS and PBO
H20 are derived based on new SSM measuring technologies, which can
significantly extend the spatial support of point-scale in-situ observa-
tions. The COSMOS network utilizes the so-called “cosmic-ray moisture
probe”, a stationary instrument that measures cosmic-ray neutrons in
the air, whose intensity is inversely related to SSM, to integrates and
produces area-average SSM over a footprint with a horizontal radius of
~500m (Desilets et al., 2010). On the other hand, the PBO H20 net-
work employs the existing geodetic Global Position System (GPS)
equipment, which has been found capable to derive roughly ~1000 m?
SSM, based on its nearly linear relationship with respect to the phase
offset caused by the received multipath signals reflected from the land
surface (Larson et al., 2010, 2008a). Nevertheless, the footprint made
by such technologies is insignificant compared to that sensed through
microwave remote sensing (tens of km?), thus the scale mismatch issue
being unavoidable and demanding to be accounted for.

A total of 921 SNSs’ SSM data from aforementioned eight networks
for the 31 March 2015 to 30 March 2018 period were downloaded
through the International Soil Moisture Network (ISMN) website portal:
https://ismn.geo.tuwien.ac.at/en/, an well-known international co-
operation in the soil moisture community aiming to establish and
maintain a global in-situ soil moisture database (Dorigo et al., 2011).
Fig. 1 shows the spatial distribution of the SNSs in the study area and
Table 1 summaries the characteristics of each network.

Only the shallowest measurements representing the moisture con-
tent of the topsoil (i.e., SSM) were considered, trying to be consistent
with the sensing depth (~5 cm) of the L-band satellite. It is worth no-
ticing that sampling depth can be different among various in-situ sen-
sors. For example, COSMOS network measures SSM within the 0-8 cm
topsoil layer, which is several centimeters deeper than the typical pe-
netration depth of the L-band satellite data (0-5 cm), while PBO H20
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network measures the identical depth of SSM to that of the L-band sa-
tellite data. Most of the other networks measure SSM at ~5cm.
Additionally, SSM measurements that are not with “good” quality based
on the ISMN quality flag (Dorigo et al., 2013) were masked out. The
time series of ground-based SSM measurements from each SNS are re-
corded at one-hour intervals, except for the PBO H20 network, which
provides only one SSM estimate for each day (recorded at 12:00 UTC).
For the hourly SSM time series, only measurements that are closest to
the SMAP 6:00a.m. local equatorial overpass time using a 3-hour
window for each day was taken to generate a daily time record. A least
of 30 daily measurements during the study time period was required for
each site.

2.3.3. Model-based SSM simulations from ERA-Interim

ERA-Interim is a model-based dataset released by ECMWF, showing
the results of a global climate reanalysis from 1979 to date and con-
tinuing to be updated in near-real-time (Dee et al., 2011). It uses the
Tiled ECMWF Scheme for Surface Exchange over Land (H-TESSEL) land
surface model (Viterbo et al., 1999; Viterbo and Beljaars, 1995) to solve
for a variety of parameters including a four-layer soil profile (0-7, 7-28,
28-100, and 100-289 cm), provided every 6 h (0:00, 6:00, 12:00, and
18:00 UTC) (Berrisford et al., 2011). The data are archived and can be
freely accessed at the ECMWF website portal: https://apps.ecmwf.int/
datasets/data/interim-full-daily.

Here, only the upper layer (0-7 cm) soil moisture, provided on a
regular 0.25° spatial resolution, was used. Simulations at each point of
time (0:00, 6:00, 12:00, and 18:00 UTC) were aggregated to a daily
average. They were further regridded to 36-km EASEv2 grids to be
consistent with SMAP data. In addition, we applied quality control to
the model-based SSM simulations by using the upper layer (0-7 cm) soil
temperature from ERA-Interim to identify times and grids where the
soil temperature is below 1 °C. These data were deemed not feasible to
generate SSM and were masked out (Kolassa et al., 2018).

2.4. Auxiliary data

In addition to TB observations, we take advantage of another two
datasets as auxiliary input to our model; they are also required as
auxiliary data in the SMAP soil moisture retrieval algorithm, which
include: 1) surface soil temperatures (Ts hereinafter) from the NASA’s
GEOS-5 land modeling system, utilized to determine the soil surface
emissivity from TB observations, and 2) vegetation water contents
(VWC hereinafter) based on an empirical relationship with respect to
the normalized difference vegetation index from MODIS, used to cor-
rect the vegetation effects. For a detailed description of the two data-
sets, readers can refer to the “SMAP Level 2 & 3 Soil Moisture (Passive)
Algorithm Theoretical Basis Document” (O’Neill et al., 2015).

Like the SPL3TB, Ts and VWC are also provided within the SPL3SMP
product and have already been posted on the same 36-km EASEv2 grid
as SMAP SSM. Note that we excluded Ts values that are below 1 °C and
VWG values that are higher than 5kg/m? because the soil moisture
retrieval is not feasible under such conditions (O’Neill et al., 2015).

3. Methodology

3.1. Extended triple collocation (ETC) technique for the selection of reliable
SNSs

In order to address the scale mismatch issue resulting from the small
spatial support of sparse ground-based measurements which can add
huge uncertainty to the subsequent collaborative inversion process, we
turned to the triple collocation (TC) technique (Stoffelen, 1998).

TC is an analyzing tool for estimating the unknown random error
variances of three collocated datasets of the same geophysical variable,
without treating any one dataset as perfectly observed “truth” (Gruber
et al., 2016). The basic assumptions of TC are: 1) the triplet each are
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Table 1
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Characteristics of the eight ground-based soil moisture networks: the COsmic-ray Soil Moisture Observing System (COSMOS) network, the interactive Roaring fork
Observation Network (iRON), the Real-time In-situ Soil Monitoring for Agriculture (RISMA) network, the Soil Climate Analysis Network (SCAN), the SNOwpack
TELemetry (SNOTEL) network, the Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) network, the U.S. Climate Reference Network (USCRN), and

the PBO H20 network.

Name # of stations Available time Depth (cm) Temporal resolution  Sensor

COSMOS 3 2008/04- 0-8 Hourly Cosmic-ray Probe

iRON 7 2012/08-2017/01 5 Hourly ECS5, EC5 I, EC5 II

RISMA 6 2013/04-2017/02 5 Hourly Hydraprobe II Sdi-12

SCAN 179 1996/01- 5.08 Hourly Hydra Probe Digital SDI-12 (2.5V), Hydra Probe Analog (2.5V)

SNOTEL 376 1980/10- 5 Hourly Hydra Probe Analog (5.0 V), Hydra Probe Analog (2.5V), Hydra Probe Digital SDI-12
2.5V)

SoilSCAPE 99 2011/08-2017/03 5 Hourly EC5

USCRN 113 2000/11- 5 Hourly Stevens Hydra Probe II SDI-12

PBO H20 138 2004/09-2017/12  0-5 Daily GPS

linearly related to the (unknown) truth, 2) the error statistics are stable
and do not change over time, 3) the errors of the triplet are mutually
independent of each other, and 4) are independent of the true value as
well. According to the first assumption, the collocated datasets X; can be
related to the true state T via an affine error model:

Xi=ﬁi+rxiT+£i (])

where $ and a refer to the additive and multiplicative bias constants,
respectively; ¢ is the mean-zero additive error, and the subscript i stands
for the three collocated datasets of the same geophysical variable.

The objective of TC is to find a solution that individually estimates
the variance of each ¢; in Eq. (1) based on the above assumptions. To
this end, it is required to choose one dataset from the triplet as a re-
ference and rescale the other two into the same reference data space.
Apparently, this will result in a dependency of the error variance esti-
mates on the climatology of the scaling reference (Draper et al., 2013).
In order to address this issue, McColl et al. (2014) proposed the Ex-
tended Triple Collocation (ETC) method, which is based on exactly the
same assumptions as the original TC and derives an additional perfor-
mance metric, the correlation coefficient of X; with respect to T as
formulated below (Lei et al., 2015):

. | Cov(X;, X)) Cov(X;, Xi)
Rere (T, X;) = sign(+)
Cov(X;, X))Cov(X;, X,)

(2)

where the sign of Rgrc is corrected up by assuming to be always posi-
tive.

In this study, we applied the ETC method to determine the relia-
bility of individual SNS observations in terms of their spatial re-
presentativeness over the SPL3SMP footprint scale (i.e., 36 km EASEv2
grid) following the idea of Chen et al. (2017). First, we constructed the
SSM triplet from satellite-based retrievals (i.e., SMAP), ground-based
measurements (i.e., SNS), and model-based simulations (i.e., ERA-In-
terim), provided that they belong to different types of measuring sys-
tems and none of them are dependent on one another. Then, the Rprc(T,
SNS) can be derived based on Eq. (2), which indicates the relation
between the sparse in-situ measurements and the unknown truth within
the 36-km satellite footprint scale—i.e., it determines the fraction of
footprint-scale SSM dynamics captured by point-scale observations at
individual SNSs. An experimental threshold of 0.7 for Rgrc(T, SNS) was
set, above which the SNSs could be deemed as “reliable”. This threshold
was chosen after testing a series of thresholds ranging from 0.4 to 0.9
with an interval of 0.1, which will be discussed in the Discussion section
(see Section 4.4). Besides, a minimum threshold of 100 triplets was set
to avoid sample impoverishment.

In addition, there also exists the representation difference problem
of penetration depths among different SSM datasets (see Section 2.3)
and among various in-situ sensors (see Table 1). Draper et al. (2013)
had demonstrated that this would have only a marginal impact on the
ETC-derived correlation coefficient.

3.2. Point-surface collaborative inversion (PSCI) method for SSM
estimation

3.2.1. Generalized regression neural network (GRNN) algorithm

The GRNN is a one-pass learning algorithm first introduced by
Specht (1991). The network features fast learning that does not require
an iterative procedure. It is a powerful tool for regression, approx-
imation, fitting, and prediction problems.

Assume a vector random variable, x, and a scalar random variable,
y, are input and output variables, respectively, and can be expressed as
follows:

x = (X1, Xz, 1, %p)

3
4

where p is the dimension of x and n is the number of observations.
Assuming XandY (i=1,2, ...,n) are sample values of x and y, re-
spectively, the regression of y on an input value, X, can then be esti-
mated by GRNN as below:

¥ =00 Y5

Y, YK (X, XP)

Yx) = 2= .
Y KX, X

(5)

K (X, X') = exp(—d?/20?), d? = (X — X)T(X — X') (6)

where K(-,-) stands for the Gaussian kernel and d; is the Euclidean
distance betweenXand X'. Last, o is called the “spread” parameter,
which is the only unknown parameter in the network and needs opti-
mization (see Section 4.2.1). This free parameter affects the level of
fitness in GRNN architecture. The larger the spread, the smoother the
function approximation.

The architecture of GRNN presented in Fig. 2 contains four basic
layers: an input layer, a pattern layer, a summation layer, and an output
layer. The input layer consists of p neurons, where p is the dimension of
the vector variable, x (here p = 7 in our study). It is completely con-
nected to the patter layer, and provides the input measurement, X,
directly to the pattern units. The pattern layer has n nodes, where n is
the number of training samples, and each pattern unit is assigned with a
sample vector, X', in the training data. In each node, the Euclidean
distance between the input vector, X, and the assigned vector, X, is first
calculated and then fed into the Gaussian kernel based on Eq. (6). The
pattern unit outputs are sent to the summation units. The summation
layer has two types of processing units: one is called the “Numerator”
part, the other is the “Denominator” part. The input to the Numerator
unit is the sum of the pattern layer outputs, each weighted by an ob-
served output scalar, Y, corresponding to X' in the training samples,
while the input to the Denominator unit is the sum of the pattern unit
outputs. At last, the output layer has only one neuron, which receives
the two outputs from the summation units and divides the “Numerator”
part by the “Denominator” part (Eq. (5)) to produce an estimate for y
given X. It can be seen from above that GRNN memorizes every unique
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Fig. 2. Schematic of the generalized regression neural network (GRNN) used for SSM estimation.

pattern in the training samples. This is why it is a single-pass learning
network and does not require any back-propagation algorithm.

In this study, the input signals include seven parameters: SPL3TB
observations at both H and V polarizations (TBy, TBy), surface soil
temperatures (Ts) from GEOS-5, vegetation water contents (VWC)
based on MODIS, and coincident time (month) and location (latitude
and longitude) of each SNS. The output signal is SSM. In fact, the es-
sential function of GRNN is to determine a non-linear relationship be-
tween SSM and the primary input—TB observations (i.e., TBy and TBy),
as TB is directly related to SSM. Here, Ts and VWC data are also taken
as auxiliary input fed into GRNN, in order to add contributive in-
formation to the TB-SSM relationship. Besides, coincident month, la-
titude and longitude are used to account for the seasonal variability and
spatial heterogeneity of SSM. Such practice has been commonly carried
out in several previous studies (Li et al., 2017b; Wu et al., 2012; Yao
and Lu, 2014).

3.2.2. Procedures of the proposed PSCI method for SSM estimation

The entire workflow of the methodology in this study is depicted in
Fig. 3. To begin with, ETC method was applied to the triplet constructed
from satellite-, ground- and model-based SSM to identify reliable SNSs.
Then, TB, Ts, and VWC datasets were spatially and temporally matched
using ground-based measurements only from reliable SNSs as refer-
ences, to generate an input—-output training data set. To be specific, the
site-specific SSM data were collocated with the 36-km EASEv2 grid
covering the site. If one grid corresponded more than one sites, then
measurements from these sites were averaged. Afterward, the gener-
ated input—output training data set was fed into the GRNN by taking the
reliable SNSs’ SSM as references to train the network for the 31 March
2015 to 30 March 2018 period. Once trained, the model’s performance
was evaluated using cross-validation technique to identify the best one
by tuning the spread parameter of GRNN to an optimum value. Finally,
the best trained GRNN model was applied to the input datasets for the
whole study area and the whole period to produce maps of PSCI-based
SSM retrievals.

3.3. Model evaluation

The “10-fold cross-validation (CV)” technique (Rodriguez et al.,
2010) is chosen to test the model’s predictive power. This technique is
basically a resampling procedure often used to evaluate machine
learning models on a limited data sample (Li et al., 2017a,b; Ma et al.,
2014). To begin with, all data samples (i.e., SSM measurements from
reliable SNSs in this study) are randomly shuffled and averagely di-
vided into ten groups. Next, each unique group is taken as a hold-out or
test data set, while the remaining nine groups are taken as a training
data set to fit the model. Then, repeat fitting a model on the training set
and evaluating it on the test set for every group. At last, evaluation

scores from all ten rounds will be summarized and averaged to show
how accurately the predictive model performs. The results could also
tell whether the model is over-fitted—i.e., the model performs better on
the training set than on the test set.

Four classic statistical metrics in the soil moisture community were
adopted to give a quantitative assessment of the model performance,
i.e., the Pearson correlation coefficient (R, unitless), the root-mean-
square error (RMSE, cm® em™3), the bias (cm® ecm ™), and unbiased
RMSE (ubRMSE, cm® cm™2). Detailed descriptions of these indicators
are provided in (Entekhabi et al., 2010b).

4. Results and discussion
4.1. Selection of reliable SNSs

The number of reliable and unreliable SNSs for each soil moisture
network at the threshold of 0.7 for the ETC-derived correlation coeffi-
cient is summarized in Table 2. In general, just 372 are considered
reliable, accounting for ~40% of 921 SNSs in total. To be specific, both
COSMOS and iRON remain no site, which is more surprising for
COSMOS since it measures larger spatial support of SSM than typical
point-scale in-situ observations. Perhaps this is because there exist quite
a few COSMOS measurements whose qualities are not “good” based on
the ISMN quality flags, thus being masked out in our research. That is to
say, not enough COSMOS measurements overlap with other SSM da-
tasets at the threshold of 100 triplets for the ETC implementation. For
iRON, this phenomenon is also blamed to the poor qualities of its
measurements, as well as its relatively short data available period
(August 2012 to January 2017, see Table 1) with respect the study
period (March 2015 to March 2018). In contrast, PBO H20, the other
network apart from COSMOS providing large spatial support ground-
based measurements, remains more than half of its sites, which de-
monstrated the promising utility of applying these new ground mea-
surement technologies in the soil moisture community. The RISMA
network kept the biggest proportion (~83%) of SNSs—only one site
considered unreliable, whereas the SNOTEL network left the largest
number of reliable SNSs, though only accounting for ~28% of its sites.

The distribution of the selected reliable SNSs based on the ETC-
derived correlation coefficient in excess of 0.7 from each soil moisture
network is presented in Fig. 4. It appears from the figure that the
number of reliable SNSs is able to cover most of CONUS with many
clustering in the western part. However, there are few or nearly no
reliable SNSs in the northeastern states of CONUS as well as in the
southeast coast, which may be due to the existence of the Appalachian
Mountains along with the small amount of SNSs in the east (see Fig. 1).
In addition, it makes sense that the sites neighboring the sea or lakes are
mostly screened, since the retrieval of satellite-based SSM may be
suspectable or unsuccessful due to the presence of significant water
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Fig. 3. Entire workflow of proposed point-surface collaborative inversion (PSCI) method for SSM estimation.

Table 2

Summary of the reliability of each network.
Networks Reliable Unreliable
COSMOS 0 3
iRON 0 7
PBO H20 73 65
RISMA 5 1
SCAN 86 93
SNOTEL 104 272
SoilSCAPE 56 43
USCRN 48 65

bodies within the satellite sensing footprint.

4.2. Assessment of the GRNN model

4.2.1. Model settings

As mentioned in Section 3.2.1, the “spread” parameter is the only
unknown parameter in the GRNN architecture; therefore its optimum
value requires to be identified prior to the PSCI process for SSM esti-
mation. This parameter affects the level of fitness in GRNN architecture.
Large values of the spread parameter tend to force the estimation to be
smooth, while lower values provide a closer approximation to the
sample values (Specht, 1991). In general, the spread parameter must be
greater than 0 and can usually range from 0.01 to 1 with good results
(del Rosario Martinez-Blanco et al., 2016).

Here, the 10-fold CV technique is utilized to select an appropriate
value for the spread parameter. A series of the spread parameter values
ranging from 0.001 to 1 with the interval of 0.001 were tested to give
the cross-validated performance of the GRNN model. Additionally, in
order to demonstrate the effect of using ETC to address the scale mis-
match issue, two GRNN models were chosen for comparison. One is the
GRNN trained on only reliable SNSs, the other is the one trained on all

SNSs in the study area (i.e., without ETC implementation). The varia-
tions of CV-derived ubRMSE statistics against the spread parameter of
the two models are depicted in Fig. 5. It can be seen that the minimum
ubRMSE for these two GRNN models both appear at the spread value of
0.011. Besides, it is apparent that the performance of the GRNN trained
on reliable SNSs is much better than the one trained on all SNSs, which
suggests the added value of the ETC implementation for the selection of
reliable SNSs. To sum up, the spread parameter is set as 0.011 for each
model.

4.2.2. Algorithm for comparison

In order to give a comprehensive analysis of the GRNN model used
in this study, the popular back-propagation neural network (BPNN) as
mentioned in the Introduction Section was also chosen for comparison.
Here, a three-layer, fully-connected feedforward architecture was con-
structed, with one single hidden layer of the tangent-sigmoid transfer
function, a classical back-propagation training algorithm (Rumelhart
et al., 1995) and a Levenberg-Marquardt approach (Levenberg, 1944;
Marquardt, 1963). Input and output parameters of BPNN are identical
with those in GRNN employed in this study. Likewise, two BPNN
models that are trained on reliable and all SNSs, respectively, were
taken into consideration. According to previous works (Gardner and
Dorling, 1998; Li et al., 2017b; Reich et al., 1999; Xu et al., 2018), the
optimum number of neurons in the hidden layer can be determined
based on the range from 2vn + p to 2n + 1, where n and u are the
number of neurons in the input and output layer. Therefore, by testing a
series of hidden layer neurons ranging from 6 to 16, 15 neurons (which
performed the best using 10-fold CV, not shown) were chosen for the
BPNN model trained on reliable SNSs, while for the one trained on all
SNSs, 16 neurons were selected.

4.2.3. Overall performance of models
Both GRNN and BPNN models were implemented through the same
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Fig. 5. The effect of spread parameter on GRNN performance trained on reli-
able (in blue) and all SNSs (in orange) based on 10-fold cross-validation tech-
nique.

evaluation process using the 10-fold CV, and their obtained perfor-
mances are summarized in Table 3. Note in the table the model fitting
results are from the best fitting model over the 10 rounds of the 10-fold
CV, while the cross-validation results are the 10-round combined. From
the table, it shows that GRNN obtains much better performance than
BPNN, with cross-validated R and ubRMSE values improved by 0.13
(0.08 cm® cm ™ 3) and 0.021 (0.013 cm® ecm ™) for the model trained on
all (reliable) SNSs, respectively. When comparing between the results
using all and only reliable SNSs’ measurements, the models trained on
reliable SNSs significantly outperform those trained on all SNSs, in-
dicating the added value of the ETC implementation for the selection of

Table 3
The 10-fold cross-validation performances of GRNN models compared to BPNN.

of the GRNN model, the evaluation metrics between SSM estimates
using the best trained GRNN model (hereinafter “PSCI-SSM” for short)
and ground-based measurements were calculated over each SNS, in-
cluding both reliable and unreliable sites. For comparison, SPL3SMP is
also chosen to compute its metrics against ground-based measurements
over each SNS. The spatial distribution of the calculated R and ubRMSE
for individual SNSs are depicted in Fig. 7 and Fig. 8, respectively. In
both figures, the redder the points, the better the evaluation metrics.
Generally, the number of red points for both R and ubRMSE against
ground-based measurements has increased a lot for PSCI-SSM with re-
gard to SPL3SMP. According to the statistics, the number of sites with
an R value greater than 0.70 is increased from 372 to 484, whereas the
number of sites with ubRMSE score smaller than 0.04 cm® cm ™3 is more
than doubled from 141 to 346 out of the total 921 SNSs. From a spatial
point of view, for SPL3SMP, high R values in excess of 0.70 are mainly
clustered in the northwestern part of CONUS and sparsely scattered in

Model Used SNSs Model fitting (N = 88059) Cross-validation (N = 97843)
R RMSE bias ubRMSE R RMSE bias ubRMSE
BPNN All 0.75 0.074 0.000 0.074 0.74 0.075 0.000 0.075
Reliable 0.82 0.060 0.000 0.060 0.80 0.063 0.000 0.063
GRNN All 0.97 0.028 0.000 0.028 0.87 0.054 0.000 0.054
Reliable 0.97 0.024 0.000 0.024 0.88 0.050 0.000 0.050
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Table 4

Average statistics of the evaluation of PSCI-SSM and SPL3SMP against ground-based measurements over each network.

Network SPL3SMP Proposed PSCI
R RMSE bias ubRMSE R RMSE bias ubRMSE

COSMOS 0.49 0.104 0.048 0.069 0.75 0.082 —0.029 0.065
iRON 0.50 0.098 —0.038 0.057 0.46 0.091 —0.042 0.063
PBO H20 0.70 0.068 —0.007 0.051 0.73 0.058 0.009 0.048
RISMA 0.75 0.075 0.042 0.048 0.84 0.055 0.017 0.039
SCAN 0.64 0.091 0.032 0.056 0.66 0.074 0.011 0.056
SNOTEL 0.52 0.115 -0.019 0.077 0.69 0.095 —0.021 0.067
SoilSCAPE 0.77 0.087 0.022 0.048 0.82 0.064 —-0.017 0.039
USCRN 0.68 0.106 0.044 0.052 0.63 0.087 0.022 0.056

the mid to mid-east, while for PSCI-SSM, there are more red points
gathering in the mid to western regions, and high R values over 0.90 are
further improved. Additionally, the majority of ubRMSE values for
SPL3SMP is at the intermediate level (0.040 to 0.080 cm® cm ™), while
for PSCI-SSM, a great number of ubRMSE values less than 0.040 cm®
cm 3 appear. The above consequences indicate a generally satisfactory

10

predictive power of the GRNN model. However, it is also worth noticing
that in the northeastern states and along the southeast coast, both R and
ubRMSE against ground-based measurements obtain little improvement
for PSCI-SSM with respect to SPL3SMP, which is supposed to have
something to do with the lack of reliable SNSs in these regions (see
Fig. 4). This suggests a further refinement of our approach regarding a
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(SPL3SMP), (c) ERA-Interim model simulations, and (d) ground-based measurements from all SNSs.
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(continued)

Average statistics of the evaluation of SSM retrievals using GRNN models trained on ERA-Interim simulations (“ERA-PSCI-SSM”) and reliable SNSs (“SNS-PSCI-SSM”)

against ground-based measurements over each network.

Network ERA-PSCI-SSM SNS-PSCI-SSM
R RMSE bias ubRMSE R RMSE bias ubRMSE

COSMOS 0.38 0.109 —0.004 0.069 0.75 0.082 —0.029 0.065
iRON 0.43 0.085 0.038 0.058 0.46 0.091 —0.042 0.063
PBO H20 0.66 0.109 0.087 0.058 0.73 0.058 0.009 0.048
RISMA 0.70 0.071 0.016 0.055 0.84 0.055 0.017 0.039
SCAN 0.55 0.112 0.063 0.059 0.66 0.074 0.011 0.056
SNOTEL 0.57 0.118 0.062 0.074 0.69 0.095 —0.021 0.067
SoilSCAPE 0.75 0.119 0.091 0.047 0.82 0.064 —0.017 0.039
USCRN 0.57 0.117 0.072 0.057 0.63 0.087 0.022 0.056

flexible selection of reliable SNSs in the regions with a limited quantity
of ground stations.

Further, the quantitative evaluation metrics over each SNS were
averaged on the basis of individual soil moisture networks for PSCI-SSM
and SPL3SMP, respectively, in order to get a general idea of the pre-
dictive power of GRNN over each network (Table 4 and Fig. 9). Note
that the mean values were only computed when a site has a p-
value < 0.05. It can be seen from Table 4 and Fig. 9 that PSCI-SSM
outperforms the SPL3SMP over most of the soil moisture networks.
Specifically, PSCI-SSM obtains higher R values than SPL3SMP over six
soil moisture networks out of the total eight networks, except for iRON
and USCRN. However, the R differences over iRON and USCRN are very
small—only 0.04 and 0.05 for each, respectively. The most significant
difference for R is observed over COSMOS where the mean R value has
increased by 0.26 for PSCI-SSM with regard to SPL3SMP. As for the
mean RMSE, all networks have experienced a decline from SPL3SMP to
PSCI-SSM, with the biggest decrease obtained over SoilSCAPE from
0.087 cm® cm ™3 to 0.064 cm® cm 3. Likewise, ubRMSE scores of PSCI-
SSM outperforms SPL3SMP over six networks. All these results suggest
that the GRNN model can generally predict accurate SSM estimates.

4.2.5. Evaluation of the PSCI-based SSM retrievals

Based on the above results, the best trained GRNN model is applied
to the SPL3TB observations and other auxiliary input for the whole
study area and the whole study period, thereby maps of SSM retrievals
based on the proposed PSCI method are generated. Fig. 10 displays the
annual mean SSM map of the year 2017 for PSCI-SSM, in comparison
with the aforementioned SSM triplet—the SPL3SMP product, ERA-In-
terim simulations, and ground-based measurements. Note the ground-
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based SSM measurements are from all SNSs and used as the benchmark
(Fig. 10(d)).

In general, all three surface products (i.e., PSCI-SSM, SPL3SMP, and
ERA-Interim) show low SSM in the west, with an increase toward the
east, which agrees with the topography across CONUS as described in
Section 2.1-the west is more arid than the east. Among them is PSCI-
SSM that reveals the most similar spatial pattern with ground-based
SSM than both SPL3SMP and ERA-Interim. Besides, areas neighboring
the sea or lakes generally have high SSM. However, SPL3SMP shows
extremely high SSM at the regions adjacent to water bodies, indicating
these retrievals are questionable or of bad quality due to the presence of
water bodies within the 36-km satellite footprint. Additionally, ERA-
Interim displays a too smooth spatial pattern in general, which is dif-
ficult to capture the spatial variations of SSM. The two issues of
SPL3SMP and ERA-Interim are overcome in PSCI-SSM, suggesting our
proposed PSCI method performs comparatively well in space.

Furthermore, in order to deepen our understanding of the temporal
variations of our PSCI-SSM product, coincident time series from all SSM
datasets except for ERA-Interim (for brevity) were inter-compared for
each common 36-km EASEv2 grid. Four examples of such grids are il-
lustrated in Fig. 11. Note that the “non-recommended” retrievals in the
SPL3SMP product are also displayed for a more comprehensive com-
parison.

From the figure, a generally better agreement in temporal variations
can be seen between PSCI-SSM and site-specific SSM time series than
SPL3SMP. The absolute values of PSCI-SSM are much closer to site-
specific time series than SPL3SMP. On one hand, “unrecommended”
retrievals in SPL3SMP time series (e.g. Fig. 11(c) and (d)) are pro-
foundly corrected in PSCI-SSM. On the other hand, the “recommended”
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retrievals in SPL3SMP are also modified in PSCI-SSM time series to
more approximate the SSM values of the site-specific time series.
Moreover, sharp rises in SSM time series usually following precipitation
or irrigation events are precisely captured by PSCI-SSM for most si-
tuations. More importantly, while over- and under-estimation do exist
in PSCI-SSM time series, the biases are small compared to SPL3SMP. All
these findings above suggest that our proposed PSCI approach can
produce commendably accurate SSM retrievals whose spatial and
temporal patterns are more consistent with ground-based measure-
ments than the official SMAP Level-3 radiometer SSM product.

5. Discussion

As mentioned in Section 1, the inspiration for this work is to replace
the widely use of uncertain LSM simulations as training references with
high-accuracy ground-based measurements. Therefore, it is necessary to
compare these two different datasets by taking them as references to
train the networks, respectively. Here, the GRNN model trained on
model SSM simulations from regridded (36-km EASEv2) ERA-Interim
was used to run the PSCI process for the same study area and the same
study period as previous sections. A spread parameter of 0.01 was set,
which gave the best model performance. This model was then com-
pared to the previous GRNN model trained on reliable SNSs. To be fair,
only model simulations that correspond with 36-km EASEv2 grids
covering the reliable SNSs were taken into consideration. A ground-
based comparison between SSM estimates using GRNN trained on ERA-
Interim model simulations (hereinafter “ERA-PSCI-SSM” for short) and
those using GRNN trained on reliable SNSs’ measurements (hereinafter
“SNS-PSCI-SSM” for short, which is identical to the “PSCI-SSM” in
previous sections) was drawn to evaluate the models’ predictive power
over each network (Table 5 and Fig. 12). Note that the averaged metrics
were only computed when a site has a p-value < 0.05.

From Table 5 and Fig. 12, mean R scores against ground-based
measurements for SNS-PSCI-SSM are better than ERA-PSCI-SSM over all
eight networks. The biggest improvement of R is obtained in COSMOS,
increasing from 0.38 for ERA-PSCI-SSM to 0.75 for SNS-PSCI-SSM. In
terms of the mean RSME, all networks except for the iRON network
experience a decline from ERA-PSCI-SSM to SNS-PSCI-SSM. A similar
result can be seen for the mean ubRMSE values. Besides, the mean
biases for SNS-PSCI-SSM are much more satisfactory over most net-
works as compared to ERA-PSCI-SSM. These results suggest that it is
more appropriate to use reliable ground-based measurements instead of
model simulations to train the networks.

Another important issue to be discussed is the choice of the
thresholds for the ETC-derived correlation coefficient between in-situ
measurements and the unknown truth within the 36-km EASEv2 grid
(i.e., Rgrc(T, SNS) in Eq. (2)), which is supposed to affect the selection
of reliable SNSs and the subsequent PSCI process. Here, a series of
thresholds ranging from 0.4 to 0.9 with the interval of 0.1 were tested.
For each threshold, the selected reliable SNSs’ measurements were fed
into GRNN and ran the PSCI process to generate PSCI-SSM. Then,
ubRMSE scores between respective PSCI-SSM and ground-based mea-
surements were calculated over each SNS and further averaged to ob-
tain one site-average ubRMSE for brevity. The number of reliable SNSs
and site-average ubRMSE scores based on each threshold are illustrated
in Fig. 13. It is apparent that with the increase of the thresholds, the
number of reliable SNSs decreases and the higher the threshold, the
greater the decline, whereas the site-average ubRMSE presents a gen-
eral trend of decreasing first and then increasing. These findings in-
dicate that selecting reliable SNSs using ETC does help address the scale
mismatch issue, but higher thresholds do not always lead to better
performance of the generated PSCI-SSM. This makes sense since a small
amount of reliable SNSs’ measurements resulting from high thresholds
may not establish a representative TB-SSM relationship. The minimum
site-average ubRMSE is achieved at the threshold of 0.7, which explains
why this threshold was used in previous sections.

15

Journal of Hydrology 580 (2020) 124351

6. Conclusions

This paper proposed the so-called “PSCI” method for the estimation
of high-quality regional SSM in CONUS for the April 2015 to March
2018 period. The main ideology behind this method is using a GRNN to
establish a nonlinear relationship between SMAP TB observations (and
auxiliary data) and reliable SNSs’ SSM measurements. The reliable SNSs
are determined based on the ETC-derived correlation coefficient in
excess of 0.7, in order to address the scale mismatch issue resulting
from small spatial support of ground-based measurements. The model
evaluation results based on the 10-fold CV technique showed that
GRNN gave much better performance compared to BPNN and that the
GRNN model trained on reliable SNSs outperformed the other GRNN
model trained on all SNSs, suggesting the added value of the ETC
technique. The obtained quantitative indicators for the best trained
GRNN model were fairly good—the cross-validated R and ubRMSE
values were 0.88 and 0.050 cm® cm ™3, respectively, demonstrating our
methodology was able to accurately describe the TB-SSM relationship.
The further temporal and spatial analysis of the retrieved PSCI-SSM
product in comparison with SPL3SMP and ERA-Interim revealed our
PSCI-SSM held the most stable and reasonable estimation and could
well capture the spatio-temporal variations of SSM. In addition, the
ground-based comparisons between PSCI-SSM and SPL3SMP/ERA-
PSCI-SSM over each SNS/network showed PSCI-SSM was more con-
sistent with ground-based measurements.

To conclude, the PSCI method proposed in this study has shown
great potential in estimating reliable regional SSM records from satellite
observations, using the ETC technique and GRNN model trained on
reliable ground-based measurements. The ideology of our work may
extend to SSM retrievals from other satellite missions such as ASCAT
and SMOS and apply in other geographical regions in the world. Future
work will focus on a more appropriate selection of reliable SNSs, in-
cluding a variable threshold for the ETC-derived correlation coefficient
according to the number of SNSs in different regions, other indicators to
identify individual SNSs’ reliability, and new technologies, such as the
“inverse footprint” method (Orlowsky and Seneviratne, 2014), for de-
termining the representativeness of in-situ sites. The incorporation of
more advanced deep learning techniques may also be taken into con-
sideration to replace GRNN.
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