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• Fusing PM2.5 observations is significant
to improve estimation accuracy of
PM1.0.

• Estimation performance shows signifi-
cant daily, seasonal and spatial varia-
tions.

• Estimation accuracy largely depen-
dences on quality of AOD and interpo-
lated PM2.5
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Particulates smaller than 1.0 μm (PM1.0) have strong associations with public health and environment, and con-
siderable exposure data should be obtained to understand the actual environmental burden. This study pre-
sented a PM1.0 estimation strategy based on the generalised regression neural network model. The proposed
strategy combined ground-based observations of PM2.5 and satellite-derived aerosol optical depth (AOD) to es-
timate PM1.0 concentrations in China from July 2015 to June 2017. Results indicated that the PM1.0 estimates
agreed well with the ground-based measurements with an R2 of 0.74, root mean square error of 19.0 μg/m3

and mean absolute error of 11.4 μg/m3 as calculated with the tenfold cross-validation method. The diurnal esti-
mation performance displayed remarkable single-peak variationwith the highest R2 of 0.80 at noon, and the sea-
sonal estimation performance showed that the proposedmethod could effectively capture high-pollution events
of PM1.0 in winter. Spatially, the most polluted areas were clustered in the North China Plain, where the average
estimates presented a bimodal distribution during daytime. In addition, the quality of satellite-derived AOD, the
robustness of the interpolation algorithm and the proportion of PM1.0 in PM2.5 were confirmed to affect the esti-
mation accuracy of the proposed model.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

As the major components of aerosols, particulate matter (PM) exert
remarkable impacts on the climate system through their direct and in-
direct effects (Qin et al., 2017;Wang et al., 2015). The report of IPCC5 in-
dicates that, the impact of aerosol–cloud interaction on climate remains
the most uncertain factor in global radiation changes (IPCC, 2013).
Many studies on aerosol climatic effects have been conducted
(Charlson et al., 1992; Pan et al., 2017; Lu et al., 2018; Mao et al.,
2018). Large amounts of particle emissions seriously reduce atmo-
spheric visibility and affect daily traffic. Moreover, particles smaller
than 10 μm are inhalable by humans and threaten human health
(Bartell et al., 2013; Kulshrestha, 2018).

Studies on the regional spatiotemporal evolution of PM with differ-
ent diameters acquired through station measurements have indicated
that fine particles, especially PM1.0, are themajor contributor to air pol-
lution (Shi et al., 2014; Zhuang et al., 2014). Statistically, PM1.0 accounts
for more than 80% of the average PM2.5 and even reaches 98% in several
regions of China (Li et al., 2015). PM1.0 data is more useful than PM2.5

data in assessing anthropogenic emissions. Morawska et al. (2008) in-
vestigated the size distribution of ambient particles and found that
PM1.0 enables improved distinction between combustion andmechani-
cally generated aerosols. Furthermore, the health hazards of PM in-
crease with the decrease in particulate diameter (Huang et al., 2003;
Elder et al., 2015) because fine particles contain considerable harmful
substances and could enter the respiratory system, especially the alve-
oli, deeply, thereby causing serious threats to humans (Zhang et al.,
2016).

Given the strong associations of PM1.0with public health and the en-
vironment, large amounts of exposure data should be obtained to
strengthen particle pollution control. However, PM1.0 monitoring sta-
tions are sparse and unevenly distributed, especially in sparsely popu-
lated western parts of China; this feature is not conducive for
conducting continuous spatiotemporal monitoring of ultrafine particu-
lates. Advanced satellite remote sensing with wide observation hori-
zons can effectively compensate for limitations in ground
measurements (Guo et al., 2009). Studies have demonstrated that aero-
sol extinction is closely related to particles with diameters between 0.4
and 1.0 μm (Madronich and Flocke, 1999). Therefore, satellite-derived
aerosol optical depth (AOD), which is the column integral of aerosol's
extinction coefficient, could be a useful tool for mapping PM1.0 distribu-
tions in theory. Current studies on PM1.0 estimation with satellite re-
mote sensing are only in the exploratory stage. Chen et al. (2018)
investigated PM1.0 estimation on the basis ofmoderate resolution imag-
ing spectroradiometer (MODIS) AOD in China and obtained 59% vari-
ability for daily estimations. Qin et al. (2018) estimated PM1.0

concentrations from MODIS over Yangtze River Delta, China, by using
a geographically and temporally weighted regression model with R2 of
0.74 for daily estimations. However, hourly PM1.0 concentration with
high spatial coverage is needed when evaluating a diurnal transport
and control approach of air pollution. As a geostationary satellite,
Himawari-8 provides an unprecedented opportunity. Our previous
Table 1
Datasets employed in the PM1.0 estimation.

Dataset Variable Unit Height

PM2.5 PM2.5 μg/m3 Ground-level
PM1.0 PM1.0 μg/m3

AOD AOD – Column- integral
Meteorological data TEMP K 2 m

RH % Surface
SP Pa Surface
WS m/s 10 m
BLH m –

Geographic data NDVI – –
DEM m –
work (Zang et al., 2018) showed that the limited number of PM1.0

sites and insufficient ground-based observations cannot effectively con-
strain the estimated results of PM1.0 (R2 of 0.65), and model accuracy
needs further improvement.

In this study, considering the high correlation between PM1.0 and
PM2.5 and large amount of available observation data on PM2.5, we esti-
mated PM1.0 by combining ground-based PM2.5 measurements with
hourly satellite aerosol retrievals in China into an improved generalised
regression neural network (GRNN) model (hybrid GRNN model with
the principal component analysis [PCA] method, namely, PCA–
integrated GRNNmodel). We designed three groups of comparative ex-
periments, which consisted of multiple linear regression (MLR), GRNN
and PCA-integrated GRNN models with or without PM2.5 observations.
We compared the tenfold cross-validation (CV) results of these models
by fusing particle observations to evaluate the improvement in each
model. In addition, we estimated hourly PM1.0 concentrations by using
a well-trained model and depicted the spatial distribution of annual
and seasonal averages of PM1.0. The error sources of estimates were
discussed and analysed for future improvements of the proposed
method.

2. Datasets and methods

2.1. Datasets

The datasets employed in the PM1.0 estimation are summarised in
Table 1.

2.1.1. PM observations
Hourly PM2.5 observations were obtained from the monitoring net-

work operated by the China National Environmental Monitoring Center
(CNEMC). This network has been updated since its establishment in
2013, and the number of monitoring stations has increased from 500
to more than 1400. Observation samples from 1430 matched sites
were collected in this study. Unlike PM2.5, PM1.0 has not been used as
a routine indicator of air monitoring, and the stations of PM1.0 is much
less than those of PM2.5. In this study, PM1.0 concentration data were
collected from 73 matched sites of the monitoring network operated
by the China Meteorological Administration (CMA). The station distri-
butions of the two monitoring networks are shown in Fig. S1.

2.1.2. AOD data
Hourly AOD data were obtained from Himawari-8, which was

launched in October 2014 and is operated by the Japan Aerospace Ex-
ploration Agency (JAXA). The sensor on this satellite is called Advanced
Himawari Imager, which has 16 bands from visible to infrared wave-
lengths with three different spatial resolutions of 0.005°, 0.01° and
0.02° (Kikuchi et al., 2018). Two types of AOD products of Himawari-8
have been released, namely, L2 products with a temporal resolution of
10 min and L3 products with temporal resolutions of 1 h, 1 day and
1 month. All aerosol products have the same spatial resolution of
0.05°. Fukuda et al. (2013) and Higurashi (1999) examined the retrieval
Temporal resolution Spatial resolution Data source

1 h In-situ CNEMC
5 min In-situ CMA
1 h 0.05° Himawari-8
6 h 0.125° ECMWF
6 h 0.125°
6 h 0.125°
6 h 0.125°
3 h 0.125°

16 days 0.05° MODIS C6
– 90 m USGS
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algorithm of Himawari-8 AOD. Satellite AOD data were compared with
ground-based measurements from the aerosol robotic network
(AERONET) in a previous study (Zang et al., 2018), and the results indi-
cated that the two AODdata have good consistencywith a correlation of
0.74 and uncertainty of 0.24.

2.1.3. Meteorological and geographic data
Meteorological reanalysis datasets were obtained from the ERA-

Interim Project, which is operated by the European Centre for
Medium-Range Weather Forecasts (ECMWF). This data product has
been in service since 1979. On the basis of existing publications (Li
et al., 2017a; Wang et al., 2017; He and Huang, 2018), five meteorolog-
ical parameters, namely, near-surface air temperature (TEMP), relative
humidity (RH), wind speed (WS), surface pressure (SP) and height of
the planetary boundary layer (BLH), were selected in this study. The ef-
fects of topography and vegetation coverage on the distribution of
suspended particulates were considered. DEM data obtained from the
United States Geological Survey (USGS) and NDVI data derived from
MODIS were used to describe topographic relief and vegetation cover-
age, respectively.

2.2. Methods

Affected bymany explanatory variables, such as RH and BLH, the re-
lationship between PM concentration and its predictors tends to be
nonlinear and is thus difficult to be expressed by a simple function;
for this reason, artificial neural network (ANN) models have been
widely used to estimate or predict particle concentrations (Wu et al.,
2012; Guo et al., 2013; Li et al., 2017a). For example, the GRNN model
is well known for its outstanding self-organising, self-learning and
adaptive functions and its high-accuracy prediction of PMs (Li et al.,
2017a). In this study, we used GRNN as the base model to depict the
spatiotemporal distributions of PM1.0 in China. The implementation is
shown in Fig. 1. Specifically, to fuse ground-based particle measure-
ments, we adopted the Kriging method and obtained spatial interpola-
tions of PM2.5. Then, all input variables, including AOD, interpolated
PM2.5, meteorological and geographic parameters, were recombined
using the PCA method. The updated input variables were introduced
into the GRNN model to train the network and estimate PM1.0 concen-
trations with the well-trained model.

2.2.1. Interpolation of PM2.5

As a geographical variable, PM concentration has a spatial correla-
tion and satisfies Tobler's first law of geography, which posits that
near things are more related than distant things. In this study, the
Kriging interpolation algorithm was used to obtain interpolations of
Fig. 1. Implementation of PM1.0 estimation based on
ground-based PM2.5, which is generally considered to be optimal in geo-
science applications due to its unbiased interpolations and small vari-
ances (Oliver and Webster, 1990). Kriging method is essentially based
on local weighted averaging, of which the weights are determined by
a variogram, the core of regionalised variable theory that depends on
the size and distribution of samples (Matheron, 1971). In addition, con-
fidence of this algorithm can be calculated and inputted into the esti-
mates because the estimation variances (i.e. theoretical root mean
square error [RMSE] of interpolation) can bemapped like interpolations
(Oliver and Webster, 1990). This feature differentiates kriging from
other interpolators and makes it more sensitive.

The interpolates with theoretical RMSE (i.e. interpolation variance)
greater than the 99th percentile of the average theoretical RMSE in
the study domain were rejected to control interpolation accuracy, and
the interpolated value and its theoretical RMSE were used as the origi-
nal input parameters of the proposed model.

2.2.2. Parameter recombination
The proposed method requires four types of explanatory variables,

namely, AOD,meteorological and geographical parameters and interpo-
lation results of ground-based particle observations. These data, espe-
cially meteorological parameters, show a degree of collinearity, which
may lead to model overfitting and may reduce estimation accuracy.
Therefore, the PCA method, which can solve the problem of
multicollinearity by converting the original predictors into a new set
of independent variables (i.e. principal components or PCs) via orthog-
onal transformation, was adopted in this study. Sun and Sun (2016)
provided a detailed algorithm introduction. The cumulative explained
variance of the selected PCs should not be less than 0.95. These indepen-
dent variables obtained through PCA were transmitted to the designed
neural network as input nodes.

2.2.3. PM1.0 estimation
The GRNNmodel was utilised to estimate PM1.0 concentrations. This

neural network is a normalised radial basis function (RBF) network pro-
posed anddeveloped byDr. Specht (Specht, 1991). It performsnonpara-
metric estimation of the Parzen window with samples as the posterior
condition on the basis of nonparametric regression theory and calcu-
lates the network output according to the principle of maximum
probability.

The network architecture of GRNN contains four layers of neurons,
namely, input, hidden RBF, summation and output layers (Fig. 1). Each
neuron of the input layer represents an input variable, and this layer is
usually connected with the hidden RBF layer by a density function.
The number of hidden neurons is determined by training samples. In
particular, the output of the hidden layer in GRNN is not directly
the Kriging and PCA–integrated GRNN model.



Table 2
Performance of six PM1.0 estimation models in three groups of comparative experiments
assessed through tenfold CV.

Model Predictors R2 RMSE MAE AIC

MLR Without PM2.5 0.21 33.3 23.0 280,596.4
With PM2.5 0.38 29.3 20.0 273,421.2

GRNN Without PM2.5 0.62 23.6 14.1 261,103.8
With PM2.5 0.67 22.0 13.0 257,074.6

PCA–integrated
GRNN

Without PM2.5 0.68 21.4 12.9 253,390.1
With PM2.5 0.74 19.0 11.4 252,773.2
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connected to the output layer by a linear function but by a summation
layer; in this summation layer, two summations, i.e., Ss and Sw, are cal-
culated, and weights w are related to hidden outputs P (Specht, 1996;
Zhou et al., 2014). The final output of the GRNNmodel can be presented
as

output ¼ Sw
�
Ss
:

Comparedwith other commonneural networkmodels, GRNN is eas-
ier to train without the requirement of pre-setting the hidden layer and
demonstrates better nonlinear approximation performance. In this
study, nearly 30,000 samples were used for model training and
simulation.

2.2.4. Accuracy evaluation
We designed three groups of comparative experiments, namely,

MLR (Pawan and Christopher, 2009), GRNN and PCA-integrated GRNN
models with or without PM2.5 observations, to verify whether fusing
ground-based PM2.5 observations enhances PM1.0 estimation accuracy
or not. Tenfold CV and four statistical indexes, namely, determination
coefficient (i.e. R2), RMSE, mean absolute error (MAE) and Akaike
Fig. 2. Scatter plots of PM1.0 estimations versus PM1.0 measurements during daytime: (a) all a
sample size in each subplot. Colours represent the logarithm of data size for a corresponding p
information criterion (AIC), were adopted in this study. The selection
of evaluation indexes was performed in reference toWang et al. (2017).
3. Results and discussion

3.1. Evaluation of model performance

Table 2 summarises the PM1.0 estimation performance of each
model from three groups of comparative experiments. Comparisons of
the first and second experimental groups indicated that the nonlinear
ANN model could better learn the potential relationship between
PM1.0 and its predictors, and its estimation accuracy was improved by
nearly twice. Specifically, the values of R2, RMSE and MAE of the MLR
model without PM2.5 observations were 0.21, 33.3 μg/m3 and 23.0 μg/
m3, respectively, whereas the GRNN model without PM2.5 observations
presented a much higher estimation accuracy with R2 of 0.62, RMSE of
23.6 μg/m3 andMAE of 14.1 μg/m3, respectively. When the PCAmethod
was integrated into the GRNN model, the accuracy of PM1.0 estimation
was further improved with R2 increasing to 0.68, RMSE decreasing to
21.4 μg/m3 and MAE decreasing to 12.9 μg/m3, respectively, as shown
in the third experimental group.

Comparisons within each experimental group showed that the esti-
mation accuracy of each model was remarkably improved after fusing
PM2.5 observations. Specifically, the R2 of the MLR model increased by
nearly twice, and those of GRNN and PCA–integrated GRNNmodels im-
proved by 8% and 9%, respectively. The values of R2, RMSE and MAE of
the PCA–integrated GRNN model fusing PM2.5 observations were 0.74,
19.0 μg/m3 and 11.4 μg/m3, respectively. In addition, the proposed
method had the lowest value of AIC among all the compared models.

Fig. 2 presents the estimation performance of the proposed method
at different hours during daytime (09 to 16 local times). The values of R2

between the estimated and measured PM1.0 ranged from 0.49 to 0.80,
RMSEs varied between 15.4 and 20.9 μg/m3 and MAEs ranged from
vailable data and (b)–(i) different hours during daytime (09–16 LTs). ‘N’ represents the
ixel. The grey lines represent 1:1 reference lines.
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11.6 μg/m3 to 12.5 μg/m3. The estimation accuracy displayed a single-
peak variation that peaked between 12 and 14 local times (LTs).

Comparisons between Himawari-8 and AERONET-observed AODs
showed that the aerosol detection accuracy of Himawari-8 presented
a remarkable diurnal variation with a single peak between 12 and 14
LTs (Zang et al., 2018). This finding proves that the estimation accuracy
of PM1.0 is affected by thequality of satellite AODdata, and this finding is
consistentwith the conclusion of Qin et al. (2018). High temperatures at
noon cause the planetary boundary layer to develop upward and pro-
mote the mixing of particulates in the vertical direction (Guo, et al.,
2016; Li, et al., 2017b),which is helpful to the retrieval offine particulate
concentrations. Moreover, the average proportion of PM1.0 in PM2.5 was
slightly higher between 12 and 15 LTs (Table S1), which is conducive for
enhancing the estimation accuracy of PM1.0 over the same period based
on the proposed model.

The estimation performance in different seasons was evaluated to
assess the capability of the proposed method to capture heavy-
pollution incidents (Fig. 3). The statistical results indicated that the
highest seasonal estimation accuracy of PM1.0 occurred in winter with
R2 of 0.75, whereas the estimation accuracy in summer was the lowest
with R2 of 0.48 only. The R2 values in spring and autumn were 0.58
and 0.69, respectively. RMSE andMAEwere higher because the absolute
concentrations of particles are higher in autumn and winter than in
spring and summer.

The step-by-step PM1.0 estimation performance formodel validation
with the addition of each type of variables (AOD,meteorological param-
eters, geological parameters and interpolated PM2.5) is shown in
Table S3. The results showed that estimation accuracy of the model in-
creased with the introduction of variables (R2 from 0.44 to 0.74), and
the meteorological parameters also exerted a remarkable impact on
model performance. Fig. 4 presents the correlation between each pa-
rameter and PM1.0 in different seasons. Specially, PM2.5 and AOD were
the two variables with the highest correlationwith PM1.0, andmeteoro-
logical parameters showed different impacts in different season, among
which, wind speed was the most effective meteorological parameter
that influenced estimation accuracy of the model, and the correlation
between BLH and PM1.0 in autumn and winter was much higher than
that in spring and summer. Overall, comparisons among four seasons
showed that the correlation between input parameters and PM1.0 was
the lowest in summer and the highest in winter.
Fig. 3. Scatter plots of PM1.0 estimations versus PM1.0 measurements for different seasons:
(a) spring, (b) summer, (c) autumn and (d) winter. The grey lines represent 1:1 reference
lines.
To investigate the cause of the different correlations between pa-
rameters and PM1.0 in summer andwinter, we further analysed the cor-
relations between PM2.5 and gas pollutants (SO2, NO2 andO3) to explore
the different sources of fine particles in the two seasons because no syn-
chronous observations of PM1.0 and gas pollutant are available. Fig. 5 in-
dicates that the concentration of PM2.5 was closely related to that of gas
pollutants. The high correlation coefficient between PM2.5 and O3 in
summer indicated that the active photochemical reaction remarkably
accelerated the formation of secondary fine particles in this period, as
reported by Wen et al. (2015). This finding is also consistent with the
conclusions of Guo et al. (2011). The correlation coefficient between
PM2.5 and NO2 and SO2was high in winter, indicating that PM2.5 in win-
ter is closely related to anthropogenic combustion emissions. Further-
more, different sources of aerosols could lead to different proportions
of PM1.0 in PM2.5. In this study, the average proportion of PM1.0 in
PM2.5 in summer (winter) was 83% (86%), and the Pearson correlation
coefficient between them is 0.88 (0.94). In addition, there were consid-
erable anomalies of PM observations in summer. An example is that
there were more samples with PM1.0 concentration greater than PM2.5

in summer, as shown in Fig. 5-(s–d). All of these factors caused the dif-
ferent correlations between variables and PM1.0 in summer and winter,
as well as the different estimation performance based on the proposed
model.

3.2. Mapping of PM1.0 estimates

Fig. 6 displays the spatial distributions of the estimated PM1.0 in
China. Spatially, the average PM1.0 concentration in the east is higher
than that in thewest, and the PM1.0 pollution level is higher in inland re-
gions than in south-eastern coasts. In particular, the highly polluted
zones are clustered in the North China Plain. The total average of
PM1.0 estimates over the mainland of China was 32.5 μg/m3, which is
slightly smaller than the average of ground-based observations (40.2
μg/m3, as shown in Table S2). This result was obtained because the for-
mer represents the average pollution level of PM1.0 in the entire study
area, but the mean value of ground-based observations from uneven
stationsmainly represents the average pollution level of urban areas, es-
pecially in central and eastern China, which are the most polluted areas
(He and Huang, 2018). The estimation error also affected this result.
Temporally, PM1.0 concentrations showed a remarkable seasonal varia-
tion,with the highest pollution level inwinter (N40 μg/m3) and the low-
est pollution level in summer (b30 μg/m3). The levels of the estimated
PM1.0 were similar in spring and autumn, with mean values of 30.5
and 31.0 μg/m3, respectively.

Fig. 7 shows a zoomed-in map of the PM1.0 distribution in the North
China Plain. The total average of PM1.0 estimates in this region was 36.4
μg/m3, and the averages ranged from 23 μg/m3 to 53 μg/m3 for different
subareas, showing remarkable regional variation. In addition, the aver-
age PM1.0 concentrations during daytime (09–16 LTs) exhibited a bi-
modal distribution with peaks of 42.5 and 38 μg/m3 in the morning
Fig. 4. Correlation between PM1.0 and each parameter in different seasons.



Fig. 5. Correlation between PM2.5 and gas pollutants and proportion of PM1.0 in summer ((s–a)–(s–d)) and winter ((w–a)–(w–d)).
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and afternoon, respectively, which fits well with rush hours. The PM1.0

pollution in winter was the heaviest among all seasons in this region
(mean concentration of 43.8 μg/m3). According to existing studies, the
heavy pollution in the North China Plain is mainly due to human activ-
ities related to rapid economic development and accelerated urbanisa-
tion. Moreover, heavy pollution can be aggravated by the adverse
topographyof TaihangMountains located in thewest of Hebei Province;
these mountains confine the pollutants in local areas (Tao et al., 2012;
Fu et al., 2014; He and Huang, 2018).
3.3. Analysis of error sources of PM1.0 estimates

Comparisons of the three groups of comparative experiments
showed that the proposed method outperformed other methods in in-
vestigating the relationship between PM1.0 and its predictors. The spa-
tial accuracy of the estimated PM1.0 is shown in Fig. 8. Specifically, the
average R2 and RMSE for all sites were 0.6 and 17.4± 6.6 μg/m3, respec-
tively. About half of the sites (47%) had a mean MAE of b10 μg/m3, and
the proportion of sites with a mean relative error (RE, i.e. ratio of



Fig. 6. Spatial distributions of the average PM1.0 estimates in China: (a) all available data and (b)–(i) different seasons.

Fig. 7. Zoomed-in map and variations of the estimated PM1.0 during daytime (09–16 LTs) and different seasons in the North China Plain.

Fig. 8. Summary of site-oriented estimation performance: (a) average of R2, (b) average of RMSE, (c) average of MAE and (d) average of RE.
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Fig. 9. Error source analysis for PM1.0 estimations: (a) coverage of AOD; (b) interpolation of PM2.5; (c) interpolated RMSE of PM2.5; (d) interpolated PM2.5 versus observed PM2.5. The grey
lines represent 1:1 reference lines.
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absolute error to true value) less than 0.4was 60%. Although the average
spatial accuracy was relatively high, the estimation performance pre-
sented a large regional variability. Specifically, the values of R2 ranged
from 0.16 to 0.90, RMSEs ranged from 0.4 μg/m3 to 31.6 μg/m3, MAEs
ranged from 0.3 μg/m3 to 19.4 μg/m3 and REs ranged from 0.14 to 3.3.
As shown in Fig. 7(a) and (d), the estimation accuracy in central–
eastern China was higher than that in the northwest, west and south-
east coasts of China due to three main reasons.

The first reason is related to the retrieval of satellite AOD. According
to Guo et al. (2017), most parts of western and northwestern China are
arid, and the surface albedos are high. This scenario leads to high uncer-
tainty of AOD retrievals and large biases in the estimation of PM1.0 in
these regions. The poor performance in coastal areas could be partially
attributed to the difficulties in addressing aerosol types and surface al-
bedos in the AOD inversion algorithm (Donkelaar et al., 2006;
Anderson et al., 2012).

The second reason is related to the valid cover scope of satellite AOD.
Fig. 9(a) presents the coverage of Himawari-8 AOD data used here. The
available AODdataweremainly located over the central and eastern re-
gions of China with a maximum coverage of less than 45%. The low cov-
erage of AOD data indicates that PM1.0 estimation cannot be performed
at all times and for the entire China. In addition, AOD, as the constraint
of spatiotemporal matching of all data, limits the sample size of model
training. Having only a few matchups causes model overfitting and re-
duces estimation accuracy, and overfitting could be alleviated by in-
creasing the number of matchups (He and Huang, 2018; Zhang et al.,
2018). In this study, the training samples were mainly concentrated in
the central and eastern regions, which led to a low estimation accuracy
in the other regions.

The third reason is related to the interpolation deviations of the
Kriging method, as shown in Fig. 9(b) to (d). Despite the high consis-
tency between the interpolated and measured PM2.5 with R2 of 0.67,
large interpolation deviations were presented on the interpolated
edge, with a theoretical RMSE of N15 μg/m3, due to the extremely sparse
observation stations. This condition also affected the PM1.0 estimation,
especially in West and North China.

4. Conclusions

Fine PM poses a greater health risk than coarse particulates (PM10)
(Oberdörster et al., 2005), and the extinction coefficient increases with
the increase in PM1.0 fraction (Sabbagh-Kupelwieser, 2010). Despite
the abundance of studies on PM2.5 and PM10 estimations from satellite
remote sensing, only a few studies have been conducted on PM1.0 by
using satellite observations. In this study, we estimated hourly PM1.0

concentrations in China by using a PCA–integrated GRNN model that
combines ground-based observations of PM2.5 with Himawari-8 AOD
data. The main findings are as follows:

(1) Fusing PM2.5 observations was beneficial for the continuous spa-
tiotemporal estimation of PM1.0, and the estimation accuracy of
each model was remarkably improved. Specifically, the R2 of
MLR increased from 0.21 to 0.38, and those of GRNN and PCA-
integrated GRNN models improved by 8% and 6%, respectively.
Comparisons of linear regression and GRNN (including PCA–
integrated GRNN) models showed that the nonlinear model
could determine the potential relationship between PM and its
predictors.

(2) The estimation accuracies presented remarkable daily and sea-
sonal variations. During daytime, the estimation performance
displayed a single-peak variation, with the highest R2 of 0.80 at
13 LT. This result is largely due to the fact that the aerosol obser-
vation capability of Himawari-8 presents a remarkable diurnal
variation with a single peak between 12 and 14 LTs and more
favourable weather conditions. For the seasonal estimation per-
formance, the average accuracy in summer was the lowest with
an R2 of 0.48 due to the low correlation between PM1.0 and
each input parameter, which can lead to large biases in PM1.0 es-
timation.

(3) The estimation performance showed large regional variability
with high accuracy in central and eastern China and lowaccuracy
in thenorthwest and southeast coasts of China. After analysis, the
estimation errors were determined to be caused by three factors,
namely, uncertainty of AOD retrievals, extremely low coverage of
AOD and instability of Kriging interpolation due to sparse avail-
able stations.

To sum up, estimation of ground-level PM1.0 concentrations from
satellite AOD largely depends on the quality of satellite data. Therefore,
the quality of Himawari-8 AOD should be improved to enhance the es-
timation accuracy. Advanced nonlinear learning algorithms are also
vital in fusing many particle measurements. Moreover, the different
sources of PM1.0, their proportion in PM2.5, and the influence of meteo-
rological parameters on particle concentrations in different seasons,
which are not fused into the currentmodel, could be non-negligible un-
certainty sources in PM1.0 estimation with satellite remote sensing. The
model should be improved further in future studies.
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