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a b s t r a c t

Haze, especially PM2.5, poses a serious threat to public health in China. PM2.5 primarily originates from
urban activities, and built environment may affect its formation and dispersion. Previous studies were
based on limited data from ground-monitoring stations, and high resolution pollution maps are un-
available for statistical analyses. In this study, a 1 km*1 km wall-to-wall map of PM2.5 concentration is
developed with remote sensing data in Wuhan, China, and spatial statistics are used to figure out the
influence of the built environment on PM2.5 concentrations. In terms of land cover, high-rise high-density
building areas have the largest impact on PM2.5 concentrations, and the effect of forestland on the
concentrations is not obvious in winter. In terms of land use, industrial lands are unrelated to air
pollution in the downtown, while transportation has become a main source of PM2.5 pollution. In terms
of urban form, floor area ratio and building density are positively associated with PM2.5 concentrations,
and different types of road densities have different effects on air pollution. Finally, the implications of the
study for urban planning and development are given. It is necessary to develop a polycentric urban
structure to balance high population density and reduce traffic emissions in downtown areas. Road and
bus networks should be optimized simultaneously to reduce traffic emissions and “small blocks and
narrow roads” may be considered as an alternative for urban development. The spatial morphology of
streets and buildings should be considered during urban design and urban renewal. In general, the study
contributes to the application of remote sensing in urban planning and development, and remotely
sensed PM2.5 concentration data could provide further findings than the air pollution data obtained from
ground monitoring and “bottom-up” models in past studies.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Haze, also referred to as smoke fog, has become a serious
environmental problem for cities across the globe, especially in
developing countries such as China (Han et al., 2017) and others in
South and Southeast Asia (Shi et al., 2018). Among air pollutants in
haze, PM2.5 (particulate matter in the air that is less than 2.5 mm in
aerodynamic diameter) is a key pollutant affecting human health
because it can deposit dangerous materials like heavy metals and
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sulfates in human respiratory tracts and lungs (Chen et al., 2017).
Several studies have confirmed that exposure to PM2.5 can lead to
an increase in cardiovascular and respiratory diseases (Dominici
et al., 2006), lung cancer (Han et al., 2017), and mortality (Laden
et al., 2006). Increasing anthropogenic emissions driven by rapid
urbanization have led to serious PM2.5 pollution across China (Cao
et al., 2011). For example, Beijing suffered more than 20 hazy days
in January 2013, with the maximum hourly PM2.5 concentration
exceeding 600 mg/m3 at this time (nearly 10 times the national air
quality limit) (Wang et al., 2014). Various studies from different
disciplines have focused on the scientific issues of formation, fea-
tures and controlling strategies of PM2.5 pollution in China, and
these studies provided implications for the Chinese government
and the public to address the challenge (Fu and Chen, 2017).

PM2.5 predominantly originates from urban activities such as
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vehicle exhaust, coal and fuel combustion, dust from paved roads,
and secondary sulfates (Pui et al., 2014). The process of using coal-
reliant sources for heating and industrial activities has either been
discontinued or technologically improved to decrease emissions,
and pollutant loads from the coal and chemical industries have
dramatically decreased in China. At the same time, the rising
number of vehicles in Chinese cities, especially private cars, has
made traffic-induced PM2.5 the largest source of haze pollution (Liu
and He, 2012). Besides ownership control and traffic restriction,
some studies have shown that the built environment can affect
concentrations of air pollutants in urban areas. For example, a
compact urban form may make streets more walkable, reduce trip
distances, and improve the share of public bus transport, thus
reducing vehicle emissions and road dust (Ewing and Cervero,
2010). Increasing impervious surface areas in urban centers re-
sults in an increase in temperatures due to the urban heat island
effect, which may contribute to the formation of air pollutants
(Stone, 2008). High-density buildings may hinder the dispersion of
air pollutants, leading to higher levels of pollutant accumulation
(Hang et al., 2009).

Previous studies have thus far covered various perspectives.
Some empirical studies compared average concentrations of air
pollutants from ground-monitoring stations in different cities to
analyze the effects of the urban built environment on air quality.
For example, Bereitschaft and Debbage (2013) explored the rela-
tionship between urban form (street accessibility, degree of
centering, land use mix, residential density, sprawl index, urban
continuity, and shape complexity) and air pollution among 86
metropolitan areas in the United States, and the results show that
cities with higher degrees of urban sprawl exhibited higher con-
centrations and emissions of air pollution. Rodríguez et al. (2016)
used a dataset of 249 large urban zones across Europe and identi-
fied the determinants of air pollutant concentrations, and the re-
sults suggest that fragmented cities have higher levels of PM10. Liu
et al. (2016) examined the relationship between urban form and
urban smog in 30 Chinese cities, and the results indicate that urban
elongation and compactness are positively correlated to PM10.
Based on empirical data from 157 Chinese cities, Yuan et al. (2018)
found that higher population density and lower urban continuity
are usually associated with better air quality. In these studies, the
urban areas of a city were taken as a single sample to evaluate its
built environment, and spatial metrics for different parts of the city
were overlooked.

With the development of urban simulation models, some
studies have used “bottom-up” models to evaluate air pollution
under different scenarios in a city. Marquez and Smith (1999) in-
tegrated land use, transportation, and airshed models to develop a
framework for linking urban form and air quality. Subsequently, a
series of modelling studies that integrate land-use models, trans-
portation models, and emission models has been carried out to
predict emissions based on specific land-use scenarios for indi-
vidual cities. For example, a scenario analysis study in Xiamen,
China, showed that compact development not only reduces vehicle
emissions but also increases population-weighted exposures (Yuan
et al., 2017). This is because a low-density scenario drives people
away from high-pollution areas, while a high-density scenario
places more people within such areas. However, air pollutants from
emissions may disperse and interact with other factors (such as the
urban heat island effect (Civerolo et al., 2007), and the street
canyon effect (Buccolieri et al., 2010)), which can dynamically
change air pollution concentrations. Hence, such “bottom-up”
models do not adequately evaluate air pollution under different
scenarios in a city.

Pollution ground-monitoring stations provide more data sup-
port and promote empirical studies on a single city. For example, Xu
et al. (2016) used data from nine ground-monitoring stations to
explore the quantitative relationship between land cover and air
quality in Wuhan, China; the results show that land use categories
(e.g., built-up land, vegetation, and water) have different effects on
different air pollutants. Wu et al. (2015) further applied landscape
metrics of different land covers (cropland, vegetation, water, and
construction land) and examined the effect of urban landscape
patterns on PM2.5 concentrations as measured by monitoring sites
in Beijing. Weber et al. (2014) revealed a positive correlation be-
tween PM10 concentrations and urban structures (including single
and semi-detached houses, multi-story housing, and terraced
houses) in Leipzig, Germany, but the PM10 data used in the air
dispersionmodel were collected only from four ground-monitoring
stations. In general, a limited number of ground-monitoring sta-
tions cannot provide detailed information for performing mathe-
matical statistical analyses on PM2.5 concentrations.

Overall, air pollution data from ground monitoring and “bot-
tom-up” models in past studies are not sufficient to gain a deeper,
more precise understanding of the association between the built
environment and PM2.5 concentration. Remote sensing techniques
have become increasingly popular in recent years for monitoring
PM2.5 concentration (Geng et al., 2015; Li et al., 2017b). Compared
with data from ground monitoring sites and “bottom-up” models
used in past studies, the high resolution and wall-to-wall coverage
data from remote sensing products could provide more support to
examine the association between PM2.5 concentration and built
environments in urban areas.

Limited studies have used remote sensing data to explain the
association. Therefore, the objective of this study is to use remote
sensing technologies to derive a high spatial resolution
(1 km*1 km) map of PM2.5 concentrations, and explore the asso-
ciation between three different aspects of built environments (ur-
ban land cover, urban land use, and urban form) and PM2.5
concentrations in urban areas. The study contributes to the litera-
ture by expanding the application of remote sensing in urban
planning and development, and its novelty is that it expands the
limited ground-monitoring data by providing a hundred samples of
PM2.5 concentrations in urban areas for statistical analyses on ur-
ban built environments.

2. Study area and data

Wuhan, the capital city of Hubei province, was selected for this
study for several reasons: (1) According to the World Health Or-
ganization's Ambient Air Pollution Database 2016, Wuhan ranked
12th in terms of PM2.5 concentrations among 210 Chinese cities,
and PM2.5 has become a significant environmental threat for its
citizens. (2) Wuhan is nearly a thousand kilometers away from the
Jingjinji Metropolitan Region (Beijing-Tianjin-Hebei), thus reducing
any outside interference that this area with significant haze
pollution problems would have on Wuhan. (3) Due to a significant
increase in motor vehicles in recent years (from 1 million vehicles
in 2010 to 2.7 million in 2017), transport-related emissions have
become a major source of air pollution in Wuhan.

According to data from monitoring sites in Wuhan, the average
concentration of PM2.5 in 2016 was the highest in January, with the
average value reaching approximately 104 mg/m3 (the average
value for 2016was 57 mg/m3). In January 2016, 74% of the days failed
to meet the National Ambient Air Quality Standard (NAAQS) for
PM2.5 concentrations (75 mg/m3). Uncovering association between
the built environment and PM2.5 concentrations during the period
inwhich pollution levels were the highest may provide insights and
their implications for urban planning. Therefore, January 2016 was
selected as the study period. As Fig. 1 shows, the study area of
central Wuhan covers approximately 550 km2 with a population of



Fig. 1. Study area.
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4.2 million people. Most polluting industries, such as the Wuhan
Iron & Steel Factory zone, are excluded from the study area. These
enterprises were forced by the government to reduce emissions or
shut down during periods of severe haze pollution. The study area
and period were designed to reduce any bias caused by industrial
emissions on the results. Data used in this study include national
ground monitoring data and Moderate Resolution Imaging Spec-
troradiometer (MODIS) remote sensing data for January 2016 and
Geographic Information System (GIS) data on land use, roads, land
cover, and buildings for 2014.
3. Methodology

As Fig. 2 shows, 1 km*1 km grids in Wuhan were selected as
samples; PM2.5 concentration distributions were estimated using a
machine learning method; and three kinds of urban built envi-
ronment metrics, namely land cover, land use, and urban form,
were calculated. It was assumed that PM2.5 concentration in a grid
is correlated with both the built environment of the grid and the
concentrations in the neighboring grids, and a spatial statistical
analysis was carried out to explore the effects of urban built envi-
ronment on PM2.5 concentration.
Study area and sample
selection

Machine learning with
Remote sensing data

Urban built environment
metrics calculation

PM2.5 concentration

Land cover metrics

Land use metrics

Urban form metrics

Spatial statistics
Dependent

variable
Independent

variable

Fig. 2. Flowchart of the study.
3.1. Estimation of PM2.5 concentrations

This study used a Deep Belief Network (DBN) to produce spatial
distribution maps of the average PM2.5 concentration in January
2016 in Wuhan urban agglomeration (Li et al., 2017a). The esti-
mation of PM2.5 concentration has been gradually considered a
multivariable and non-linear problem, and the DBN has the po-
tential to better represent the complex non-linear relationship (Li
et al., 2017c). To be more specific, 1 km*1 km ground-level PM2.5
was estimated with a DBN, containing a dependent variable (PM2.5
concentration from air pollution monitoring stations) and two
types of predictors (satellite observations and meteorological pa-
rameters). Satellite observations were obtained from MODIS
products MYD02, MYD35, and MYD13 (a resolution of 1 km), and
they included B1, B3, and B7 top-of-atmosphere (TOA) reflectance;
observation angles; cloud mask; and normalized difference vege-
tation index (NDVI). Meteorological parameters included air tem-
perature, surface pressure, wind speed, relative humidity, and
planetary boundary layer height. A 10-fold cross-validationmethod
was used to test for potential model overfitting and to estimate the
predictive power of the sample. The results show that the mapped
PM2.5 distribution (1 km*1 km) retrieved from MODIS products is
consistent with the site measurements, with the values of R2 and
RMSE reaching 0.87 and 9.89 mg/m3, respectively. The study area
includes 479 1 km*1 km grids in total, which was sufficient for the
statistical analysis.

3.2. Metrics of the built environment

This study uses land cover, land use, and urban form to repre-
sent the built environment, and Fig. 3 shows an example of data for
land cover, land use, buildings, and street networks.

Land cover is measured in terms of proportions of different land
cover types in each grid area. In the study area, buildings account
for 25% of the total area, forests 15%, grasslands 7%, roads 1%, and
water 10%. This information on land cover was obtained from high
resolution remote sensing data, and some of these land cover types
could be further classified into sub-types. For example, low-rise
high-density building areas account for most of the land area
covered by buildings (38%), followed by high-rise high-density
building areas (27%) and high-rise low-density building areas
(22%).

The proportions of different land use types in each grid are used
to reflect urban functions. In the study area, the land use types
include residential land (R, 30%), business land (B, 5%), adminis-
tration land (A, 11%), industrial land (M,11%), and green and natural
land (G, 5%). The study used Shannon's diversity index to measure
the land use mix for each grid.

The study used data on buildings and street networks to mea-
sure urban form. For buildings, the building density, floor area ratio
(FAR), and mean floor count were measured in each grid. For street
network, the road density of different types of roads, road junction
density, bus station density, and bus route density were measured
in each grid. Streets were classified into four levels: express roads
(14%), arterial roads (15%), sub-arterial roads (19%), and branch
roads (52%).

Statistics for all variables are shown in Table 5.

3.3. Statistical methods

Spatial statistics have been used to evaluate the effect of natural
and anthropogenic factors on haze pollution with a cross-section
data of prefecture-level cities in China in previous studies (Hao
and Liu, 2015; Liu et al., 2017). First, this study calculated a global
autocorrelation index (Moran's I) using values for all the grids in the



Fig. 3. Examples of data used to calculate metrics of the built environment.

Fig. 4. PM2.5 concentrations and spatial autocorrelation analysis.
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study area to evaluate whether patterns of PM2.5 concentrations are
clustered, dispersed, or random. Moran's I ranges from �1 to 1,
where positive values indicate spatial clustering, negative values
indicate spatial dispersion, and zero indicates no spatial autocor-
relation. The study further used Anselin Local Moran's I (LISA) to
show the relationship of PM2.5 concentrations between each grid
and its surrounding grids across the study area. The spatial pattern
of LISA can help locate areas with clusters of high PM2.5 concen-
trations (HH) and areas with clusters of low PM2.5 concentrations
(LL). The study used a Queen contiguity weights matrix for the
spatial autocorrelation analysis.

If significant spatial autocorrelation is detected, it indicates that
PM2.5 concentrations in individual grids may be associated with or
even dependent on the neighboring grids. Traditional statistical
methods, such as the Pearson correlation, cannot be used to explore
cases with spatial autocorrelation (Anselin, 1988; Wan and Su,
2016). Spatial statistics, namely spatial lag models (SLM, Eq. (1))
and spatial error models (SEM, Eq. (2)), are used to explore corre-
lations between the built environment and PM2.5 concentrations,
and robust Lagrange multiplier tests are used to select a specific
model (Su et al., 2017). All variables have been standardized before
performing statistical analyses, and all modelling was performed
using GeoDa software.

Y ¼ aþ bX þ lWY þ e (1)

Y ¼ aþ bX þ e ðe ¼ lWe þ uÞ (2)
In these equations, Y represents the PM2.5 concentrations for
each grid; X represents metrics associated with the built environ-
ment; e is the error term; l is the spatial autoregressive coefficient;
WY and We are the spatial matrices for Y and e, respectively; and a
and u are the scalar variables.
4. Results

4.1. Spatial patterns of PM2.5 concentrations

In the study area, PM2.5 concentrations ranged from 87 to
116 mg/m3 with a mean value of 94 mg/m3. All grids had an average
value above 1.5 times the national standard. As Fig. 4 shows, the
area within the first ring road had the highest level of PM2.5 con-
centrations ranging from 97 to 116 mg/m3; this region was consid-
ered a high-high cluster by LISA analysis. Grids with the lowest
level of PM2.5 concentrations were located at the south-eastern
corner of the third ring road (low-low clusters), which is near the
Wuhan East Lake High-Tech Development Zone. With the excep-
tion of areas in the north-eastern corner of the third ring road (a
high-high cluster), the area between the second and third ring
roads exhibited medium levels of air pollution with values ranging
from 96 to 104 mg/m3. In the entire study area, there was only one
grid with a high level of PM2.5 concentrations surrounded by low
levels of pollution (a high-low outlier).

The global Moran's I for the study area was 0.57 (p< 0.001),
which indicates that spatial autocorrelation for PM2.5 concentra-
tions across all grids is a significant problem. In terms of statistics,
this violates the assumption of independent observations, and us-
ing the Pearson correlation would be inappropriate (Haining and
Zhang, 2003). More importantly, air pollution in one grid may be
generated by vehicles passing across the neighboring girds. The
built environment can influence not only influence PM2.5 concen-
trations in its own grid but also the air quality of the neighboring
grids. Thus, it is necessary to use spatial statistics to explore the
association between air pollution and the built environment.
4.2. Association between land cover and PM2.5 concentrations

The results of the spatial statistics and spatial patterns of land
covers are shown in Table 1 and Fig. 5, respectively. The spatial
autoregressive coefficients l was significantly positive in all
models, which once again verifies the spatial autocorrelation of
PM2.5 concentrations. Unexpectedly, the proportion of forest area
within a grid is not correlated to PM2.5 concentrations. This may be
due to the dormancy of trees during winter decreasing PM2.5 ab-
sorption, especially for deciduous trees. The proportion of grass-
lands in a grid is both significantly and negatively correlated to



Table 1
Correlation between land cover and PM2.5 concentration.

ID Metric B P Model LM lag Robust LM lag LM error Robust LM error

1 l r_Forest 0.81 0 SLM 0 0.991 0 0.668
0.023 0.443

2 l r_Grass 0.79 0 SLM 0 0 0 0.102
¡0.075 0.014

3 l r_ForeGrass 0.81 0 SLM 0 0 0 0.162
�0.023 0.442

4 l r_Building 0.79 0 SLM 0 0 0 0.687
0.091 0.003

5 l r_HBuildA 0.78 0 SLM 0 0 0 0.342
0.092 0.003

6 l r_LBuildA 0.81 0 SEM 0 0.689 0 0.183
0.071 0.053

7 l r_HSBuild 0.81 0 SLM 0 0.015 0 0.32
�0.004 0.88

8 l r_LSBuild 0.81 0 SLM 0 0.001 0 0.77
�0.045 0.13

9 l r_HHBuildA 0.75 0 SLM 0 0 0 0.591
0.13 0

10 l r_LHBuildA 0.81 0 SLM 0 0.02 0 0.408
0.012 0.689

11 l r_Water 0.81 0 SLM 0 0.484 0 0.686
0.0008 0.97

12 l r_Construction 0.81 0 SLM 0 0.002 0 0.788
�0.05 0.1

Note: bolded values indicate metrics statistically significant at P< 0.1 level.

Fig. 5. Proportion of different land covers.
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PM2.5 concentrations, with the correlation becoming insignificant
when proportions of forests and grasslands are added. Grasslands
provide open space to disperse pollution, and evergreen shrubs can
exhibit the positive effect of absorbing PM2.5 in winter (Liang et al.,
2014). Air pollution over some lakes, such as South Lake and East
Lake, is relatively high, and the proportion of water in a grid is not
significantly related to PM2.5 concentrations. On the one hand, open
spaces over lakes help to disperse air pollution; however, higher
humidity over lakes can intensify the formation of PM2.5 (Cheng
et al., 2015).

The proportion of building areas within a grid is both signifi-
cantly and positively correlated with PM2.5 concentrations, and the
study further analyzed whether building types affected PM2.5
concentrations. Compared with separate buildings (r_HSBuild,
r_LSBuild), building areas (r_HBuildA, r_LBuildA) usually have a
significant correlation with air quality. High-rise, high-density
building areas have the largest impact on PM2.5 concentrations
(B¼ 0.13, P¼ 0). Although building construction is a source of haze
in urban areas, the proportion of construction sites within a grid is
not related to PM2.5 concentrations. This is likely due to the
emergency procedures dictated by the government during haze
emergencies, during which construction of buildings is halted, thus
temporarily limiting the impact of construction on PM2.5
concentrations.
4.3. Association between land use and PM2.5 concentrations

The results from the spatial statistics and the spatial patterns of
land uses are illustrated in Table 2 and Fig. 6, respectively. Resi-
dential lands account for the largest portion of the study area, and
their proportion is significantly correlated to PM2.5 concentrations.
This suggests a high risk of exposure to air pollution for urban
residents, especially for the elderly and childrenwho spendmost of
their time at home. The proportion of administration land is less
but significantly correlated to PM2.5 concentrations. Somewhat
surprisingly, the proportion of industrial land in a grid is negatively
associated with air pollution. The geographical location of the na-
tional key monitoring pollution sources was overlapped with the



Table 2
Correlation between land use and PM2.5 concentration.

ID Metric B P Model LM lag Robust LM lag LM error Robust LM error

1 l r_R 0.78 0 SLM 0 0 0 0.733
0.098 0.001

2 l r_A 0.81 0 SLM 0 0.034 0 0.362
0.063 0.04

3 l r_B 0.82 0 SLM 0 0 0 0.029
0.044 0.15

4 l r_M 0.79 0 SLM 0 0 0 0.397
¡0.097 0.001

5 l r_G 0.81 0 SLM 0 0.021 0 0.202
�0.001 0.97

6 l Shanon 0.81 0 SLM 0 0 0 0.08
0.008 0.79

Note: bolded values indicate metrics statistically significant at P< 0.1 level.

Fig. 6. Proportion of different land uses.
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map of industrial land (Fig. 6 d), and most of industrial pollution
sources were found to be outside downtown Wuhan. Industrial
lands are mainly located in Wuhan Economic and Technological
Development Zone, and most of enterprises (automobile, elec-
tronics and electrical appliances, etc.) are non-polluting industries.
As the Shannon diversity index shows, land use mix is not signifi-
cantly associated with air quality; this result is shared by another
empirical study that utilized points of interest (POI) data in China
(Yuan et al., 2018). Although a higher degree of land use mix may
reduce travelling distances for residents, it may also increase traffic
disorder that leads to increased emissions (Ding, 2009).

4.4. Association between urban form and PM2.5 concentrations

The results of spatial statistics and spatial patterns of urban form
are illustrated in Table 3 and Fig. 7 respectively. Grids with higher
values of FAR are most commonly located within the second ring
road, and FAR is significantly correlated to the levels of PM2.5
concentrations. A higher value of FAR indicates a higher level of
population density within a grid, and these areas account for a
larger portion of traffic sources and associated vehicle emissions.
Building density is also positively correlated to PM2.5 concentra-
tions, butmean floor count is unrelated to the levels of air pollution.
This suggests that building density has a larger impact on air
ventilation than building height. These results are generally
consistent with the analysis in Section 5.2, which indicates that
high-rise high-density building areas have a large influence on
PM2.5 concentrations.

Road density for all types of roads is significantly correlated to
PM2.5 concentrations, but the correlation varies with different types
of roads. There is a significant correlation between PM2.5 concen-
trations and the densities of arterial roads and sub-arterial roads,
but the densities of express and branch roads are unrelated to PM2.5

concentrations. This may be due to the opposite effects of traffic
volume and traffic speed on vehicle emissions. Greater volumes of
traffic produce more air pollution, and lower driving speeds may
increase rates of tailpipe emissions (Wang et al., 2014). As Model 10
shows, road junction density has a positive impact on PM2.5 con-
centrations because more road junctions may reduce driving
speeds and increase the number of stops in a trip. Although express
roads are loaded with large traffic volumes, these roads have more
overpasses and fewer road junctions, leading to higher driving
speeds and lower emission rates. Branch roads generally bear
smaller traffic volumes; as such, their influence on PM2.5 concen-
trations is not obvious.

5. Discussions and implications

The results show that areas with a high density of buildings are
associated with much higher PM2.5 exposure levels than those with
less density. These areas with crowded populations are major
sources of vehicle emissions, and people in these areas are also
subjected to higher levels of PM2.5 exposures. The dispersion and
dilution of PM2.5 partly depends on weather conditions, especially
on wind direction and velocity, and so an increase in building



Table 3
Correlation between urban form and PM2.5 concentration.

ID Metric B P Model LM lag Robust LM lag LM error Robust LM error

1 l D_Build 0.79 0 SLM 0 0 0 0.784
0.083 0.007

2 l FAR 0.77 0 SLM 0 0 0 0.741
0.107 0.001

3 l Floor 0.81 0 SLM 0 0 0 0.007
0.005 0.857

4 l D_RoadAll 0.79 0 SLM 0 0 0 0.018
0.059 0.053

5 l D_Express 0.81 0 SEM 0 0.274 0 0.099
�0.026 0.4

6 l D_Artery 0.77 0 SLM 0 0 0 0.81
0.102 0

7 l D_SubArtery 0.78 0 SLM 0 0.01 0 0.371
0.1 0

8 l D_Brach 0.8 0 SLM 0 0 0 0.025
0.036 0.24

9 l D_Junction 0.78 0 SLM 0 0 0 0.019
0.077 0.012

Note: bolded values indicate metrics statistically significant at P< 0.1 level.

Fig. 7. Spatial patterns of urban form metrics.

Fig. 8. Comparison of urban form.
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density will lead to a decrease ventilation and PM2.5 dispersion. It
is necessary to properly manage building density in Chinese
megacities; a polycentric urban form may help to balance high
population density in downtown areas and to reduce traffic
emissions and exposure to air pollution.
The spatial patterns of street canyons may also influence

pollution dispersion. To study this, the pollution levels in two
neighboring grids were analyzed (Fig. 8). Although Grid B has
higher values for building density and road density than Grid A, the
PM2.5 concentrations of Grid B are lower than those of Grid A.
Streets that are parallel to the main wind direction (Grid B) may
increase pollution dispersion. On the contrary, streets that are
perpendicular to themainwind direction (Grid A)may decrease the
pollution dispersion, and a higher wind speed may stir up dust and
lead to increased levels of PM2.5 concentrations. This implies that
the spatial morphology of blocks is as important to improving air
quality as the urban form metrics, such as building density, dis-
cussed in this study. Since buildings are already quite dense in
Chinese cities (Huang et al., 2007), the spatial patterns of street
canyons should be considered during urban design and urban
renewal, especially for older towns.

Previous studies have showed the association between land-
scape metrics and air pollution (Wu et al., 2015). In this study, the



Table 4
Analysis for SHAPE of buildings, road and public transport.

ID Metric B P Model LM lag Robust LM lag LM error Robust LM error

1 l 0.78 0 SLM 0 0 0 0.91
D_Build 0.096 0.002
SHAPE_Build 0.059 0.057

2 l 0.8 0 SLM 0 0 0 0.027
r_Road 0.047 0.148
ED_Road ¡0.062 0.054

3 l 0.76 0 SLM 0 0 0 0.905
FAR 0.113 0.016
D_Station ¡0.095 0.023
D_Route 0.0853 0.051
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Area Weighted Mean Shape Index (SHAPE), which is equal to the
area weighted result of the building perimeter divided by the
square root of the base area, is used to measure the spatial form of
buildings and to evaluate the correlation between PM2.5 concen-
trations and SHAPE values. As Table 4 shows, an increase in the
SHAPE value of buildings increases PM2.5 concentrations, and so
buildingmorphologymay play a significant role in the dispersion of
pollutants around buildings. This indicates that tower-type build-
ings (buildings with smaller SHAPE values) may have a greater
effect on pollution dispersion than slab-type buildings (buildings
with larger SHAPE values).

The impact of roads on PM2.5 concentrations depends on traffic
volumes and driving speeds associated with different road types,
and reducing traffic jams can help to improve air quality. The
negative relationship between PM2.5 concentrations and edge
density (ED) of roads (Model 2 in Table 4) shows the importance of
road levels. In case of same road areas, blocks with low-level roads
usually have higher values of edge density than blocks with high-
level roads. This result supports the view of transition from “large
blocks and wide roads” mode to “small blocks and narrow roads”
mode in Chinses cities. To illustrate this, two neighboring grids
were selected and compared to find the difference between large
blocks (Grid A) and small blocks (Grid B) in Fig. 9. Although Grid B
has higher values for building densities, FAR, and road density than
Grid A, concentrations of PM2.5 are nearly identical for both the
grids. It should also be noted that the wind path in Grid B may
improve pollutant dispersion, and further research with field
Fig. 9. Comparison between a large block and a small block.
observation datawould be beneficial to explain the effects of “small
blocks and narrow roads”-style development on air pollution.

The correlation between PM2.5 concentrations and public
transportation after controlling for FAR (which represents travel
demand) is shown in Model 3. Bus station density has a negative
influence on PM2.5 concentrations, which shows that improving
access to public transportation may decrease the share of private
cars. Bus route density (km/km2) is positively correlated to PM2.5
concentrations. This may be due to a high value of bus route
overlapping factor in the study area (rate of total route length to
total road length, suitable value: 1.25e2.5, Wuhan: 4.05), which
may lead to traffic jams and more emissions. This suggests that bus
networks should be optimized simultaneously with road networks.

Unexpectedly, the analysis show that forests do not lead to a
reduction in haze. This may be due to dormancy of trees in winter,
andmore evergreen trees, such as Cedrus deodara, could be planted
(Wang et al., 2015). Another potential explanation for this phe-
nomenon can be that the grids with higher levels of forest area and
PM2.5 concentrations are located near sources of pollution. Grids
with high levels of forests are generally located to the south of East
Lake (Fig. 5b), and forests in these grids are affected by pollution
generated from the northeast, such as the Wuhan Iron & Steel
Factory Zone, which disperses across East Lake. To further evaluate
the ability of forests to mitigate pollution, the study compared
PM2.5 concentrations between these grids and each of the neigh-
boring grids in downwind direction one by one. The results show
that concentrations of PM2.5 in grids that are downwind are much
lower than those in grids that are upwind, with a mean difference
value of 7.5 mg/m3. This shows the ability of forests to absorb PM2.5.

The limitations of this study could be addressed in future
research. The study only considered PM2.5 concentrations in
January; the spatial pattern of PM2.5 concentrations may change
due to a variety of environmental factors such as weather or
increased tree activity in other months. As such, the association
between the built environment and air pollution should be
explored for the entire year. This study primarily explores the
correlations between metrics of the built environment and PM2.5
concentrations, and more advanced models can be used to explore
the interactions between different metrics of the built environ-
ment. The effect of wind direction and speed should be included in
future spatial models, as these environmental factors may affect
concentrations of air pollution. Maps of PM2.5 concentrations
(1 km*1 km, R2¼ 0.87, RMSE¼ 9.89 mg/m3) were retrieved from the
DBN coupled with MODIS products, and future studies may use
newly launched satellites data (such as high-resolution satellite
observations and satellite with atmospheric parameters) to
improve the accuracy of PM2.5 concentrations.
6. Conclusions

PM2.5 pollution has created a great threat to public health in



Table 5
Statistics of all the variables.

Category Metrics Min Max Mean Std.D Note

PM2.5 concentration 87.41 116.45 93.72 4.73
Land cover (%) r_Building 0 68.94 25.2 14.66

r_Forest 0 53.71 14.86 9.36
r_Grass 0 42.82 7.53 6.9
r_ForeGrass 0 62.47 22.39 11.55 Sum of forest and grassland
r_HBuildA 0 52 12.51 11.71 High-rise building area
r_LBuildA 0 45.65 10.19 8.72 Low-rise building area
r_HSBuild 0 7 1.49 1.43 High-rise separate building
r_LSBuild 0 22.77 1.01 1.42 Low-rise separate building
r_HHBuildA 0 42 6.91 7.98 High-rise high-density building area
r_LHBuildA 0 37 5.6 7.21 High-rise low-density building area
r_Construction 0 87.05 13.58 13.9 Construction site
r_Water 0 99.83 9.59 17.05

Land use (%) r_R 0 85.14 30.26 21.26 Residential land
r_A 0 89.28 11.35 16.22 Administration land
r_B 0 79 4.49 6.97 Business land
r_M 0 96.36 10.91 16.72 Industrial land
r_G 0 99.84 22.2 23.72 Green land
Shanon 0 1.33 0.71 0.34 Land use mix

Building FAR 0 2.98 0.78 0.58
Floor 1 9.42 3.16 1.41 Mean floor
D_Build 0.01 60.51 18.27 10.78 Building density (%)

Street network D_Express 0 2.87 0.52 0.61 Express road density (km/km2)
D_Artery 0 4 0.58 0.75 Arterial road density (km/km2)
D_SubArtery 0 4 0.68 0.8 Sub-arterial road density (km/km2)
D_Brach 0 8 1.92 1.35 Branch road density (km/km2)
D_RoadAll 0 13.17 3.7 1.91 Road Density for all type (km/km2)
D_Junction 0 55.48 8 6.83 Road junction

Note: separate building: building density<10%, building area: building density>10%, high-density building area: building density>50%, low-density building area: building
density<50%, high-rise building: floor>4, low-rise building: floor<4.
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China, and more attention should be paid to the built environment
in Chinese cities. Past studies were usually dependent on limited
ground-monitoring data (about 10 or less ground-monitoring sta-
tions), which are not sufficient to explore the association between
built environment and PM2.5 concentration. To fill up the knowl-
edge gap, the study used remote sensing technologies to expand
limited ground-monitoring data by selecting about 500 grids of
PM2.5 concentrations in downtown Wuhan, and exploring the
correlation between the concentration and land cover, land use,
and urban form using spatial statistics. For land cover, high-rise
high-density building areas have the largest impact on PM2.5 con-
centrations, and the effect of forestland is not obvious inwinter. For
land use, industrial lands in the downtown are unrelated to air
pollution, and transportation has become a main source of PM2.5
pollution. For urban form, FAR and building density are positively
associated with PM2.5 concentrations, and different types of road
densities have different effects on air pollution. The implications of
the study for urban planning and development are given at last.
High-density development areas are correlated with higher levels
of PM2.5 pollution, and building density and FAR are extremely high
in downtownWuhan. To deal with this challenge, it is necessary for
urban planners to develop a polycentric urban structure to balance
high population density and to reduce traffic emissions in down-
town areas. Road and bus networks should be optimized simulta-
neously to reduce traffic jams, and more public transits (such as
subways) should be built to link urban sub-centers to the down-
town. The spatial morphology of streets and buildings should be
considered during urban design and urban renewal, and “small
blocks and narrow roads” may be considered an alternative for
urban development. More forestlands should be allocated near
industrial pollution sources, and more evergreen trees should be
planted in downtown Wuhan. In general, the study contributes to
the application of remote sensing in urban planning and develop-
ment, and remotely sensed PM2.5 concentration data could provide
more findings and implications than air pollution data obtained
from ground monitoring and “bottom-up” models in past studies.
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