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Highly accurate registration is one of the essential requirements for numerous applications of remote sensing
images. Toward this end, we have developed a robust algorithm by combining and localizing feature- and area-
based methods. A block-weighted projective (BWP) transformation model is first employed to map the local
geometric relationship with weighted feature points in the feature-based stage, for which the weight is de-
termined by an inverse distance weighted (IDW) function. Subsequently, the outlier-insensitive (OIS) model aims
to further optimize the registration in the area-based stage. Considering the inevitable outliers (e.g., cloud, noise,

land-cover change), OIS integrates Huber estimation with the structure tensor (ST), which is an approach that is
robust to residual errors and outliers while preserving edges. Four pairs of remote sensing images with varied
terrain features were tested in the experiments. Compared with the-state-of-art algorithms, the proposed algo-
rithm is more effective, in terms of both visual quality and quantitative evaluation.

1. Introduction

Due to the complementary information available in different remote
sensing images of the same scene, it is valuable to analyze them jointly
for the interpretation and utilization. First of all, it is a vital pre-
condition to ensure geometrical consistency of the ground truth. This is
always achieved by registration, which is the process of aligning dif-
ferent images of the same scene acquired at different times, viewing
angles, and/or sensors (Wong and Clausi, 2007). As a fundamental
preliminary task; registration plays an important role in remote sensing
image applications such as image fusion (Shen et al., 2016; Duran et al.,
2017), image mosaicing (Li et al., 2015; Jiang et al., 2017), multi-
temporal image analysis (Gong et al., 2008; Zeng et al., 2013), etc. Over
the past decades, quite a few registration algorithms have been pro-
posed and widely applied. These algorithms can be classically divided
into two main categories: area-based methods (ABM) and the feature-
based methods (FBM) (Zitova and Flusser, 2003).

ABM, which is also regarded as intensity-based method, utilizes the
intensity information directly to register images. The emphasis of ABM
is the similarity metric (Xu et al., 2016). And the main similarity me-
trics are as follows. The sequential similarity detection algorithm

(SSDA) is quick and easy to implement, whereas it is unstable with
complex geometrical deformation, such as rotation and scaling, etc.
(Barnea and Silverman, 1972). Mutual information (MI) is also utilized
as a similarity measure (Cole-Rhodes et al., 2003; Kern and Pattichis,
2007). MI indicates the best match between a reference image and the
sensed image through its maximum value (Cole-Rhodes et al., 2003;
Chen et al., 2003). However, MI is time-consuming, although it is ro-
bust to radiation differences (Colerhodes et al., 2001). As for normal-
ized cross correlation (NCC), it determines the registration by the re-
lativity of the two images or windows to be matched (Hel-Or et al.,
2011). Due to its robust linear tone mapping, NCC is widely utilized for
image registration, whereas it can fail to handle nonlinear intensity
differences (Hel-Or et al., 2011). In summary, the different similarity
metrics are suitable for diverse circumstances, and can obtain a high
accuracy, as the entire intensity information is utilized. However, ABM
has a weak capability to handle large geometrical deformation.
Differing from ABM, FBM is robust to large geometrical deforma-
tion, while also being quick, as it processes images with their significant
features rather than all of the intensity information. As we know, point,
line, and region are common extracted features (Yu et al., 2008; Sui
etal., 2015; Goncalves et al., 2011). Inspired by the most representative
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scale-invariant feature transform (SIFT) feature (Lowe, 2004), a variety
of improved operators followed, including principal component ana-
lysis (PCA-SIFT) (Yan and Sukthankar, 2004), affine SIFT (ASIFT)
(Morel and Yu, 2009); uniform robust SIFT (UR-SIFT) (Sedaghat et al.,
2011), and scale restrict (SR-SIFT) (Yi et al., 2008). To save time;
speeded-up robust feature (SURF) extract the salient points (Bay et al.,
2006); and KAZE takes advantage of additive operator splitting (AOS)
to extract more valuable feature points (Alcantarilla et al., 2012). And
recently, the oriented features from accelerated segment test (FAST)
and the rotated binary robust independent elementary features (BRIEF)
are employed to extract the robust feature point quickly and robustly
(Rosten et al., 2010; Calonder et al., 2012). As for feature lines, they are
the representation of object contours (Hui et al., 1995), coastlines
(Dongseok et al., 1997), roads (Li et al., 1992), and so on. The mature
line segment detector (LSD) has been published online' (Gioi et al.,
2012) and extensively applied to image alignment and stitching (Xiang
et al., 2016; Li et al., 2015; Lin et al., 2017). Furthermore, feature re-
gions can be extracted to design the mapping function according to
their gravities (Goshtasby et al., 1986), which are rarely applied for
image registration. Comparatively speaking, feature points are more
frequently utilized owing to their insensitivity to various distortions,
and for the convenience of further calculation. For feature matching,
the exhaustive search method (Lowe, 2004) and the KD-tree matching
algorithm (Silpa-Anan and Hartley, 2008) are popularly used in prac-
tice. The former is a linear search method, which compares the feature
point similarities in two images one by one. Thus, it is time-consuming,
and it does not take the structural information of features into con-
sideration. Inversely, the KD-tree matching algorithm matches features
by designing an index structure, which is an efficient approach, even for
large images. With matched features, a transformation model, which
can be affine, polynomial, or projective, is employed to rectify the
images. FBM can save time, with many speedup strategies; however,
owing to outliers, it is difficult to extract features exactly, resulting in a
lower accuracy than ABM (Liu et al., 2014).

In terms of the choice between ABM or FBM, the traditional regis-
tration algorithms rectify images with a global transformation model
(Gong et al., 2014; Liang et al., 2014). However, for wide-field medium
and high spatial resolution imagery with complicated terrain, a global
relationship cannot correct the inconsistent regional deformation.
Under this circumstance, some local transformation models have been
proposed in the FBM framework, focusing on the regional deformation,
for a higher precision (Goshtasby, 1987; Zaragoza et al., 2014; Liu
et al.,, 2016; Flusser, 1992; Goshtasby, 1986; Nejati et al., 2010;
Zagorchev and Goshtasby, 2006). For example, thin plate spline (TPS)
takes the regional deformation into consideration by combining a local
non-affine and global affine transformation model (Bookstein, 1989;
Bentoutou et al., 2005). Since TPS is feature point dependent, outliers
and insufficient feature points may result in the topology not being well
preserved and a poor result being obtained (Holden, 2008). The pie-
cewise linear model (PLM) estimates the local affine transformation
model for every triangle with three feature points (Ye et al., 2017; Han
et al., 2014). However, since only three feature points are used for the
affine model estimation, the model accuracy cannot be guaranteed.
Within each image grid, the As-Projective-As-Possible (APAP) algo-
rithm (Zaragoza et al., 2014) designs local mapping function according
to the corresponding Gaussian weight. For digital images in the com-
puter vision field, APAP usually achieves a satisfactory effect. However,
for remote sensing images with complicated terrain fluctuations, their
individual features should be further considered. Generally speaking,
on the one hand, without taking the unique characteristics of medium/
high spatial resolution remote sensing images into account, these local
transformation models may not be suitable for their registration. On the
other hand, all the aforementioned algorithms neglect the outliers such

! http://demo.ipol.im/demo/gjmr_line_segment_detector/.
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as cloud, noise, and land-cover change, which hinder the registration
accuracy, especially for the local transformation model.

In this paper, to cope with the above-mentioned problems, we
propose a robust registration algorithm focusing on a local transfor-
mation model, while simultaneously considering outliers. The main
contributions of this paper include two aspects. One is that we propose
the block-weighted projective model on the basis of feature-based
method (BWP-FBM), allowing for locally inconsistent deformations in
the first stage. The other contribution is that we propose the outlier-
insensitive model based on area-based method (OIS-ABM) to optimize
the aforementioned result that is subject to inevitable outliers.
Specifically, the outlier-insensitive model (OIS) is formed on the basis
of Huber estimation and the structure tensor (ST) at the finer scale. For
brevity, the combination of BWP-FBM and OIS-ABM makes up the
proposed method.

The rest of this paper is organized as follows. Section 2 describes the
proposed algorithm in detail. The experimental results are provided in
Section 3, where the algorithm verification is also given. Finally, our
conclusions are presented in Section 4.

2. Methodology

In this paper, a robust registration algorithm is proposed for the
precise local mapping function, as shown in Fig. 1. The emphasis is put
on the two stages of BWP-FBM and OIS-ABM. In the BWP-FBM stage,
the candidate feature points in yellow are extracted by SIFT and cor-
respondingly matched with each other. Based on the feature points, the
regional weighted projective transformation model is estimated in the
regularly divided blocks. Since the first stage is equivalent to the coarse
registration, the block size shouldn’t be too small for time-saving. And
the weight of each feature point is assigned by the inverse distance
weighting (IDW) function, with the distance from the block center to
the point. After resampling, the registration result of BWP-FBM is ob-
tained. Successively, the distinct outliers are primarily eliminated by ST
in the OIS-ABM stage. The stage is different from the first one, for high
accuracy, the smaller block size should be taken into account. For each
smaller block, the Huber estimation is further employed to alleviate the
influence of the remaining outliers on the transformation model. By the
iterative update process of the transformation model, the optimized
result is exported after coordinate transformation and resampling. More
details of the algorithm are provided in the following.

2.1. Feature-based method with block-weighted projective model

In the BWP-FBM stage of the proposed algorithm, the potential
feature points in the reference image are detected by SIFT and matched
with the corresponding points in the sensed image (Lowe, 2004). After
candidate feature point matching, random sample consensus (RANSAC)
is used to remove the mismatched points and preserves the optimal
inner points (Wong and Clausi, 2007).

With the accurate matched point pairs, we focus on weight con-
struction to improve the performance of the local projective model.
With the selected weight function, the objective function is described as
shown in Eq. (1) and used to estimate the optimal transformation model
(Zaragoza et al., 2014; Xiang et al., 2018; Feng et al., 2017):

N
B =argmin Y [y | = argmin [WMBIP s t. |5l =1
p i=1 p

where the vector P’ represents the geometric relationship between the
reference and sensed image. N is the number of matched point pairs, w;
is the weight of the i — th matched feature point, and m; is the exterior
product of the corresponding feature points. W € R?*2N is a diagonal
matrix, of which the main diagonal element is w;, and M € R¥N* is
obtained by stacking m; vertically for all of i.

In Eq. (1), the weight function is introduced to balance the
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Fig. 1. Flowchart of the proposed method for remote sensing image registration.

contribution of the points in and around the block, as they all affect the
accuracy of the transformation model. This is inspired by the work of
Zaragoza et al. (2014) in digital image stitching. As mentioned in their
work, the Gaussian function is employed to distribute weight to dif-
ferent feature points and the upper-left corner of cell is the reference
point. However, in our work, the block center is set as the reference
point and the IDW function is employed to distribute the weights to
different feature points. As known, IDW is one of the most commonly
used deterministic models in spatial interpolation based on the first law
of geography (Tobler, 1970; Lu and Wong, 2008). The weight is cal-
culated as follows:

1/\/(x,- -x)+ O -2
S UG = XD+ O = 0)?

=

(2)

where (x;, y,) is the i — th feature point coordinate in the reference
image. N is also the number of matched feature point pairs. (x., y,) is
the block center coordinate.

Fig. 2 shows the weight assignment of the feature points, using nine
blocks as an example. For the first block marked by a red rectangle at
the top left corner, the red dot represents the block center, and the
black dots are the simulated feature points. When calculating the
transformation model, the distance from the red dot to the black dot is
calculated as d;(i =1, 2, 3, ---). The weight w;(i =1, 2, 3, ---) is then
determined by IDW.

For brevity, all the Cartesian coordinates are transformed to
homogeneous coordinates. Basically, direct linear transformation
(DLT), which is similar to the least-squares algorithm, estimates the
projective transformation model from a set of matched feature points
(Xiang et al., 2018; Hartley and Zisserman, 2003). If the transformed
point in the reference image is coincident with the original corre-
sponding point in the sensed image, the corresponding relationship can

° ,
W, % * 4 /'.Ml [
(x. 3 T’ow, .
N °
°
d,
° )
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°
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! * ('\._' H ,‘l} )

Fig. 2. Weight distribution for the BWP model.

be rewritten by exterior product as X’ X PX = T)’M and linearized as
shown in Eq. (3):

=
O3 —XT yx" ||p/
=
xT EM —xX" || pS | = 0sa
- T
—yXT xXT  Ops || Ps 3
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where P = [p, p, p;]” is the projective transformation model, which is
converted to a column vector denoted as p in Eq. (1). For every mat-
ched feature point, Eq. (3) is constructed, and the leftmost matrix is
denoted as m; in Eq. (1).

Nevertheless, Eq. (1) may be unstable when the feature points dis-
tribute sparsely in the block and the surrounding feature points are far
away from the block center. To deal with this situation, we compensate
the weights with a small constant wyy € [0, 1]. In this way, the cor-

rected weight w™" of each point is obtained by Eq. (4):

w' = max(w;, W) (€))
The equation is applied to each pair of matched points, and the solution
to Eq. (1) is the least significant right singular vector of WM. With the
precise BWP model, the coordinates are transformed and resampled by

bilinear interpolation. Finally, the registration result is obtained.

2.2. Area-based method with outlier-insensitive model

The aforementioned result is optimized by the OIS model. Due to
cloud, noise, and land-cover changes, Huber estimation is employed to
design the mapping function, with the inner pixels filtered by ST
iteratively at a finer scale.

Huber estimator is one of the popular M-estimation functions (Li
et al., 2014; Shen and Zhang, 2009). If we suppose that the transfor-
mation model coefficients to be solved are denoted as 6 = [6,, 65,...,6]T,
then the M-estimation is described as shown in Eq. (5):

6= argmin(z p(n, 9)]

()

where 1, is the residual error of the i — th pixel, and p is the objective
function.

With the Huber estimator, p is defined as shown in Eq. (6). The
piecewise objective function is constructed according to the threshold #
and the intensity residual error 1. When it is smaller than the threshold,
the quadratic function is utilized to estimate the corrected coefficients
[see Eq. (6)]. Otherwise, the linear function is employed, which aims to
get rid of the influence of the ignored outliers [see Eq. (6)].

o) = {rf/z whilelr| < g
where = 1.345 X o, and o is the standard deviation of all ;. Fig. 3
shows the variation curves with different thresholds whose X-axis in-
dicates the intensity residual errors and Y-axis denotes the Huber loss.

Generally speaking, the minimization of Eq. (5) is converted to
iteratively reweighted least-squares (IRWLS) process, and the derivative
of the objective function is utilized to calculate the weight function. The
first derivative of objective function p(r) is referred to as an influence
function ¥(r), as shown in Eq. (7):

12 T T

—t1 =0.100 x ¢
—tl=1345x¢

Huber loss

0 N . "
-5 -2 0

Intensity residual error

[
wn

Fig. 3. The Huber estimator with different thresholds.
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T while Irl<t
tsgn(n) whilelr > 4

P = {
7
where ‘sgn’ means that it is a sign function.
By dividing the influence function 1 (r;) by the residual error r, the
weight function is obtained as shown in Eq. (8):

u/lnl Inl >4

wn) =Y/ = { ®
As seen, the pixel will be endowed with a small weight if the residual
error is large. Otherwise, the weight is equal to one. Since the Huber
estimation is converted to IRWLS process, the optimal corrected coef-
ficients are calculated as shown in Eq. (9):

hxl
Y*=arg min( Z wrrkr)

i=1 (C)]
where Y* is the corrected coefficients of the transformation model in
the k—th iterative process, where representing

(dhf, dnf, dak, ...,dbk, db¥) as the linear polynomial model is em-
ployed to describe the geometric relationship of the two images. The
algorithm is performed in an assigned window with the size of
h — by — [ pixels.

As for the aforementioned residual error, it points to the intensity
residual error of the corresponding pixel (Afsharnia et al., 2017), which
can be described as shown in Eq. (10):

r = ho + mL(aox; + ay; + ax;y; + as, box; + b1y, + bax;y, + bs)

= L(x, ) (10)

where (ay, a1, a3, a3, by, b1, by, b3) is the parameter of the linear poly-
nomial model. (x;, y,) are the coordinates in the sensed image. ;; and L
represent the reference and sensed image’s intensity, respectively. hy
and h; are linear radiation coefficients. The initial coefficients of Eq.
(10) were set as [0, 1,1, 0, 0, 0, 0, 1, 0, 0] in our experiments.

As seen, Eq. (9) is a nonlinear function, which can be solved by
Taylor expansion. The iterative formula is described as shown in Eq.
11):

pk+1) — gk 4 yk+1) 11)

where 6F and 6*+D are linear polynomial coefficients calculated in the
k — th and (k + 1) — th iteration, respectively.

Specifically, the correlation coefficient (CC) is used as the termi-
nation condition in the iteration. If the CC in the(k + 1) — th iteration is
smaller than that in the k — th iteration, the transformation model in
the k — th iteration is the best. Otherwise, the iteration continues. Until
the maximal CC is obtained, the linear polynomial transformation
model is the most optimal for image rectification.

Despite restraining the large residual error with a small weight in
the IRWLS process, Eq. (9) may be unstable when the pixel weight is too
small. Since most of these pixels are obvious outliers, such as cloud,
noise, and so on, they can be detected and removed with ST before
estimating the OIS model by Huber estimation.

By taking the geometrical structure into consideration, ST is widely
used to detect the edges and corners of image (Kothe, 2003). Here, it is
utilized to detect outliers while preventing the edges from being re-
garded as outliers. The algorithm can be described as shown in Eq. (12):

(x, y)is inner

(x, y)is outlier

Inl <t X% St (x.y)
|Vl| > bLX Stﬁ(x,y)

a2

where t, is a constant with a large range; sty (. ) is ST at point (x, y) in
image I; and “inner” means that the pixel will be brought into calcu-
lation, or otherwise rejected as “outlier”.

In addition, ST is always calculated with the gradient in the selected
window. Firstly, the gradient and the Gaussian average-gradient cov-
ariance matrix are calculated as shown in Eq.(13):
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Fig. 4. ST (a) Reference image. (b) Sensed image. (c) Outliers. (d) Residual error distribution before outlier elimination. (e) After outlier elimination.

100 600 800

G =

cg*[ ]

where G denotes the gradient; and G, and G, are the gradients in the x
and y directions, respectively. C is the Gaussian average-gradient cov-
ariance matrix, and G,denotes the Gaussian filtering with standard
deviation o.

ST is then the sum of the absolute eigenvalues calculated by singular
value decomposition, and is denoted as “st”, where:

Gy
Gy
G
G,G,

GG,

2
Gy

(13)

st =14l + 14l a4
where A, and 4, are the eigenvalues of C.

In order to illustrate the effectiveness of ST, a pair of images is
employed [see Fig. 4(a) and (b)]. In Fig. 4(b), there are radiation dif-
ferences, geometrical deformation, cloud, and land-cover changes. As
can be seen, the residual error of the two images is not a normal dis-
tribution [see Fig. 4(d)] before ST detects outliers. Registering the two
images by Huber estimation directly, Eq. (9) may be unstable and cause
a large error. After ST employed, the outliers are clearly marked in
Fig. 4(c) in white. After the outlier removal with the constant of 20, the
residual error obeys a normal distribution in Fig. 4(e).

When filtering all the pixels with ST, most of the outliers are re-
jected and the residual error obeys a normal distribution. Generally
speaking, ST is integrated with the Huber estimation, in which way all
the pixels can be given different weights to construct the OIS model
according to Egs. (8) and (12). The weight of each iteration is calcu-
lated as follows:
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600 800

0 Inl > 6 X st;
w; = tl/Ir,-I h < I’il < b X St
1 Inl <4 (15)

where i denotes the i — th pixel in the image.

Once the optimal transformation model is acquired, the coordinates
are transformed and bilinear interpolation is employed to calculate the
gray values of the corresponding pixels. After successful coordinate
transformation and resampling, the optimized registration result is
obtained.

3. Experiments and evaluation

We compared the proposed method with the following five regis-
tration algorithms, from the perspectives of both the qualitative and
quantitative results. A representative of the conventional registration
algorithms is the global projective transformation model (GPTM) (Ye
and Shan, 2014). PLM, which is integrated into ENVI, divides the image
into triangles and estimates the affine transformation model for each
triangle, (Goshtasby, 1986; Ye, 2017). The APAP algorithm in
(Zaragoza et al., 2014) constructs a projective transformation model
with blocks. The TPS model calculates the deformation per pixel with
matched feature points, which can be performed in ArcMap. The out-
comes of BWP-FBM and the proposed method were also compared. For
the qualitative evaluation, i.e., visual quality, on the one hand, over-
lapping the reference and aligned image allowed us to conveniently
observe the overall performance. On the other hand, observing the
enlarged images with view swipe can allow us to evaluate the align-
ment in detail. Notably, the reference image appears in true color,
whereas the sensed and aligned images appear in pseudo color (the NIR,
red, and green bands are assigned to the red, green, and blue channels,
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Table 1
Overview of the experimental data.
Label Res Time Sensor Size Block Characteristics
Mountain 16m 2017.07.08 GF-1wpv.2 400 X 400 x 4 200 X 200 pixels Complex terrain features to the northwest of Beijing, China.
2017.09.20 12 x 12 pixels
Urban area 30m 1999.08.11 ETM + 1000 X 1000 X 6 200 X 200 pixels Dense buildings surrounded by farmland in Tianjin, China.
1997.08.13 ™ 50x50 pixels
Farmland 16m 2016.05.12 GF-1wpv-a 1000 X 1000 X 4 200 x 200 pixels Homogeneous texture, lakes, and clouds in Wuhan, China
2015.08.07 25 X 25 pixels
Hybrid area 3.7m 2017.10.09 TRIPLESAT-2yg 1084 x 1084 X 4 216 X 216 pixels Vegetation, bare area, and buildings in Nanning, China
2016.10.11 GF-2pms1 50 x 50 pixels

Note: “Res” represents the spatial resolution.

respectively) (Han et al., 2015). Furthermore, the yellow arrows and
points are labeled in the enlarged sub-regions to allow convenient ob-
servation of the deformation. The direction of the arrow indicates the
dislocation of the aligned image relative to the reference image, and the
length is a rough quantitative representation of the deformation. A
yellow point suggests that the processed image is well aligned to the
reference image. In addition, the results were quantitatively evaluated
by the three indicators of CC, normalized mutual information (NMI),
and root-mean-square error (RMSE). As far as each perspective was
concerned, four realistic experiments with different terrain features
were conducted.

Details of the experimental images are provided in Table 1, in-
cluding the spatial resolution (“Res”), imaging time, size etc. For
brevity, each experimental image pair is marked with their own main
feature, such as “Mountain”, “Farmland”, or “Urban area”. The block
sizes in the two stages of the proposed method are also listed. Further
details are provided as follows.

3.1. Visual quality

The four experiments were conducted and evaluated by the visual
quality, to check the alignment result. Before focusing on the registra-
tion results, there’s an illustration of “overcompensation” that is a fre-
quently used word in our experimental description. It is a phenomenon
in the registration process. Taking Fig. 5 for example, the road (denoted
by “ry”) in the sensed image [Fig. 5(b)] has a two-pixel deviation [see
Fig. 5(c)] to its counterpart (denoted by “r;”) in the reference image
[Fig. 5(a)]. If we shifted the sensed image by two pixels to the right, and
the accurate registration result could be obtained, like Fig. 5(d). When
it is moved right by more than two pixels, this causes the over-
compensation [see Fig. 5(e)]. That’s to say, overcompensation means
that the movement direction for accurate registration is correct but the
displacement is larger than the real value.

As seen, the first experiment was conducted with the “Mountain”
image pair, as listed in Table 1. As shown in Fig. 6, the image contains
abundant ridges and valleys. Fig. 6(c) is the overlay of the reference
image [Fig. 6(a)] and sensed image [Fig. 6(b)]. This image is fuzzy and
there is much ghosting, which is caused by the misalignment. However,
Fig. 6(d), which is made up of the reference image and the aligned
result by the proposed method with 396 pairs of matched feature
points, is visually clear and the ghosting is mostly eliminated. To fur-
ther evaluate the registration of the different algorithms, the yellow
rectangle regions from the view swipe of the reference image and the
results of GPTM, TPS, PLM, APAP, and the proposed algorithm are
enlarged, respectively. Simultaneously, the similar regions of the ori-
ginal images are extracted and enlarged in Fig. 6(e). For region I in
Fig. 6(e), the horizontal offset between the reference and sensed image
is about two pixels. In addition, a vertical offset of one pixel is apparent
in region II of Fig. 6(e). Firstly, in region I, the horizontal offset is not
eliminated by GPTM, as shown in Fig. 6(f). However, overcompensation
is achieved by TPS in Fig. 6(g), causing dislocation while enlarging the
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marked region I. There is still a one-pixel horizontal offset between the
reference and aligned image by PLM in Fig. 6(h). The offset is not
corrected by APAP in Fig. 6(i), whereas it is eliminated by the proposed
method in Fig. 6(j). Secondly, in region II, the result of the proposed
method in Fig. 6(j) outperforms that of the other methods. For the result
of APAP in Fig. 6(i), overcompensation is apparent. However, PLM al-
most completely eliminates the vertical dislocation in Fig. 6(h).
Fig. 6(g) shows that there is a less than one-pixel offset between the
reference and aligned image. There is also a one-pixel offset in the
vertical direction in Fig. 6(f) and (i), which are processed by GPTM and
APAP, respectively. Both horizontally and vertically, GPTM [Fig. 6(f)]
performs worse than the other methods. This is because, in a moun-
tainous area, the features always distribute sparsely and unevenly, and
the global transformation model cannot describe the local deformation
correctly. Overall, the partial model performs well allow for the local
inconsistent deformation of mountain area, specially the proposed
method can eliminate most of the inconsistent distortions.

The “Urban area” image pair was used in the second experiment.
The experimental area contains buildings surrounded by agricultural
area [see Fig. 7(a) and (b)]. The experimental data are from ETM + and
TM images taken at different times. There are not only geometrical
deformations, but also land-cover changes apparent in Fig. 7(c). Pro-
cessed by the proposed method with 374 pairs of matched feature
points, the overlapping regions are almost aligned with each other [see
Fig. 7(d)]. The five registration algorithms were again conducted. In
particular, Fig. 7(e) comes from the checkerboard of original reference
and sensed image. They cover a much wider area than the other en-
larged images in Fig. 7(f)-(j) as there is large deformation and corre-
sponding contents to Fig. 6(f)-(j) are marked in white dotted rectangles
in Fig. 7(e). TPS can eliminate the vertical offset shown in Fig. 7(g)
although the edge of the road is not clear, which may be a result of the
resampling method after coordinate transformation. All the algorithms
can eliminate the large deformation between the reference and sensed
image. However, there are some small horizontal displacements left in
results processed by GPTM in Fig. 7(f) and PLM in Fig. 7(h). The hor-
izontal overcompensation is apparent in the results of TPS in Fig. 7(g).
Although APAP aligns the road in the sensed image to the reference
image, the road breaks under the edge of the checkerboard in Fig. 7(i).
In region II, the enlarged images show us the vertical alignment. The
road from top to bottom is disconnected in Fig. 7(f) and (h) processed
by GPTM and PLM, respectively. Overcompensation is again apparent
in the result obtained by APAP, as shown in Fig. 7(i). As expected, the
proposed method gives a desirable outcome in Fig. 7(j). The proposed
method divides the image into blocks according to the terrain features.
With all the feature points employed, varied weights are assigned to the
different feature points based on the contribution to the transformation
model. Furthermore, the registration result is further refined in the
second stage. Finally, the optimal outcome is acquired by the proposed
method.

In the first two experiments, the proposed method performed well
on the images without distinct outliers. To further verify the
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Fig. 5. Illustration of the overcompensation. (a) The reference image. (b) The sensed image. (c) The overlap of the original images. (d) The accurate registration

result. (e) The overcompensation result.

effectiveness of the proposed method, the “Farmland” image pair con-
taining cloud, noise, and land-cover changes was employed here.
Fig. 8(a) is the reference image and Fig. 8(b) is the sensed image. When
overlapping the two images in Fig. 8(c), the result is slightly fuzzy as
there is some small deformation between the reference and the sensed
image. It is not obvious whether the deformation is thoroughly elimi-
nated in Fig. 8(d) processed by the proposed method with 54 pairs of
matched feature points. So we focus on the enlarged regions in
Fig. 8(e)—(j), which represent the regions marked by the yellow rec-
tangles in Fig. 8(c) processed by the different algorithms. The extracted
sub-regions of the original images are enlarged in Fig. 8(e), where the
vertical and horizontal offsets are about two pixels between the re-
ference and sensed image. When focusing on region I, the horizontal
offset is not eliminated by GPTM [Fig. 8(f)], and it is the same as the
original images in Fig. 8(e). Larger offsets are offered by TPS in Fig. 8(g)
and PLM in Fig. 8(h). It is apparent that APAP cannot eliminate the
horizontal offset in Fig. 8(i) as well. For region II, the road goes through
it, and the emphasis is put on the road edge. The vertical deformation
has been eliminated by GPTM in Fig. 8(f) and the proposed method in
Fig. 8(j). However, TPS is not able to eliminate the vertical offset be-
tween the reference and sensed image [Fig. 8(g)], which is the same as
the original images in Fig. 8(e). The original sensed image was moved
down by PLM in Fig. 8(h) whereas there is still a small translation to be
compensated for. APAP results in overcompensation, leading to vertical
deformation in the opposite direction. Based on SIFT, it is difficult to
extract enough feature points from the repeated texture area of
“Farmland”. Thus, the feature points distribute unevenly, especially on
the lakes and cloudy areas. In this case, TPS and PLM give a poor
performance. GPTM obtains a desirable result in some regions, and not
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in others. However, the proposed algorithm outperforms all the other
methods. The reason for this is that all the feature points are employed
and varied weights are assigned to the different feature points based on
the contribution to the transformation model. Therefore, the geometric
relationship is more accurate and a precise result is obtained.
Actually, a mixed-terrain area is more common than a single terrain
type. Among the five methods, which is effective for registering com-
plex terrain images? To answer this question, a pair of images con-
sisting of vegetation, buildings, lakes, and bare land was employed,
where there are obvious land-cover changes as well, namely, the
“Hybrid area” image pair. Fig. 9(c) is the overlay image of the reference
[Fig. 9(a)] and sensed image [Fig. 9(b)]. There is obvious deformation
according to the heavy ghosting in Fig. 9(c) whereas it eliminated in
Fig. 9(d) processed by the proposed algorithm with 532 pairs of mat-
ched feature points. As previously, the yellow rectangle regions marked
in Fig. 9(c) from the different algorithms results are extracted and en-
larged in Fig. 9(e)-(j). The large deformations are apparent between the
original reference and sensed image in Fig. 9(e). The two sub-regions of
the GPTM result are enlarged in Fig. 9(f). The dislocated road in region
II means that this could not be compensated by GPTM. Furthermore, in
region I, there is still a one- or two-pixel horizontal offset. TPS can align
the images well in some regions, although the result in the other regions
is poor. In Fig. 9(g) the road is visually continuous, whereas there is still
a one- or two-pixel vertical offset in region IL. In Fig. 9(h), the PLM
alignment result is reversed. The road in region II is well registered,
whereas overcompensation is apparent in region I. An undesirable
outcome is obtained by APAP in Fig. 9(i), where most of the horizontal
deformation is eliminated, but the vertical displacement is not com-
pletely corrected. In addition, the roads are discontinuous and
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(1)
Fig. 6. Registration result for the “Mountain” image pair. (a) Reference image (shown in true color). (b) Sensed image (shown in pseudo color). (c) The overlap of the

original images. (d) The overlap of the reference image and the result of the proposed algorithm. Magnified images from (e) the original images, (f) GPTM, (g) TPS (h)
PLM, (i) APAP, and (j) the proposed method.

Fig. 7. Registration result for the “Urban area” image pair. (a) Reference image (shown in true color). (b) Sensed image (shown in pseudo color). (c) The overlap of
the original images. (d) The overlap of the reference image and the result of the proposed algorithm. Magnified images from (e) the original images, (f) GPTM, (g) TPS
(h) PLM, (i) APAP, and (j) the proposed method.
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Fig. 8. Registration result for the “Farmland” image pair. (a) Reference image (shown in true color). (b) Sensed image (shown in pseudo color). (c) The overlap of the
original images. (d) The overlap of the reference image and the result of the proposed algorithm. Magnified images from (e) the original images, (f) GPTM, (g) TPS (h)

PLM, (i) APAP, and (j) the proposed method.

unsmooth in the aligned image, which may be caused by the nearest
neighbor interpolation. As expected, a desirable result is obtained by
the proposed method in Fig. 9(j), where the roads are well aligned, both
horizontally and vertically. Since the spatial resolution is high, the local
distortion is more obvious. The proposed method constructs the re-
gional transformation model, allowing for the feature point position
errors. Overall, this experiment demonstrates that the proposed method
obtains a very satisfactory outcome in this mixed-terrain area.

From the results of the above four experiments, it is apparent that
the proposed method is able to align images in both single-terrain area
and a mixed-terrain area. To further testify whether the second step
(OIS-ABM) is effective for the first step (BWP-FBM) of the proposed
method or not, their magnified images in the previous experiments are
shown in Fig. 10. The registration accuracy is very approximate be-
tween the results of BWP-FBM and OIS-ABM in some area, such as
Fig. 10(a) and (c). However, in other areas, a different phenomenon
occurs that the obvious improvement provided by OIS-ABM. As seen, in
the second row of Fig. 10(b) and (d), OIS-ABM aligns the roads accu-
rately whereas they are misaligned in the first row by BWP-FBM.
Therefore, the OIS-ABM further guarantees the high registration accu-
racy on the whole. In other words, its improvement is relatively effec-
tive unless the registration accuracy of the first step is very precise. To
further verify the experimental conclusion objectively, the quantitative
evaluation is provided in the next section.

3.2. Quantitative evaluation

To give an objective evaluation, the proposed method was com-
pared with the same five methods quantitatively, i.e., GPTM, TPS, PLM,
APAP, and BWP-FBM (the first stage of the proposed method). The
three assessment criteria of NMI, CC, and RMSE were employed.

(1) NMI. As one of the similarity metrics in ABM, NMI was
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employed to estimate the overall alignment (Han et al., 2015):

H(A) + H(B)

NMI(A, B) = HA B)

(16)
where H(A) and H (B) are the entropies of image A and image B, re-
spectively; and H (A, B) is the joint entropy. The available range of NMI
is [1, 2]. A larger value of NMI represents a more precise registration
result.

(2) CC. The CC metric was used to provide an overall judgement as
to whether the sensed image was well aligned to the reference image or
not (Han et al., 2015):

S A -AB-B)
VI @ - AP 3L, B - B?

where A; and B; are the intensity values of the i — th pixel in image A
and image B, respectively; and A and B are the corresponding average
intensity values. T is the pixel number. The available range of CC is
[—1, 1], and CC generally belongs to [0, 1]. A larger value of CC means a
more accurate registration result.

(3) RMSE. This indicator focuses on evaluating the registration re-
sult by calculating the average distance of the corresponding points in
the reference and aligned image (Wong and Clausi, 2007; Han et al.,
2015; Yang et al., 2017):

cc

a7

N
1
RMSE = |— Y (Ax)? + (Ay)?
\/N ; (18)

where N is the number of evaluated points, and Ax; and Ay, are the
residual differences of the i — th checkpoint pair in the x and y direc-
tions. A smaller RMSE means a better result. For RMSE calculation, a
number of evaluated points were extracted from the reference and
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Fig. 9. Registration result for the “Hybrid” image pair. (a) Reference image (shown in true color). (b) Sensed image (shown in pseudo color). (c) The overlap of the
original images. (d) The overlap of the reference image and the result of the proposed algorithm. Magnified images from (e) the original images, (f) GPTM, (g) TPS (h)

PLM, (i) APAP, and (j) the proposed method.

aligned images humanly.

The CC and NMI evaluation results are shown in Fig. 11. The four
lines in different colors represent the evaluations of the four experi-
ments. In Fig. 11(a) and (b), the NMI and CC in the “Farmland” area are
lower than those in the other areas. As can be seen, there are distinct
clouds in the sensed image, but not in the reference image [see Fig. 8(a)
and (b)], and the experimental data were collected at different times,
whereas crops are sensitive to temporal changes. From the perspective
of locality, both the NMI and CC of TPS in the “Mountain” and “Hybrid
area” are lower than those of the other methods. Due to the sparse
feature points in mountainous areas, TPS performs poorly in the area
with insufficient feature points. In the “Hybrid area”, there are distinct

land-cover changes, causing fewer matched point pairs. Therefore, TPS
cannot obtain satisfactory results in the “Mountain” and “Hybrid”
areas. The proposed method obtains the maximum NMI and CC values.
In addition, while BWP-FBM achieves a high accuracy, the proposed
method shows only a small accuracy difference with BWP-FBM, as in
the experiment in the “Farmland” area in Fig. 11. In contrast, there
exists a significant improvement from the BWP-FBM method to the
proposed method when the former accuracy is not as high as possible,
as in the “Mountain” and “Hybrid” experiments in Fig. 11. Although the
tendency of the two evaluation indicators is the same, on the whole,
there are minor inconsistencies between NMI and CC in the “Farmland”
area, when focusing on the TPS result. The two indicators may be

First step
(BWP-FBM)

Second step
(OIS-ABM)

Fig. 10. The comparison of BWP-FBM (in the first row) and OIS-ABM (in the second row) results from the aforementioned experiments. (a) Fig. 6 in region II, (b)

Fig. 7 in region I, (c) Fig. 8 in region I, (d) Fig. 9 in region II
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Fig. 11. Quantitative evaluation of the registration results in the four experiments. (a) NMI. (b) CC. (“Original” means evaluation on the unprocessed images. “BWP-
FBM?” is the first stage of the proposed method. “Proposed” means the combination of BWP-FBM and OIS-ABM.)

Table 2

RMSE (|) of the different algorithms in the experiments (pixels).
Experiment Originalnal GPTM TPS PLM APAP BWP-FBM Proposed
Mountain (10) 3.99 0.89 1.29 0.75 0.83 0.73 0.66
Urban area (10) 139.78 4.83 0.98 0.93 2.66 1.02 0.91
Farmland (10) 1.81 1.64 1.66 1.58 1.49 1.09 0.78
Hybrid (10) 11.98 0.92 0.90 0.72 0.48 0.48 0.42

Note: “BWP-FBM” is the first stage of the proposed method. “Proposed” means the combination of BWP-FBM and OIS-ABM.

influenced by radiation difference and land-cover changes, as the ex-
perimental images were taken at different times, and even by different
sensors. Therefore, to evaluate the transformation model more objec-
tively, we put an emphasis on RMSE.

The RMSE values of the four experiments were calculated according
to Eq. (18) and are listed in Table 2. The number of test points is listed
in brackets in the leftmost column of Table 2. The “Original” RMSE was
calculated to measure the initial deformation between the reference
and sensed image. On the whole, the RMSE is decreased considerably
by GPTM, although its outcome is not as ideal as that of the local
models. As expected, TPS can eliminate the regional deformation,
whereas it performs poorly in the area without enough feature points.
Therefore, the RMSE in the “Mountain” area obtained by TPS is lower
than that of GPTM. As shown, PLM is more robust than TPS, and it
shows a higher registration precision in Table 2. Since PLM segments
the image according to the extracted feature points, it is unaffected by
the local absence of feature points. The first stage of the proposed
method (BWP-FBM) is similar to APAP, whereas the accuracy is higher
than that of APAP. When distributing the weight to each feature point,
APAP uses a Gaussian function rather than IDW in the BWP-FBM al-
gorithm. In addition, the reference point of the different blocks locates
at the block top left in APAP, but it is the block center in BWP-FBM.
Ultimately, the highest accuracy is obtained by the proposed method,
by combining the respective advantages of the feature- and area-based
methods, and locally estimating the transformation model.

On the whole, two conclusions can be drawn. One is that the
proposed algorithm produces a precise registration result with BWP-
FBM by estimating the transformation model block by block. The
other is that OIS-ABM is able to obtain an optimized registration ac-
curacy.
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4. Conclusions

Image registration is a critical step when analyzing or processing
two or more images. Given the inconsistent deformation caused by
terrain relief and the degradation factors, a two-step algorithm com-
bining and localizing the feature- and area-based methods is adopted to
align remote sensing images in this paper. To obtain a relatively precise
alignment, the block-weighted projective model is constructed by di-
viding the reference and sensed image into blocks, and estimating the
model for each block with IDW. This result is then taken into the second
stage, in which Huber estimation is integrated with ST to construct the
outlier-insensitive model. In OIS-ABM, the linear polynomial transfor-
mation model is estimated at a finer scale. The optimal geometrical
relationship is iteratively refined to rectify the BWP-FBM outcome, for a
more precise result. For the four pairs of realistic images used in the
experiments covering varied terrain features, the results qualitatively
and quantitatively demonstrate that the proposed algorithm can
achieve a reliable registration accuracy.

However, there are still some issues that need to be addressed in the
future. Firstly, the local deformations are modeled artificially within
small blocks, so the ground truth may be segmented into several blocks.
An automatic blocking strategy should therefore be considered.
Secondly, the proposed method is robust for simple and small radiation
differences. As for complicated and large radiation differences, the
nonlinear function could take effect.
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