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ARTICLE INFO ABSTRACT

Snow cover plays a vital role in the climate system because it is related to climate, hydrological cycle, and
ecosystem. On this basis, deriving a long-term and large-scale snow depth (SD) time series and monitoring its
temporal and spatial variations are crucial. Passive microwave remote sensing data in combination with in-situ
SD data have long been used to retrieve SD. However, the retrieval accuracy is limited in case of sparse me-
teorological stations, and the high-quality applications of retrieval results are hindered in specific areas. The
ground-based global navigation satellite system reflectometry (GNSS-R) method is currently a potential way to
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GI\_ISE'R monitor SD variations with a high degree of accuracy but has a limited spatial coverage. In this study, a deep
iﬁik;ﬂess temperature learning-based approach, which displays a stronger nonlinear expressiveness capability than conventional neural
Snow depth networks, was applied to estimate SD by combining satellite observations, in-situ data, and GNSS-R estimates.

The model was trained and tested with data obtained in Alaska between 2008 and 2017. Results show that the
proposed deep belief network model performs better than linear methods and conventional neural network
models and demonstrate the effectiveness of combining GNSS-R estimation with increased cross-validation R of
0.85 and decreased RMSE of 15.40 cm. The predicted SD distribution indicates that the variations in mean SD in
Alaska for March and April between 2008 and 2017 were associated with the climate anomalies and air tem-
perature. Overall, the proposed deep learning-based method is a promising approach in the satellite-retrieved SD
field.

information about the material and energy of snow. Thus, obtaining
accurate SD information is crucial for the research on climatology and
hydrology.

Conventional SD measurement methods can measure SD through in-

1. Introduction

Snow is a crucial component of a climate system and directly affects
the energy balance of the Earth’s surface due to its heat-insulation effect

and high albedo (Che et al., 2016; Dietz et al., 2012; Wu et al., 2018).
Snow also plays a prominent role in the water cycle, and snowmelt
runoff is a stable and reliable water source in many water-scarce re-
gions (Kang et al., 2014; Shi et al., 2015; Tedesco et al., 2015; Wang
et al., 2015). Extensive and continuous snow can also cause natural
disasters, such as avalanches, which can lead to considerable loss of life
and property. Snow depth (SD) data can provide quantitative
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situ devices with a high degree of accuracy (Rasmussen et al., 2012).
However, these methods cannot capture the spatiotemporal SD varia-
tion characteristics under sparse distribution of observation stations.
Over the past four decades, passive microwave (PM) remote sensing has
exhibited the ability to acquire long-term and large-scale SD datasets
with the rapid evolution of satellite remote sensing (Armstrong and
Brodzik, 2002; Liu et al., 2018; Rostosky et al., 2018). PM remote
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sensing has become an effective way to estimate SD given that it can
provide all-day and all-weather monitoring and spatially continuous
information of SD variation with high temporal resolution (Gu et al.,
2014; Li et al., 2019).

PM remote sensing observation is based on the assumption that the
electromagnetic radiation characteristics of snow have a strong de-
pendence on SD (Rosenfeld and Grody, 2000). In snow-covered areas,
the microwave radiometer carried by a satellite records the microwave
radiation energy from the ground in the form of brightness temperature
(Tb), which includes two main components: one is the radiation from
the snow cover, and the other is that from the ground beneath. The
brightness temperature decreases with the increase in SD because of the
volume scattering of snow particles (Dai et al., 2012; Mashtayeva et al.,
2016). The scattering effect is directly proportional to the microwave
frequency; thus, the brightness temperature of the high-frequency
channel is lower than that of the low-frequency channel (Shi et al.,
2016; Ulaby and Stiles, 1980). Therefore, SD retrieval based on PM
remote sensing is often to establish the functional relationship between
SD and brightness temperature.

Several algorithms have been developed to estimate SD by com-
bining remote sensing data and station observations. The most common
method is to establish the linear relationship between SD and brightness
temperature by utilizing the difference between the horizontally po-
larized brightness temperatures of 19 and 37 GHz and the ground-
measured SD. In many studies, Chang algorithm (Chang et al., 1987)
has been modified by considering the parameters that affect the SD
retrieval accuracy, such as forest and terrain (Foster et al., 1997;
Langlois et al., 2011). However, linear methods cannot exactly describe
the nonlinear relationship between SD and brightness temperature and
tend to underestimate SD (Gan et al., 2013). Therefore, nonlinear
methods, such as artificial neural networks (ANNs), have emerged to
establish the nonlinear relationship between the input variables
(brightness temperature and auxiliary data) and SD. For instance, ANNs
have been trained to retrieve SD by combining in-situ measurements
and brightness temperatures observed by using PM sensors (Cao et al.,
2008; Santi et al., 2012; Tabari et al., 2010; Tedesco et al., 2004). ANNs
have also been trained with model simulations for the estimation of SD
(Chang and Tsang, 1992; Davis et al., 1993; Tedesco et al., 2004).
Brightness temperatures are simulated on the basis of radiative transfer
model by using some snow properties, and the simulated brightness
temperature and SD are taken as the input and output of ANN models,
respectively. Moreover, some auxiliary parameters (e.g., forest cover
fraction, and elevation) have been regarded as input parameters of ANN
models to improve the retrieval accuracy under the influence of forest
and terrain (Bair et al., 2018; Evora et al., 2008; Gan et al., 2009). Santi
et al. (2014) used AMSR-E equivalent brightness temperature corrected
for the effects of orography and forest coverage instead of the original
brightness temperature as inputs of ANN model to estimate SD and
demonstrated the improvement of retrieval accuracy. These nonlinear
methods have shown great advantages in estimating SD and have
higher precision than linear methods.

The ground-based global navigation satellite system reflectometry
(GNSS-R) method is currently a new way of monitoring SD variation at
the spatial scale of approximately 1000 m? which is larger than the
spatial scale of in-situ measurements, with high temporal and spatial
resolution. Larson et al. (2009) first estimated SD on the basis of signal-
to-noise ratio (SNR) because the multipath reflection component of the
SNR observations is associated with SD. The reliability and accuracy of
the SNR-based method have been proven at sites with three land cover
types (Nievinski and Larson, 2014). Tabibi et al. (2017) analyzed the SD
estimated using different frequency bands of global positioning system
(GPS) and GLONASS and found that accurate results can be obtained
using GPS L2C and GLONASS SNR observations. The solutions of SD
measurement in different interference environments have been pro-
posed to address the signal interference problem of SNR-based methods
in complex terrain environment by analyzing the interference factors
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(Vey et al., 2016; Zhang et al., 2017). A GNSS-R network (PBO H20
network) based on GNSS stations has also been developed on the
western coast of the USA and Alaska (Larson and Nievinski, 2013),
where GNSS-R SD is directly available through open access. The accu-
racy of the GNSS-R SD product has been validated and has shown a
precision of a few centimeters (Larson and Nievinski, 2013; McCreight
et al., 2014). The GNSS-R product from PBO H20 network has been
used as the true value of SD to validate other SD products (Boniface
et al., 2015). In summary, the GNSS-R method not only can monitor SD
with the advantage of an all-day and all-weather ability but also can
estimate SD with a high degree of accuracy. However, GNSS-R ob-
servation is also restricted to a limited spatial scale, and GNSS-R sta-
tions are sparsely distributed.

Deep learning, which displays a stronger nonlinear expressiveness
capability than conventional neural networks, has achieved great suc-
cess in geoscience inversion, including fine particulate matter (Li et al.,
2017) and soil moisture (Jia et al., 2019; Song et al., 2016). However,
deep learning has rarely been applied to retrieve SD to date. Thus, this
study aimed to establish a deep learning-based model for estimating SD.
However, the sparsely distributed samples from combining only sa-
tellite and sparsely distributed in-situ observations may limit the ac-
curacy of SD retrieval. In this study, the SDs estimated by the GNSS-R
method were taken as true values and combined with in-situ observa-
tions to increase the station density of the sample data for the following
two reasons: one is that the accuracy of the GNSS-R method in SD re-
trieval is high, and the other is that the spatial scale of the GNSS-R
technique (nearly 1000 m?) is better than the point-scale (< 1 m?) in-
situ measurements (Xu et al., 2018) in terms of brightness temperature
data. Therefore, the proposed deep learning-based SD retrieval model
was constructed and evaluated on the basis of the combination of sa-
tellite observations, in-situ data, and GNSS-R estimation. Alaska was
selected as the study region because it has an abundance of snow and
has a mature GNSS-R SD product that is available through open access
by connecting to the PBO H20 network.

The remainder of the paper is organized as follows. In Section 2, the
study region and data used are described. Section 3 introduces the deep
learning-based SD retrieval method, that is, the deep belief network
(DBN) model developed here, and the indicators used for the evalua-
tion. In Section 4, the performance evaluation of this model against
daily ground-measured SD data are described, and we compare the
results with those of four other SD retrieval models, namely, Chang,
multiple linear regression (MLR), back propagation neural network
(BPNN), and generalized regression neural network (GRNN). The
former two are linear models, and the latter two are nonlinear ones. On
the basis of the derived SD distribution from 2008 to 2017, we analyze
the variation in SD in Alaska over this time period and its response to
climate anomalies and air temperature. Finally, our work is summar-
ized in Section 5.

2. Study region and data
2.1. Study region

Alaska, which is in the latitude and longitude range of 54°N-71°N
and 130°W-173°W, was chosen as the study region (Fig. 1). The study
period was from 2008 to 2017. Alaska is located at high latitudes. Thus,
most parts of this region are cold all year round. Alaska experiences
abundant precipitation as a result of being surrounded by three oceans
(the North Pacific Ocean, the Bering Sea, and the Arctic Ocean).
Therefore, this region has an abundance of snow cover. Typically, north
Alaska has a polar cold and dry climate with the air temperature below
zero all year round. Central Alaska has a continental climate with an
average annual temperature of —2.47 °C and an average annual pre-
cipitation of 275 mm at Fairbanks, while southern Alaska has a tem-
perate maritime climate with an average temperature of 3.7 °C and an
average annual precipitation of 617 mm at Homer. Mature GNSS-R SD



J. Wang, et al.

145° W 131° W 117° W
L 1 1 L L 1‘

|

* GNSS-R sites
4+ GHCN sites

| \ \
| \

1 1

Fig. 1. Study area and the distribution of Global Historical Climate Network
(GHCN) and Global Navigation Satellite System Reflectometry (GNSS-R) sta-
tions. The blue area represents the region of Alaska. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

products, as well as conventional in-situ and satellite observations, are
available in Alaska. The above-mentioned considerations indicate that
Alaska is ideal for the research on snow cover using integrated multi-
source data.

2.2. Data

2.2.1. Satellite observations

The Special Sensor Microwave Imager/Sounder (SSMIS) is a sa-
tellite-borne microwave radiometer onboard the U.S. Defense
Meteorological Satellite Program F17. The brightness temperature data
observed by SSMIS gridded to the EASE-Grid with daily temporal re-
solution and 25 km spatial resolution (Armstrong et al., 1994; Brodzik,
2002) have been available at the National Snow and Ice Data Center
(https://nsidc.org/) since December 2006 and contain four frequencies,
namely, 19, 22, 37, and 91 GHz. Except for 22 GHz, which is only
vertically polarized (i.e., Tb22V), the other frequencies have horizontal
and vertical polarization modes (i.e., Tb19H, Tb19V, Tb37H, Tb37V,
Tb91H, and Tb91V.). Thus, seven channels of brightness temperature
are available. The daily SSMIS brightness temperature data from 2008
to 2017 were downloaded from the National Snow and Ice Data Center.
In this study, descending overpass observations (during early morning)
were used given that liquid water could be existing in the snow during
the afternoon satellite overpass and the SD could not be retrieved in the
case of wet snow (Che et al., 2008; Kelly and Chang, 2003).

2.2.2. In-situ SD

The Global Historical Climate Network (GHCN, https://www.ncdc.
noaa.gov/snow-and-ice/) integrates daily climate datasets from me-
teorological stations around the world and provides in-situ SD datasets
for daily temporal resolution. The daily SD datasets include the in-
formation of location, measuring time, and SD. Daily in-situ SD data of
155 sites within the study region from 2008 to 2017 were obtained
from GHCN and utilized for the construction and performance evalua-
tion of the SD retrieval model (Tsutsui and Maeda, 2017).

2.2.3. GNSS-R estimation

The daily GNSS-R SD product data can be obtained from the PBO
H20 Data Portal (https://gnssh2o.jpl.nasa.gov/index.php?product=
snow), which uses a traditional geodetic GPS signal-receiving station
to monitor the change in SNR for long time series and then estimates
the SD based on GNSS-R with a high precision of a few centimeters
(Larson et al., 2009; Larson and Nievinski, 2013). A total of 25 GNSS-R
stations are present in Alaska (Fig. 1), and the daily GNSS-R SD data
from 2008 to 2017 were taken as the actual SD, together with the in-

Journal of Hydrology 585 (2020) 124828

173° W 159° W 145° W 131° W 117° W
— s 1 L L 1 L L L L

‘ -_‘i\ilgh:1?0

\

\

| ~Low : 0

Fig. 2. Distribution of the forest cover fraction for 2008 as an example.
situ measurements, to establish and evaluate the SD retrieval model.

2.2.4. Forest cover fraction data

Forest cover fraction data were also used considering the potential
impact of forest on SD retrieval. The MOD44B Version 6 Vegetation
Continuous Fields (VCF) product is a global representation of surface
vegetation cover that can continuously and quantitatively portray land-
surface cover at a pixel resolution of 250 m. Forest cover fraction data
(Fig. 2) were obtained from the MOD44B MODIS/Terra VCF Yearly L3
Global 250 m SIN Grid V006 product (https://ladsweb.modaps.eosdis.
nasa.gov/search/order/1/MOD44B-6).

2.2.5. Topographic data

Elevation parameter was utilized as auxiliary data to consider the
effect of topographic parameters on the SD retrieval accuracy. The
ETOPO1 Global Relief Model was used as elevation data, and its spatial
resolution is 1 arc minute or approximately 2 km (Amante and Eakins,
2009). These model data (Fig. 3) can be downloaded from http://www.
Ngdc.noaa.gov/mgg/global/.

2.3. Data matching and processing

First, the elevation and forest cover fraction data were regridded to
the EASE-Grid, and the mean values of the forest cover fraction and
elevation were calculated for the corresponding EASE-Grid to match the
brightness temperature data. In addition, the SD data from multiple in-
situ and GNSS-R stations were averaged for each EASE-Grid. Then, SD
measurements from GHCN and PBO H20 network were associated with
the satellite observations and ancillary data.

Second, we applied Grody’s decision tree method (Che et al., 2008;
Grody and Basist, 1996) to distinguish snow from other scattering
signals given the resemblance of the microwave radiation characteristic
of snow to that of frozen ground, cold desert, and precipitation
(Table 1).

50" ML . o R SR

- LL‘TW : -2721?}3/,/

Fig. 3. Elevation variation in Alaska.
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Table 1
Conditions for removing other scattering signatures.

Steps Conditions

Tb19V-Tb37V > 0K
Tb22V > 258 K or 258 K = Tb22V = 254 K and
Tb19V-Tb37V < 2K
Tb19V-Tb19H = 18 K and Tb19V-Tb37V =< 10 K
Tb19V-Tb19H = 8 K and Tb19V-Tb37V < 2 K

Scattering signature
Precipitation

A

Cold deserts
Frozen ground

Considering the hindering effect of wet snow on the SD retrieval
based on PM remote sensing, the following dry snow criteria (Singh and
Gan, 2000; Xiao et al., 2018) were applied to remove wet snow for
ensuring high accuracy of SD retrieval:

Tb37V < 250K
Tb19V — Tb37V > 9K
Tb37V — Tb37H > 10K

Tbh37V — Tb37TH
Pfactor Sl ———— Pfactor > 0.026

Th37V + Th37H’ (@)

Following the above-mentioned steps, wet snow and other scat-
tering signals were excluded, and 11,447 dry snow samples were
identified.

3. Methodology
3.1. Structure of the DBN model

The DBN model proposed in 2006 is a typical deep learning model
(Hinton et al., 2006). The model can be utilized to solve prediction and
classification problems (Chen et al., 2015; Huang et al., 2014). Conse-
quently, the SD retrieval model in this study was established on the
basis of DBN model.

The DBN model is composed of a back propagation (BP) layer and
several restricted Boltzmann machine (RBM) layers. For instance, Fig. 4
shows the structure of a DBN model with two RBM layers. An RBM is
made up of a visible layer (v) used to input training data and a hidden
layer (h) used to extract data features, with the visible and hidden
layers being bidirectionally linked. The first RBM’s hidden layer is the
second RBM’s visible layer.

The training process for a DBN model consists of two main steps.
The first step is to train the RBMs. When data are transmitted from v to
h in the first RBM, the opening probability of every neuron in the
hidden layer can be calculated according to Eq. (2):
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m
p(hi=1lv) = o ( Z w;iV; + ¢j)
i=1 (2)
where i and j respectively indicate the number of the ith visible neuron
and the jth hidden neuron. w; denotes the weight between visible
neuron i and hidden neuron j, while cjrefers to the bias of the jth
hidden neuron. Sigmoid function o () acts as the transfer function.
The calculated opening probability of each hidden neuron is com-
pared with the random value u extracted from the 0,1 uniform dis-
tribution, and the hidden neurons are updated to 0 or 1 in accordance
with Eq. (3):
{l,p(hj =1v)>pu

U, 1
0, p(h=1lv) < u w1 3)

So is the calculation process from hidden layer to visible layer. In
general, the contrastive divergence algorithm (Hinton and
Salakhutdinov, 2006) is utilized to train an RBM. The neurons’ weights
and bias are then updated as the following formula until v is approxi-
mately equal to v1:

®=w+ e ((W)Tv— (h1)Tv1)
b=b+e(v—vl)
c=c+ e ((Wv - (h1)Tv1) 4

where ¢ refers to the learning rate; h, hl are obtained from v, vl
using Egs. (2) and (3); v1 is reconstructed from the hidden layer (h); and
b and c respectively indicate the bias for the visible and hidden neurons.

The RBMs are pretrained one after another without supervision, and
the weights obtained through this unsupervised pretraining are used to
initialize the multilayer network. The second step of the training pro-
cess of the DBN is to fine-tune the coefficients between layers using a
supervised BP algorithm.

3.2. SD retrieval model based on a DBN

In our case, the DBN model is adopted to learn the relationship
between the input variables and SD through learning from the sample
datasets:

SD = g(Tb19H, Tb19V, Tb37H, Tbh37V, lat, lon, elevation, f, time) 5)

where g()means the estimation function; lat, lon, and elevationrepresent
3D localization; and f indicates the forest cover fraction.

Fig. 5 shows the schematic of the DBN model used to retrieve SD.
The input variables are PM horizontal and vertical polarization
brightness temperatures of 19 and 37 GHz, latitude, longitude, eleva-
tion, forest cover fraction, and time. We apply two hidden layers (two

Output
Layer

(h?)

RBM1

RBM2 BP

Fig. 4. Structure of the DBN model.
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Fig. 6. Flowchart of the DBN model for SD modeling.

RBMs), where the amount of neurons in every hidden layer is 16. Fol-
lowing the two RBMs is a BP layer with one neuron (SD).

The specific process of the DBN model for SD modeling consists of
three steps, as shown in Fig. 6.

First, the variables of horizontal and vertical polarimetric brightness
temperatures of 19 and 37 GHz, latitude, longitude, elevation, forest
cover fraction, and time are input into the model. In this step, only the
input data are used to pretrain the DBN model, which indicates that the
initial coefficients of this model are trained from input data.
Meanwhile, actual SD is not utilized for tuning the coefficients in such
process.

Second, we can estimate the SD value from the DBN model.
Subsequently, the mean-square error (MSE) between the actual and
retrieved SD is calculated and returned to fine-tune the coefficients of
the model by utilizing the BP algorithm (Rumelhart et al., 1988). This

procedure is repeated until the DBN model achieves a satisfactory
performance. Then, the relationship between SD and satellite brightness
temperature can be effectively established through this step.

Finally, this model is validated and then applied to estimate the SD
where no ground stations exist. Accordingly, we can acquire the spa-
tially continuous distribution of the SD.

We used three statistical indicators, namely, the correlation coeffi-
cient (R), the mean absolute error (MAE, cm), and the root-mean-square
error (RMSE, cm), to quantitatively evaluate the model performance.
We adopted a 10-fold cross-validation technique to test the over-fitting
and predictive power of the model (Rodriguez et al., 2010). All the
sample data were divided into 10 subsets equally and randomly. One of
the subsets was selected as validation samples in turn, while the others
were utilized for model fitting. Then, 10 results were averaged to
evaluate the performance of the DBN model. Small differences between
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the model fitting and cross-validation statistics suggest non-overfitting
(Hu et al., 2013). In addition, among the 10 models, the one which
performed best, with the highest validation R, the lowest validation
MAE, and the lowest validation RMSE, was selected to retrieve SD over
the whole of Alaska.

3.3. Other SD retrieval algorithms for comparison

BPNN (Rumelhart et al., 1988; Tedesco et al., 2004), GRNN (Specht,
1991), Chang algorithm (Chang et al., 1987), and MLR (Xiao et al.,
2018) were utilized to construct SD retrieval models on the basis of the
same samples used by the DBN model for better assessing the perfor-
mance of the deep learning-based SD retrieval model. The performances
of these methods were compared with those of the DBN model.

3.3.1. Linear methods

Chang algorithm is a linear method used to estimate SD through
performing linear regression for the difference in the brightness tem-
perature using 18 and 36 GHz horizontal polarization and SD.

SD = 1.59 % (Tb18H — Tb36H) (6)

where SD is estimated in centimeters. Tb18H and Tb36H denote the
horizontal polarization brightness temperatures of 18 and 36 GHz,
which were replaced with SSMIS horizontal polarization brightness
temperatures of 19 and 37 GHz in this study (Xiao et al., 2018).

In addition, an SD retrieval model based on the MLR method was
established using nine parameters (the same as the DBN model) for
predicting SD.

SD = ag + oqelat + o elon + ageelevation + a4+Tb19H + as+Th19
V + ageThb37H + ct;+Tb37V + agef + agetime )

3.3.2. Nonlinear method

As with the DBN model, BPNN and GRNN are data-driven learning
models. The same input and output parameters were again used in the
two neural networks. However, the BPNN model (Fig. 7a) has a rela-
tively simple structure with three layers (input, hidden, and output
layers), and the GRNN model (Fig. 7b) uses several hidden layer neu-
rons to achieve function approximation. Instead, the DBN model not
only has a more complex structure but also initializes through un-
supervised pretraining.

4. Results and analysis
4.1. Evaluation of model performance

4.1.1. Performance of DBN modeling

Primarily, remote sensing data, auxiliary data, and in-situ ob-
servations were integrated to generate the sample datasets for the DBN
model and the four alternative methods mentioned above. As presented
in Table 2, the two kinds of linear methods, namely, Chang algorithm
and the MLR method, perform the worst (cross-validation R of 0.15/
0.47, MAE of 22.33/19.12 c¢cm, and RMSE of 35.36/26.91 cm) as ex-
pected owing to that the nonlinear relationship between SD and
brightness temperature is described as linear. In consideration of the
nonlinear relationship between the input variables and SD, BPNN and
GRNN perform better than the linear models (cross-validation R of
0.78/0.68, MAE of 12.80/15.17 cm, and RMSE of 19.01/22.33 cm).
The DBN model, which is a complex learning model, can better fit the
nonlinear relationship and obtains the best performance (cross-valida-
tion R of 0.81, MAE of 11.15 cm, and RMSE of 17.96 cm) among the
other models.

Fig. 8 presents the scatter plots of actual SD and estimated value
retrieved by the five algorithms. The underestimates and overestimates
of SD retrieved by the DBN model are less than those of the GRNN and
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Fig. 7. Structure of the (a) BPNN model and (b) GRNN model.

Table 2

Model fitting and cross-validation performance of the models using satellite and
GHCN observations.

Method Model fitting Cross-validation

R MAE RMSE R MAE RMSE
Chang 0.15 22.33 35.36
MLR 0.47 19.15 26.94 0.47 19.12 26.91
GRNN 0.70 14.67 21.60 0.68 15.17 22.33
BPNN 0.81 11.56 18.05 0.78 12.80 19.01
DBN 0.83 10.16 17.18 0.81 11.15 17.96

BPNN models, as presented in Fig. 8e, c, and d. These results demon-
strate that the proposed deep learning-based SD retrieval model with a
more complicated structure and a layer-by-layer unsupervised pre-
training technique can estimate SD with a higher degree of accuracy.
The two linear methods, as shown in Fig. 8a and b, tend to under-
estimate SD when the actual SD value exceeds 50 cm. This phenomenon
can be due to the saturation of the difference in the brightness tem-
perature. The results of MLR are better than those of Chang algorithm.
This result may be due to that more parameters that correspond to snow
properties are used in MLR.

The SD retrieval models in this section were established without
combining the high-precision GNSS-R estimates. Thus, we used high-
precision GNSS-R estimates as independent evaluation data to validate
the retrieval accuracy of the DBN model and four other models for
further verifying whether the DBN model performs best among the five
compared methods. Fig. 9 shows the scatter plots of GNSS-R SD and
estimated values retrieved by the five algorithms. The performances of
the two linear methods remain the worst (validation R of 0.45/0.56).
Although the MLR method can consider more parameters, it cannot
map the complex nonlinear relationship between input parameters and
SD. On the contrary, GRNN and BPNN can fit this nonlinear relationship
and perform better than linear methods with validation R of 0.64/0.69.
Furthermore, the DBN model remains the best-performing model with
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Fig. 8. Scatter plots of the cross-validation results of the five algorithms: (a) Chang; (b) MLR; (c) GRNN; (d) BPNN; (e) DBN.

validation R of 0.76 given its stronger ability for nonlinear mapping.

In summary, the nonlinear methods (BPNN, GRNN, and DBN) are
superior to the linear methods, while the proposed DBN SD retrieval
model performs the best among all compared models.

4.1.2. Effect of the added GNSS-R SD estimation

In this study, GNSS-R SD estimates were taken as the actual SD,
together with the in-situ SD data, to increase the station density of the
sample data. We compared the results of the models combining satellite
observations, in-situ observations, and GNSS-R estimates with those of
SD retrieval models combining only satellite observations and in-situ
observations, as described in Section 4.1.1, to prove the effect of the
addition of GNSS-R estimates.

Table 3 lists the accuracy of the five SD retrieval models combining
satellite observations, in-situ observations, and GNSS-R estimates.
Fig. 10 presents the scatter plots of the actual SD value and the esti-
mated SD retrieved by the five algorithms. The DBN SD retrieval model

and the four models based on combining satellite observations, in-situ
observations, and GNSS-R estimates all show higher accuracy in esti-
mating SD than the SD retrieval models based on combining satellite
observations and in-situ observations. This result demonstrates that
considering the GNSS-R SD estimates to increase the density of the
sample data contributes to improving the SD retrieval accuracy. The
DBN model also performs best when GNSS-R SD estimates are con-
sidered to increase the station density of the sample data. This model
has cross-validation R of 0.85, MAE of 9.55 cm, and RMSE of 15.40 cm.

4.2. Analysis of variations in SD in Alaska

Based on the proposed DBN SD retrieval model described in Section
4.1.2, the variables of longitude, latitude, elevation, brightness tem-
perature of four channels, the forest cover fraction of each grid cell in
Alaska, and time were taken as input data. The daily SD in Alaska from
2008 to 2017 was finally predicted.
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Table 3

Performance of the models using satellite data, in-situ and GNSS-R data.

Method Model fitting Cross-validation

R MAE RMSE R MAE RMSE
Chang (+GNSS-R) 0.20 21.34 33.52
MLR (+ GNSS-R) 0.48 17.98 25.68 0.48 17.99 25.66
GRNN (+GNSS-R) 0.75 12.44 19.08 0.72 13.25 20.26
BPNN (+GNSS-R) 0.83 10.33 16.42 0.80 11.35 17.42
DBN (+GNSS-R) 0.87 8.80 14.39 0.85 9.55 15.40

Snow in Alaska is relatively stable from March to April when the SD
value nearly reaches the maximum value in a year (Liu et al., 2013).
Thus, the mean SD from March to April each year was calculated to
analyze the variation in average SD for March and April from 2008 to
2017.

Taking the SD distribution maps of Alaska in 2008 as an example
(Fig. 11), it can be seen that the snow of Alaska presents certain spatial
distribution characteristics and significant regional differences. The
north of Alaska has the greatest SD. This condition may be due to the
cold and sub-temperate continental climate of this region. Meanwhile,

the overall climate of this region is humid but cold because of its low
terrain and closeness to the Arctic Sea. In addition, the average SD in
the inland regions is greater than that in the southwest part of Alaska.

The SD anomalies for March and April each year were calculated by
subtracting the overall average SD for March and April in this decade
(Fig. 12). Red represents an increase in SD, while blue represents a
decrease in SD. We can find that from 2011 to 2013, as well as 2009
and 2017, SD anomalies manifest as increase in most area of Alaska,
especially in southwest Alaska. In addition, the increase in SD over
Alaska was most apparent in 2012. On the contrary, SD anomalies
manifest as decrease in most areas of Alaska from 2014 to 2016, as well
as 2010.

In the context of global warming, climate anomalies such as El Nifio
and La Nina would intensify (Ham, 2018). The change in SD during the
decade may be a response to the change in temperature and climate
anomalies. El Nifo occurs when water temperatures in the equatorial
sea area of the eastern and central Pacific Ocean continue to warm
abnormally, which causes a corresponding change in the global climate.
La Nifa is the opposite of El Nifio and often follows it. El Nifio and La
Nifna greatly influence global climate. Fig. 13a presents the El Nifo/
Southern Oscillation (ENSO) intensities in the multivariate ENSO index
(MED during this period, which are available at www.esrl.noaa.gov/
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Fig. 10. Scatter plots of the cross-validation results of the five algorithms: (a) Chang; (b) MLR; (c) GRNN; (d) BPNN; (e) DBN.

psd/enso/mei/table.html. Positive MEI values denote El Nifio, while
negative MEI values indicate La Nifia (Wang et al., 2018). Then, the SD
anomalies in Fig. 12 were averaged over Alaska for each year and
plotted with the ENSO intensities in Fig. 13a. Comparing the change in
SD with the occurrence of these climate anomalies (Fig. 13a), we can
find that the changes in SD in Alaska have been generally consistent
with the climate anomalies over the past decade. From 2008 to 2009
and from 2011 to 2013, as well as 2017, La Nina occurred in March and
April, and the SD increased correspondingly. By contrast, from 2014 to
2016, as well as 2010, El Nifo occurred, and the SD decreased corre-
spondingly.

The degree of SD change is not completely proportional to the in-
tensity of climate anomalies, especially in 2012, 2013, and 2017. The
change in SD may be also related to air temperature, except for the

climate anomalies. Air temperature data from NOAA GHCN_CAMS Land
Temperature Analysis (https://www.esrl.noaa.gov/psd/data/) were
used. The air temperature anomalies for March and April each year in
this decade were averaged over Alaska and shown with the mean SD
anomalies in Fig. 13b. We can find that in 2013, La Nifia was weak, and
correspondingly, the increase in SD anomalies should be small. How-
ever, the significant decrease in air temperature in 2013 resulted in a
larger increase in SD. The case in 2017 is also similar to that in 2013.
Besides, the La Nifila phenomenon was stronger in 2011 than in 2012,
but due to the air temperature was lower in 2012, resulting in the SD in
2012 larger than that in 2011. Therefore, the change in SD is mainly
affected by the combination of the change in temperature and climate
anomalies. In addition to the influence of climate anomalies and tem-
perature, some other factors that may affect the change in SD, such as
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Fig. 11. Distribution of the average SD for March and April in 2008 over
Alaska.

ocean currents and terrain, etc., require further discussion.

5. Conclusions

In this study, we innovatively introduced a deep learning network to
improve the precision of satellite-derived SD. In addition, high-preci-
sion GNSS-R SD product data were utilized as the actual value of the SD,
together with ground-measured SD data, to increase the station density
of the sample data. The results showed that the DBN SD retrieval model
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estimates SD more accurately than linear methods and conventional
neural network models. Furthermore, the effectiveness of combining
GNSS-R estimates for increasing the station density of the sample data
was demonstrated. Specifically, R increased from 0.81 to 0.85, MAE
decreased from 11.15 cm to 9.55 cm, and RMSE decreased from
17.96 cm to 15.40 cm. Finally, the daily SD over the whole of Alaska
was predicted using the proposed DBN SD retrieval model. The results
displayed that the variation in SD for March and April between 2008
and 2017 in Alaska is mainly associated with the occurrence of climate
anomalies and the change in air temperature over this time period.

There is still room for improvement of the proposed approach and
for further study. On the one hand, the current spatial resolution of
estimated SD is coarse (25 km x 25 km), which would limit its ap-
plication in operational hydrological modeling and snow-caused dis-
aster monitoring. Thus, enhancing the spatial resolution of the SD data
is required. On the other hand, we only applied a deep learning network
(the DBN model) to establish the relationship between brightness
temperature and SD. Whether other deep learning models can better
handle this issue is worth investigating.
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