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Abstract— Visible remotely sensed images usually suffer from
the haze, which contaminates the surface radiation and degrades
the data quality in both spatial and spectral dimensions. This
study proposes a spatial-spectral adaptive haze removal method
for visible remote sensing images to resolve spatial and spectral
problems. Spatial adaptation is considered from global and local
aspects. A globally nonuniform atmospheric light model is con-
structed to depict spatially varied atmospheric light. Moreover,
a bright pixel index is built to extract local bright surfaces
for transmission correction. Spectral adaptation is performed
by exploring the relationships between image gradients and
transmissions among bands to estimate spectrally varied trans-
mission. Visible remote sensing images featuring different land
covers and haze distributions were collected for synthetic and
real experiments. Accordingly, four haze removal methods were
selected for comparison. Visually, the results of the proposed
method are completely free from haze and colored naturally
in all experiments. These outcomes are nearly the same as the
ground truth in the synthetic experiments. Quantitatively, the
mean-absolute-error, root-mean-square-error, and spectral angle
are the smallest, and the coefficient-of-determination (R?) is the
largest among the five methods in the synthetic experiments.
R?, structural similarity index measure, and the correlation
coefficient between the result of the proposed method and the
reference image are closest to 1 in the real data experiments. All
experimental analyses demonstrate that the proposed method is
effective in removing haze and recovering ground information
faithfully under different scenes.

Index Terms— Bright pixel index (BPI), dark channel prior
(DCP), haze removal, spatial-spectral adaptive.

I. INTRODUCTION

URING the acquisition of Earth’s surface information
by satellite imaging systems, radiation undergoes a com-
plicated process through the path of sun—atmosphere—Earth’s
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surface—atmosphere—sensor [1]. Radiative transfer mostly
occurs in the atmosphere, which inevitably affects the accuracy
of the recorded ground information [2]. Haze is a typical type
of turbid atmosphere that consists of small dust particles or
liquid droplets and occurs frequently [3]. Scattering triggered
by these turbid particles causes radiance distortion in the
spatial and spectral dimensions for remote sensing images,
particularly in the visible bands owing to the short wave-
lengths, thereby resulting in difficult image interpretation and
inversion. Therefore, haze removal should be conducted and
the ground information for a hazy visible image should be
restored.

Several methods that have been proposed to implement
haze removal can be grouped into two categories, namely
multiimage- and single-image-based methods. Multiimage-
based methods remove haze by utilizing complementary infor-
mation from other temporal or spectral images [4]-[9]. For
these types of methods, the requirements for the reference data
limit their generalization, and the available ground information
in the original hazy region is not fully utilized. By contrast,
single-image-based methods maximize the information from
hazy images to remove haze, which is considerably general
but challenging. This study focuses on single-image-based
methods.

In general, the single-image-based haze removal meth-
ods comprise the radiative transfer model (RTM) [10]-[15]
and statistical information-based methods [16]-[36]. On the
one hand, RTM-based methods require the simultaneous
atmospheric property-related parameters, which are often
unavailable and difficult to obtain accurately. Moreover, RTMs
substantially focus on the global vertical variation rather than
the local horizontal variation of the atmosphere, such as
haze. To overcome this shortcoming, Liang et al. [14], [15]
proposed to build a lookup table to obtain the horizontally
varied aerosol optical depth (AOD). However, land covers
were initially required, which is also a problem for many hazy
visible images.

On the other hand, statistical information-based methods
mainly utilize the image characteristics of haze to realize the
removal, which is independent of the atmospheric parameters
and models. These methods can be divided into three classes:
frequency domain—[16], [17], spectral transformation—
[18]-[25], and dark pixel-based methods—I[26]-[36]. First,
haze can be removed in the frequency domain by suppressing
and enhancing low- and high-frequency information, respec-
tively. However, the valid low-frequency information will be
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inevitably damaged or lost while haze is being removed.
Second, spectral transformation-based methods take advan-
tage of the radiance differences of the ground and haze
between bands to detect and remove haze. Representative spec-
tral transformations include haze optimized transformation
(HOT) [18]-[20], tasseled cap transformation [21], [22], and
component analysis [23], [24]. In those transformation-based
methods, all pixels, including the hazy and clear ones, are
altered, thereby resulting in the frequent appearance of radi-
ation distortion. Third, dark pixel-based methods are ancient
and meanwhile developed. The primary one is the dark object
subtraction (DOS) [26], in which the value of the dark object
represents the influence of the atmosphere in each band. On the
basis of this idea, some new haze removal methods, such as
an improved DOS technique [27], haze thickness map-based
method [28], and dark channel prior (DCP)-based method [29],
have been developed by searching the dark pixel globally
or locally in a band or in multiple bands. Global operation
is usually suitable for globally invariant haze, whereas local
operation is appropriate for spatially varied haze. Moreover,
searching in multiple bands provides a higher probability for
the existence of dark pixels than merely searching in one band.
DCP is constructed on the basis of local searching in multiple
bands for haze removal in close shot images. Given the validity
of DCP, some DCP-based haze removal methods for remote
sensing images have been proposed and improved [30]-[36].

In general, dark pixel-based methods are effective in remov-
ing haze and maintaining clear regions. To date, these methods
have been the most commonly used haze removal methods.
However, note that the existence of dark pixels is the key to
realizing total haze removal. Once the dark pixel is absent
(e.g., in bright soils), the concerned region would be mistaken
as haze and overcorrection would occur thereafter [29].
Different bands are often processed individually or equally,
disregarding the correlation of haze between bands,
which is also a problem for the other type of statistical
information-based methods. The band-by-band operation is
the main reason for the spectral distortion in the haze removal
results [27].

To overcome the overcorrection and spectral distortion
shortcomings, this study proposes a spatial-spectral adaptive
haze removal method for visible remote sensing images.
Spatial adaptation is conducted by considering varied
atmospheric light and bright surfaces. Spectral adaptation is
performed by estimating the band varied transmission. The
remainder of this article is organized as follows. Section II
briefly describes the hazy image model and DCP. Section III
provides the details of the proposed haze removal method.
Section IV presents the experimental results and comparative
analysis. Lastly, Section V summarizes this article.

II. BACKGROUND
A. Hazy Image Model

Radiation interacts with the land surface and turbid
atmosphere before it reaches the sensor, as illustrated in Fig. 1.
To describe the imaging process, a widely used hazy
image model has been proposed, which can be expressed as
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Fig. 1.

Ilustration of radiation transfer under a turbid atmosphere.

follows [37]-[40]:
I(x)=Jx)t(x)+ Al —1(x)) )

where x is the position of the pixel in the image; / is the
observed image; ¢ is the transmission, indicating the portion of
ground radiance that reaches the sensor; A is the atmospheric
light, which is a constant when the atmospheric scattering
intensity is uniform [38]; and J denotes the clear image.
The goal of haze removal is to initially estimate A and ¢
from I, and recover J thereafter according to the model.

B. Dark Channel Prior

DCP describes a statistical law, which states that the inten-
sity of some pixels in nonsky local patches will be extremely
low and tends to zero in at least one or several bands for clear
images [29]. For an arbitrary image J, its dark channel can
be calculated by using two minimum operators

Jdark — mln(
Q(x)

min J C(x)) 2)
celr,g,b}
where ¢ represents the visible bands of J, Q(x) is the
local window centered at x, r{ninb} is the minimum operator
celr,g,
performed on each pixel, gl(n} is a minimum filter with window
X
size Q(x), and J9* represents the dark channel of image J.
By coupling the hazy image model and DCP, the key
parameter (i.e., transmission) can be estimated as follows:
1 — fdark

r= 1 — fdark (3)
where [ and J are the images of I and J, respectively,
normalized by A; and /%% and J%%* represent the dark
channel of [ and J, respectively. When dark pixel exists in
the local patch, the transmission can be estimated correctly.
Otherwise, the transmission will be underestimated, which will
cause color distortion.

II1. METHOD

Haze in remote sensing images shows several prominent
characteristics, covers a large area, holds high radiance, grad-
ually changes in space, and varies among bands. Dark pixels
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Fig. 2. Tllustration of the heterogeneity of atmospheric scattering in a large
scene. (a) Uneven haze-covered image. (b) Atmospheric scattering intensity
in regions A and B.

can be found in remote sensing images, thereby ensuring
the availability of DCP for remote sensing haze removal.
However, numerous bright surfaces are distributed on Earth,
where dark pixels are lacking, thereby making DCP invalid in
some regions. Only one transmission can be directly estimated
by DCP, neglecting the haze effects variation among bands.
The neglect causes insufficient correction to appear in some
bands, thereby leading to the final color distortion. To solve
these problems, this study proposes an adaptive haze removal
method from the spatial and spectral aspects.

A. Spatial Adaptive Processing

1) Nonuniform Atmospheric Light Estimation: Previous
studies have often assumed that atmospheric light is constant
for a scene. This assumption is true for the majority of close-
shot images because the atmospheric scattering intensity in
images is stable [38]. However, for remote sensing images
with broad imaging range, the scattering intensity varies
spatially (see Fig. 2). The haze in region B is thicker than
that in region A [see Fig. 2(a)], thereby indicating that the
corresponding scattering intensity is different, as illustrated
in Fig. 2(b). In general, the larger the scene, the more uneven
the scattering intensity. Therefore, an atmospheric light estima-
tion algorithm should be developed to depict the heterogeneity
of atmospheric scattering for a large scene.

For remote sensing images, we take the general atmospheric
light as basis and variation as an increment to estimate
nonuniform atmospheric light. Thereafter, the nonuniform
atmospheric light A,,, can be expressed as follows:

Anua = Abasis + AAlocal (4)

where Apygis and A Ajoeqr are the general atmospheric light and
increment of the atmospheric light, respectively.

The general atmospheric light Ay, reflects the atmospheric
light of the global scene, which can be estimated accord-
ing to the solution proposed by He et al. [29]. The incre-
ment describes the difference between the local and global
scenes, which can be estimated through the background
brightness of images. The low-frequency portion of images
is commonly taken to represent the background brightness of
such images and is calculated in this study using Gaussian
low-pass filter. In addition, a minimum filter is adopted to
ensure that the atmospheric light in a local region is stable.

Fig. 3. Example of spatially adaptive transmission correction. (a) Original
transmission. (b) BPIL. (c) Spatially corrected transmission.

Hence, the increment can be expressed as follows:

AAjoeal = H\%ni - imin ©)

where I is the background brightness of an image, I, is
the minimum value of 7, and min is a minimum filter with

window ¥. The window size isq‘initialized by visually mea-
suring the spatial variation of haze, and determined thereafter
by interacting with the results. In general, the more uniform
the haze, the larger the initialization window size should be.
Moreover, AAjca is the estimated atmospheric light
increment.

2) Transmission Correction for Bright Surfaces: As there
is a lack of dark pixels in bright surfaces, the transmission of
these regions will likely be underestimated, as shown in the
red rectangles marked in Fig. 3(a). To solve this problem, a
bright pixel identification algorithm is proposed to extract the
underestimated transmission. Thereafter, an adaptive correc-
tion function is applied to revise the transmission.

For a bright pixel, the color is often white. This phenomenon
indicates that the intensity in each band is extremely high,
whereas the differences are extremely small between bands.
These characteristics are used as bases to construct the fol-
lowing bright pixel identification algorithm called bright pixel
index (BPI):

I?axb} I°(x) — I}linb} I1°(x)

celr,g, celr,g,

BPI(x) = min 1°(r) (6)
cefr,g,b}

where max 7°(x) and min 7°(x) denote the maximum
ce{r,g,b} ce{r,g,b}

and minimum of x, respectively, among the visible bands c.
In general, bright pixels have a low BPI value [see Fig. 3(b)].
The bright pixels can be identified by setting a suitable
threshold for BPI.

To correct the transmission for bright pixels, a correction
coefficient C is introduced to obtain the surface-adaptive
transmission 7, which can be expressed as follows:

i =" e @
min(C(x) - t(x), t), x € P

where © is the set of bright pixels. Theoretically, the trans-
mission is between 0 and 1, while its value in the bright
surface may exceed 1 after revision. Hence, an upper bound
to = 0.95 is set to restrict the value. The reason for setting
this value is that the dark channel intensity considerably
approximates 0 but larger than that in remote sensing images.
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That is, the transmission of the visually clear atmosphere is
slightly below 1.

The problem is about calculating C. If the bright pixel
holding the lowest value in the dark channel is assumed to
be clear, then its corresponding transmission should be equal
to 1. Thereafter, (3) indicates that the corresponding correction
coefficient for this pixel can be calculated as follows:

1
)dark

C - %2 i x
"1 —min I(x
xed

®)

where min 7 (x)%® is the minimum value in the dark channel
xed

among the bright pixels. As the intensity of a bright pixel
increases, the transmission will be further underestimated,
which means that the corresponding correction coefficient
should be larger. In addition, the relationship between the real
and underestimated transmissions is an inverse proportional
function related to the dark channel. Therefore, to ensure that
the corrected transmission is as close as possible to the real
situation, an adaptive function is constructed to stretch C,,
which can be expressed as follows:

dark dark

max [ (x)
C()C) — xed _ L
max[(x)dark _ I(x)dark

xed

—min/
mip

Cn ©)

where max I (x)% is the maximum of the dark channel among
xXe

the bright pixels, and C denotes the correction coefficient.
After the adaptive correction strategy is adopted, the underes-
timated transmission can be refined [see Fig. 3(c)].

B. Spectral Adaptive Processing

Atmospheric scattering law states that haze effects vary
in different bands [27], thereby indicating that transmission
is wavelength-dependent. Concretely, the longer the wave-
length, the larger the transmission. However, the difference
in transmission between bands is often disregarded, resulting
in the incomplete removal of haze in short-wavelength bands.
To clear the haze in each visible band, a gradient-based
spectral adaptive processing procedure is proposed.

In general, the influence of haze is twofold: it increases
brightness and reduces gradient [16]. Brightness can be
attributed to haze cover or high reflectance of the land surface.
Thus, brightness is not a distinctive feature of haze. On the
contrary, the blur effect of haze is independent of land cover,
and can be expressed by the image gradient describing the
relative relationship among pixels. As wavelength increases,
the blur influence becomes weaker and the gradient higher.

Evidently, gradient and transmission reflect the influence
of haze and are positively related to wavelength. Therefore,
it is natural to surmise that the two variables are correlated.
To verify this assumption, 500 subimages with a size of
200 x 200 pixels were cropped from different images. After
normalization, the gradient of each band was calculated and
fit thereafter with the transmission. In particular, gradient and
transmission are represented by their average values, which are
denoted as G and 7, respectively. The results of this experiment
indicate that the gradient of the red band and the transmission
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Fig. 4. Linear fitting between the gradient G, and the transmission 7.

show the closest linear correlation, with R? reaching 0.829,
as illustrated in Fig. 4.

This result proves that the linearity between the two vari-
ables is universal and significant, which can be modeled as
follows:

f=a-G,+b (10)

where a and b are the fitting coefficients.

Given the high correlation between the visible bands,
the presumption is that the linearity relationship in (10) is
also suitable for the other visible bands. Therefore, the relative
relationship of the transmission between visible bands can
be determined by their average gradient. Note that (10) is
inadaptable to near-infrared or longer wavelengths because of
the lack of a high correlation between visible and near-infrared
or longer wavelengths. In addition, the statistics of the sources
of dark pixels was performed, and that the majority of the
dark pixels are from the red band of a hazy image and a
few are from other visible bands. Thus, the spatially corrected
transmission is considered suitable for removing haze in the
red band. Therefore, the transmission of each visible band is
given as follows:

a-Gg+b ;

_a'Gb-i-b 7
a-G,+b

tr:f tg: _a(_;+b

(1D
where Gg and G, represent the average gradient of the green
and blue bands, respectively, and #; indicates the transmission
of band i. Given that the derived transmission is merely an
approximation, a guided filter is introduced to avoid some
halo and block artifacts and to obtain the final band-varying
transmission.

IV. EXPERIMENTS

To validate the effectiveness of the proposed method,
several visible remote sensing images selected from different
scenes were collected for synthetic and real experiments. Four
haze removal methods, including HOT [18], fast visibility
restoration (FVR) [40], traditional DCP (TDCP) [29], and
dark channel-saturation prior (DSP) methods [34], were
compared with the proposed method. For a fair comparison,
the optimal parameters used in these methods were determined
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using iterative adjustment. Four indexes, namely, mean-
absolute-error (MAE), coefficient-of-determination (Rz),
root-mean-square-error (RMSE), and spectral angle (SA),
were calculated to measure the haze removal results in the
synthetic experiments. Visual assessments were performed
in real experiments. For the quantitative assessment, R?,
structural similarity index measure (SSIM), and correlation
coefficient (CC) were calculated by taking a clear image with
a minimal time difference as reference.

A. Parameter Design for Comparison Methods

Four methods, namely, HOT, FVR, TDCP, and DSP, were
chosen for comparison. For HOT, the hierarchical interval [
used to slice the HOT map is the key parameter. The smaller
the /, the more complete the haze removal. To obtain clean
results, [ is set to 1. For FVR, the percentage of restora-
tion p, white balance level b, the maximum size of the white
objects sv, maximum window size for the adapted filtering si,
and gamma correction intensity g are the five parameters
affecting the results. p is set to 1 to restore the image
completely. Tarel and Hautiere [40] suggested that b is set
to 0.5 and sv is set as follows:
max(m, n)

50
where m and n are the sizes of the input image. si is used
for softening the noise. Experiments indicate that 50 is a
suitable value. To maintain the spectra of clear regions, g is
set to 1. For TDCP, the key parameter is the window size w.
By testing different w for each image, the optimal sizes shown
in Figs. 5-10 are 7 x 7, 5 x 5, 13 x 13,5 x 5, 17 x 17,
and 7 x 7, respectively. For DSP, the haze removal procedure
is adaptive, and no parameter is required to be set manually.
These algorithms run on a Windows 10 operating system using
a 3.0-GHz Intel Core i5-8500 processor.

sv=2 +1 (12)

B. Synthetic Experiments

The generation of synthetic hazy images was based on
the hazy image model expressed in (1). J was the selected
clear image (i.e., ground truth). The atmospheric light A
was estimated from a real hazy image via the nonuniform
atmospheric light model. The transmission in the red band
t. was calculated using DCP. The transmission in the other
visible bands was derived using the scattering law, which can
be expressed as follows [29]:

13)

where 1 is the central wavelength, the subscript » denotes the
red band, i represents the green or blue band, and y is the
variable varying from O to 4. Once the A and band-varied ¢
are obtained, the hazy image is synthetized.

Figs. 5 and 6 show two synthetic hazy images with different
spatial resolutions and the corresponding haze removal results.

Fig. 5(g) shows a clear image with 30-m spatial resolution
cropped from Landsat-8 Operational Land Imager (OLI).
Fig. 5(a) illustrates a synthetic hazy image, in which the
haze shows significant spatial variation. Fig. 5(b)—(f) show the

TABLE I
QUANTITATIVE ASSESSMENT OF DIFFERENT RESULTS

HOT FVR TDCP DSP Proposed
MAE 11.4153 17.9156 9.7371 12.0504 1.5298
R 0.7193 0.5900 0.8304 0.6012 0.9477
RMSE 11.8321 19.4861 10.6673 13.7567 2.1304
SA 3.7637 2.5334 2.2904 2.5217 0.5872

results of HOT, FVR, TDCP, DSP, and the proposed method,
respectively. Visually, HOT successfully removes haze over
the full scene but presents evident color distortion, which
is extremely different from the ground truth. In the result
of FVR, most haze can be removed but residuals remain.
Moreover, bare soils are dark compared with the ground truth,
which can be attributed to the overcorrection in these regions.
In Fig. 5(d), part of haze remains and the overcorrection
appears at some regions, thereby suggesting that TDCP cannot
considerably handle spatially varied haze and bright surfaces.
Furthermore, the corrected regions look bluish owing to the
insufficient correction for the green and blue bands. As a
result, DSP shows that the image is partially free from haze
and with a higher brightness than the ground truth. The reason
is that the saturation prior used in DSP is minimally valid
in such an image, thereby leading to the overestimation of
transmission and undercorrection of the result. The result
of the proposed method indicates that the image details are
substantially retrieved and the color is closer to the ground
truth visually compared with the other results. Overall, the
proposed method outperforms the compared methods in terms
of haze removal and color fidelity by visual assessment.

To measure the proposed method quantitatively, four met-
rics, MAE, RMSE, R?, and SA, were selected. Their defini-
tions are as follows [41], [42]:

1 s
MAE = - ; |Ji — Jil (14)
S (i 14)2
RMSE = :17 (15)
where i is the pixel index, 7 is the total pixels, J is the ground
truth, and J is the corrected result

" A -2
(=T
R? = —Z;—l ( _)2 (16)
Ei:l (Ji - J)
where J is the mean value of J
1 & JIT;
SA = — Zcos’l ! a7
o JTIAJT T,

where the superscript 7 denotes the transpose operator.
Table I lists the statistical results of these metrics. As indi-
cated by MAE and RMSE, the scores of the proposed method
are considerably lower than that of the compared methods.
This result suggests that the surface information can be
restored accurately in hazy regions and maintained well in
clear regions. R* shows that the score of the proposed method
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Fig. 5. Haze removal results for a synthetic image based on Landsat-8 OLIL. (a) Synthetic image. (b) HOT. (c) FVR. (d) TDCP. (e) DSP. (f) Proposed method.

(g) Ground truth.

is up to 0.9477, which indicates that the restored information
in each band is highly consistent with that of the ground truth.
Furthermore, SA of the proposed method is 0.5872, which is
considerably lower than that of the other methods. That is,
the spectral difference between the result and the ground truth
is extremely small. All quantitative assessments suggest that
the proposed method is effective in accurately correcting hazy
ground information and considerably maintaining the clear
regions.

Another synthetic hazy image was generated based on
GaoFen-1 WFV with a 16-m spatial resolution [see Fig. 6(a)].
Fig. 6(b)—(f) shows the haze removal results using a variety

of methods. Fig. 6(g) illustrates the ground truth. Fig. 6(b)
shows that HOT removes most haze over the entire scene while
residuals remain. That is because the land covers of the clearly
referenced regions are different from those of the hazy regions,
thereby leading to inaccuracy in the estimated HOT map. The
results of FVR, TDCP, and DSP show a similar performance
with the result in Fig. 5. For the result of the proposed method,
all the haze is removed and the entire image is substantially
approximating the ground truth.

Table II presents the four metrics calculated. For the result
of FVR, the scores are the worst in all metrics, which are
similar to previous synthetic experiments. Compared with
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Fig. 6.
method. (g) Ground truth.

TABLE II
QUANTITATIVE ASSESSMENT OF DIFFERENT RESULTS

HOT FVR TDCP DSP Proposed
MAE 7.1408 12.5122 5.2857 5.5021 2.2689
R 0.4776 0.8080 0.8915 0.7812 0.9455
RMSE 9.3986 13.6252 6.2720 6.3337 2.9346
SA 2.6310 5.3177 3.2054 3.8166 1.2741

FVR, the scores of HOT are evidently improved. The scores
of TDCP and DSP show that all the metrics indicate better
performance compared with those in the previous methods.
For the result of the proposed method, MAE, RMSE, and

(8

Haze removal results for a synthetic image based on GaoFen-1 WFV. (a) Synthetic image. (b) HOT. (c) FVR. (d) TDCP. (e) DSP. (f) Proposed

SA are the lowest, and R? is the closest to 1. Accordingly,
the result approaches the ground truth.

C. Real-Data Experiments

Fig. 7(a) shows a hazy image cropped from a forest area,
which also contains large areas of bare soil and is characterized
by uneven haze. The results of the different methods are
shown in Fig. 7(b)—(f). For the result of HOT, the color
of the entire image is distorted and the details are blurred
[see Fig. 7(b)]. The FVR result is shown in Fig. 7(c), which
illustrates that the dense haze and light haze are eliminated
completely, and the contrast of the entire image is enhanced.
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Fig. 7.

Nevertheless, the result suffers from significant overcorrection,
particularly in the bare-soil areas. Moreover, halo artifacts
appear near the discontinuities owing to the “median of median
filter” adopted in FVR [43] [see red rectangle in Fig. 7(c)].
Fig. 7(d) shows that the TDCP result is substantially bet-
ter than the previous results, but part of haze remains and
bare-soils are also overcorrected. Visually, the influence of
haze is partially weakened by DSP, and the image details are
enhanced, although some haze remains. In addition, the color
of the bare soils is evidently distorted owing to the invalidation
of the saturation prior to such a noncolorful scene, as shown
in Fig. 7(e). Differing from the other results, the bare-soil
areas are treated appropriately in the proposed method, and
the haze influence in the visible bands is successfully removed
[see Fig. 7(f)]. That is, the proposed method can faithfully
recover color and significantly enhance the image details
occluded by haze.

Fig. 8(a) shows a hazy bare land image, including abundant
bare soils and some vegetation. Fig. 8(b)—(f) shows the results
of the different methods. For the HOT result, nearly all haze
is removed and the color is maintained substantially, although
many texture details are blurred. Similar to the result of the
previous experiment, the majority of the haze is successfully
removed using FVR, whereas image color is distorted after the
correction [see Fig. 8(c)]. TDCP maintains the general color
of the image, but the haze is partially removed, as can be seen

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
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Haze removal results for a forest image. (a) Hazy image. (b) HOT. (c) FVR. (d) TDCP. (e) DSP. (f) Proposed method.

in Fig. 8(d). DSP has the same problem as TDCP. That is,
haze cannot be removed completely, as can be observed from
Fig. 8(e). For the result of the proposed method, all haze is
successfully removed and the color of the dehazed regions is
consistent with the clear regions. This result indicates that the
haze influence in the spectral and spatial dimensions is elim-
inated, and the degraded information is recovered accurately
using the proposed method.

Fig. 9(a) shows a coastal image containing a uniform haze
and a large area of bright mudflats. Uniform haze can be
easily removed by all the methods, but the large area of bright
mudflats is a challenge. Note that the experimental data are
cropped from a large image, and the clear regions required in
HOT can be obtained from the remainder of the large image.
The results of the different methods are shown in Fig. 9(b)—(f).
The HOT result shows that the color of the entire scene is
clearly distorted. For example, the water region is substantially
darker than it should be. The FVR result shows that haze is
removed completely, but the result suffers from significant
overcorrection, particularly in the bright mudflat area. The
TDCP result has the same problem as that of FVR (i.e.,
bright regions are overcorrected). The DSP result indicates
that the color of the bare-soils is distorted, and the water
surface is substantially darker than the surroundings, as shown
in Fig. 9(e). The result of the proposed method is presented
in Fig. 9(f), where the haze is eliminated considerably and
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Fig. 8. Haze removal results for a bare land image. (a) Hazy image. (b) HOT. (c) FVR. (d) TDCP. (e) DSP. (f) Proposed method.

Fig. 9. Haze removal results for a coastal image. (a) Hazy image. (b) HOT. (c) FVR. (d) TDCP. (e) DSP. (f) Proposed method.

the image color is consistent with that of the original image. A pair of hazy and clear images was collected to further
Moreover, for the large bright mudflat area, the proposed quantitatively investigate the haze removal ability of the pro-
method can handle it correctly and recover the color faithfully. posed method for real hazy image. The hazy and clear images

Authorized licensed use limited to: Wuhan University. Downloaded on July 15,2020 at 02:49:05 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 10. Comparison to a haze-free reference image. (a) Hazy image. (b) HOT. (c) FVR. (d) TDCP. (e) DSP. (f) Proposed method. (g) Reference image.

were captured by OLI on July 1 and 17, 2014, respectively.
The time interval of the two images is 16 days, a revisit period
of OLI. Thus, the temporal variation of the ground surface was
the smallest and can be disregarded, thereby enabling us to use
the clear image as a reference [25], [28]. Moreover, the eval-
vations of the proposed method were performed through a
comparison of the spectra and data consistencies.

Fig. 10(a) shows the hazy image acquired in a mountainous
area. Evidently, the image includes vegetation, bare soil,
and uneven haze. Fig. 10(b)—(f) shows the results of HOT,
FVR, TDCP, DSP, and the proposed method, respectively.
Fig. 10(e) presents the haze-free reference image acquired
from the neighbor revisit period. Similar to previous real-data

experiments, HOT and FVR can completely remove haze but
can cause a slight color drift after the correction, as shown
in Fig. 10(b) and (c). TDCP and DSP substantially maintain
the color of the original clear regions, but the results contain
residual haze leading to color distortion. For the proposed
method, all haze can be completely removed, and the restored
image is visually closest to the reference image.

A line that travels through the hazy regions was selected,
as marked in red in Fig. 10(a). The mean profile curves of
the visible bands are illustrated in Fig. 11. The curves of the
different results are lower than that of the original hazy image,
thereby indicating that the high brightness caused by haze is
eliminated by these methods. Among these curves, the curve
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Fig. 11. Comparison of mean radiance profile curves between different results
and the reference image.

TABLE III
QUANTITATIVE ASSESSMENT OF DIFFERENT RESULTS

HOT FVR TDCP DSP Proposed
R’ 0.8809 0.9139 0.9168 0.8705 0.9258
SSIM 0.8591 0.8056 0.8514 0.8214 0.8903
CcC 0.7772 0.7650 0.7919 0.7890 0.8215

of the proposed method is the lowest and is the closest to the
reference image. That is, haze is removed properly and the
restored information is highly consistent with the reference
data. The reason why the two curves do not overlap completely
is due to phenological changes and the varying atmospheric
conditions. By analyzing the curve shapes, the result of the
proposed method is similar to the original hazy image, thereby
indicating that the spectra of the hazy regions are recovered
faithfully while removing the haze.

Three metrics, RZ, SSIM, and CC, were calculated to further
assess the data consistency between the different results and
the reference image. The closer the metric to 1, the higher the
consistency of the two images. The calculation formulas of
SSIM and CC are as follows [41], [44]:

(21_.; + c1) (2C0ij + cz)

SSIM = — (18)
<J2 + it cl) (ﬂi + 2+ Cz)
cc = (19)
mopg

where cov is the covariance, u is the standard deviation, and
¢y and ¢, are the constants that prevent the denominator from
being 0.

Table III shows the average scores of the visible bands for
these results. Obviously, all scores of the proposed method are
higher than the other four and are the closest to 1. This result
indicates that the restored image is highly consistent with the
reference image.

The synthetic and real-data experiments indicate that the
proposed method is effective in removing haze for various
scenes. However, the proposed method would show limited

performance when the haze intensity is high and seriously
occludes surface information.

V. CONCLUSION

This article proposed a spatial-spectral adaptive haze
removal method for single visible remote sensing images.
Three innovations play important roles in ensuring the haze
removal performance. First, the nonuniform atmospheric light
model describes the variation of atmospheric scattering in the
global scene to effectively remove uneven haze contamination.
Second, spatial correction for the transmission based on BPI
identification overcomes the underestimation of the TDCP
method and makes the proposed method more suitable for
complex scenes. Third, the relationship between gradient and
transmission is maximized to adaptively calculate transmission
according to the atmospheric scattering characteristic, which
effectively maintains the color and spectral features of the
data. Multiple visible remotely sensed images acquired from
different atmospheric conditions and scenes were collected to
perform synthetic and real-data experiments, thereby validat-
ing the universality and effectiveness of the proposed method.
Visually, the proposed method was able to completely remove
haze, and could faithfully restore image colors and details.
Quantitatively, the results held superior performance in all
metrics compared with the other methods. In addition, the pro-
file curve of our result is the most consistent with that of the
reference data, thereby verifying the spectral preservation and
recovery abilities of the proposed method. Overall, the pro-
posed method outperformed the four comparison methods, and
is efficient for use with single remote sensing images with
different scenes and various types of haze.
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