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Urbanization not only directly alters the regional ecosystem net primary productivity (NPP) through land-cover
replacement, but it is also accompanied by huge indirect impacts due to the associated climate change and an-
thropogenic activities. However, to date, limited efforts have been made to quantitatively separate the two
types of urbanization impacts, and the continuous variations over a long-time span are not well understood. In
this study, both the long-term direct and indirect impacts of urbanization on NPP were established and analyzed
based on multi-source remote sensing data, taking the city of Kunming in China as a case study area. The results
indicated that the intense urbanization process has led to a continuous decrease inNPP from1990 to 2014, due to
the direct impact of land-cover replacement. Nevertheless, the urbanization has also resulted in an apparently
positive indirect impact on NPP, which has offset about 30% of the direct impact in recent years. The increasing
trend of the indirect impact was found to be higher than the NPP trend in the surrounding forest areas, which
proves that vegetation growth has been promoted by the urban environment. The indirect impact has also
shown great spatial and temporal heterogeneity, with generally higher values in the old city area andwinter sea-
son. This can mostly be attributed to the distribution of temperature, i.e., the urban heat island effect, which has
shown a significantly positive correlation with the indirect impact. However, the correlations between NPP and
climatic factors were found to be completely different, which confirmed the need to separate the direct and
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indirect impacts. Overall, this study has demonstrated that urbanization has reduced the total NPP over the re-
gion, but has promoted some vegetation growth, and the knowledge of the indirect impact will help to support
urban greening planning.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Urbanization is a complex process involving population shift, land-
cover changes, urban densification, high-rise buildings, and so on. The
changes caused by urbanization can have a critical impact on the terres-
trial ecosystem structure and functions, as well as the regional climate
(Carreiro and Tripler, 2005; Gregg et al., 2003; Kalnay and Cai, 2003;
Mckinney, 2002). Land-use/land-cover (LULC) change usually accom-
panies the urbanization process, which could not only happen within
the inherent city region, but also sprawl to the nearby regions. For ex-
ample, the replacement of vegetated areas and urban greening can di-
rectly alter the regional terrestrial ecosystem structure (Milesi et al.,
2003; Yan et al., 2009; Yan et al., 2018). Furthermore, the vegetation
growth environment, including the climate, soil texture, atmospheric
conditions, and so on, are also seriously affected by urbanization. A typ-
ical example is the urban heat island (UHI) effect, which has been the
subject of much concern (Gu et al., 2011; Gu et al., 2003; Zhou et al.,
2016). The anthropogenic activities are also important aspects, because
ecological management (e.g. irrigation, pruning, tree removal, etc.) can
make a great contribution (Takagi and Gyokusen, 2004; Wu et al.,
2014). All the above factors brought by urbanization can alter terrestrial
ecosystems, especially the carbon budget (Pei et al., 2015; Wu et al.,
2014). In past decades, the Earth has suffered rapid urbanizationworld-
wide, which has become one of the most important components of
global change (Vitousek et al., 2008; Yu et al., 2009). Under this back-
ground, it is necessary to advance our knowledge about the impact of
urbanization on the terrestrial ecosystem carbon cycle (Churkina et al.,
2010; Hardiman et al., 2017; Paolini et al., 2016).

Net primary productivity (NPP), which is the accumulated amount
of organic matter produced by vegetation in a unit area in a unit time
period, is an important ecological indicator that can be used to effi-
ciently evaluate terrestrial ecosystem carbon budgets (Piao et al.,
2005; Potter et al., 2003; Potter et al., 1993). NPP has been widely ap-
plied to themonitoring of the status of carbon cycles in different regions
at different scales (Ciais et al., 2005; Fang et al., 2001b; Nemani et al.,
2003; Piao et al., 2006). Different from vegetation index (VI), NPP quan-
tifies the growth of vegetation over a specific time period, which relates
to both the amount of vegetation and the growth environment in the re-
gion. It is also common to assess urbanization process impacts on a ter-
restrial ecosystem using NPP as the indicator, based on the remote
sensing method (He et al., 2017; Peng et al., 2015; Taelman et al.,
2016; Zhang et al., 2012). Due to the fact that field measurements are
usually used for precise site research, and are difficult to obtain in
urban regions, model estimation is a convenient way to obtain NPP in
urban studies. With the development of satellite remote sensing, com-
prehensive land-surface information can be continuously captured in
any area (Cramer et al., 1999; Field et al., 1995). In order to analyze
the impact of urbanization on NPP over the past decades, a long-term
NPP time serieswith high temporal resolution is needed. Besides, an ad-
equate spatial resolution is also necessary to capture the spatial patterns
in urban areas, which could show complex land contexture within a
small region. However, limited by the sensor characteristics, none of
the current remote sensing datasets can meet the above demands
(Chen, 1999; Shen et al., 2016a; Yan et al., 2018). This has prevented fur-
ther analysis of the NPP spatial distribution and temporal variation
(Cheng et al., 2016; Shen et al., 2013). Thus, it is of great importance
to obtain long-termNPP time serieswith an adequate spatial resolution,
in order to advance the studies of urbanization (Gan et al., 2014; Liu
et al., 2016; Shen et al., 2016b). The fusion of multi-source remote sens-
ing data is an efficient way to solve this issue, and has been widely ap-
plied in many vegetation and other environmental studies (Hilker
et al., 2009; Meng et al., 2013; Schmidt et al., 2012; Shen et al.,
2016a). The fusion method can synthesize the respective advantages
of different sensors, and break the limitations of the individual datasets
(Guan et al., 2017).

Numerous researchers have investigated the impact of urbanization
on NPP in different cities at different scales, and many different conclu-
sions have been reached (Milesi et al., 2003; Pei et al., 2013; Wu et al.,
2014; Yu et al., 2009). For a single city, Yu et al. (2009) declared that a
move toward urban landscape change in the city of Shenzhen caused
NPP loss totaling 321.51 Gg of carbon; Liu et al. (2018) showed that
the conversion from cropland to built-up area led to approximately
309.95 Gg C loss over 13 years in Wuhan. For multiple cities over a
large region, Pei et al. (2013) found that urban land development has
had an overall negative effect on the terrestrial NPP in the cities of
China; and Imhoff et al. (2004) indicated that urbanization in the
United States has reduced the amount of carbon fixed through photo-
synthesis by 1.6% of the pre-urban input. It can be concluded that
many of the previous studies have focused on the negative impact of
the land-cover replacement on NPP, and the impacts of other factors
have not been addressed. However, some researchers have indicated
that vegetation growth has been evidently enhanced in the urban envi-
ronment, due to theUHI effect, the longer growth period, anthropogenic
activities, and so on (Gu et al., 2003; Takagi and Gyokusen, 2004; Zhao
et al., 2016; Zhou et al., 2016). Zhao et al. (2016) used theModerate Res-
olution Imaging Spectroradiometer (MODIS) MOD13A2 enhanced veg-
etation index (EVI) products as an indicator. They defined the direct
impact as the LULC effect of urbanization, and the indirect impact was
regarded as the influence of other factors, such as climate change, an-
thropogenic activities, and so on. It was found that the vegetation
growth of most cities in China is clearly improved by the indirect im-
pact, which offsets about 40% of the direct loss caused by the direct im-
pact. However, few studies have explored both the direct and indirect
impacts of urbanization on regional NPP, and a systematic understand-
ing of the effect of urbanization on regional carbon budgets is lacking.
What is more, most of the previous studies have only analyzed the
NPP differences between two selected time points, as the status before
and after urbanization (Chen et al., 2017; Li et al., 2016; Tian and Qiao,
2014; Wu et al., 2014; Yang et al., 2014). Knowledge of the variation
in each year during the two time points is lacking, but the continuous
long-term change of urban carbon budgets is worth investigating.
Time series of the impact of urbanization on NPP have seldom been ob-
tained, but are important for a detailed evolution analysis, and could
help to clarify the relationship with climate change or other factors.
Overall, the knowledge of the impact of urbanization on vegetation
NPP needs to be further advanced. In particular, efforts should be
made to separate the different impacts and obtain continuous time
series.

The city of Kunming in China was selected as the case study area.
Kunming is the capital of Yunnan province, and is one of the largest
metropolises in southwestern China. The city is an important gateway
to Southeast Asia, and is considered to be one of the most livable cities
in China. However, Kunming has suffered from rapid urbanization
over the last few decades,with an expanding urban area and population
(Zhu and Yang, 2013). A number of studies have investigated the
change of the UHI effect in the region, but the impact of urbanization
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on the regional ecological environment has not been investigated in an
in-depth way (Wang et al., 2010; Zhang et al., 2002). The urbanization
has had a huge effect on the regional carbon budget, and has even af-
fected the whole of Yunnan province, which is one of the most impor-
tant carbon sinks in China (Fang et al., 2001a). Thus, it is important to
further investigate the impact of urbanization in Kunming on NPP. Our
previous studies of Yunnan province could provide us with available
NPP datasets from 1982 to 2014 at a 1-km scale, to fulfill the necessary
requirements of time span and spatial resolution (Guan et al., 2017).

To address these issues, the main objectives of this paper are: 1) to
efficiently separate the direct and indirect impacts of urbanization in
Kunming on NPP in recent decades; 2) to discuss the spatio-temporal
variation of the different impacts, as well as their driving mechanisms;
and 3) to evaluate the carbon loss caused by urbanization, and to pro-
vide suggestions as to how to mitigate this loss. The long-term NPP se-
ries and land cover data with different spatial resolution are utilized to
obtain the direct and indirect impacts of urbanization from 1990 to
2014, based on the concept that NPP of an urban pixel is determined
by the fraction of vegetated surface. Four different parts within or
around the urban region are defined to cognize the variation and distri-
bution of these two impacts. Based on it, the best planning for urban
greening can be formulated, considering the impacts of urban environ-
ment. What is more, the relationship between indirect impact and cli-
matic factors are further analyzed, in order to clarify the driving factor
of the impact on NPP.

2. Materials and methods

2.1. Study area

The city of Kunming (24.38°N–26.36°N, 102.17°E–103.67°E) is lo-
cated in north-central Yunnan province, which is the most southwest-
ern province of China with high forest coverage, as shown in Fig. 1.
The city covers a total area of 21,473 km2, with a mean elevation of
1891 m, and is surrounded by mountains on three sides. It is located
in the northern subtropicalmonsoonal climate zone,which is character-
ized by abundant precipitation and moderate temperatures (He et al.,
2002). However, the climate shows great seasonal heterogeneity, with
wet summers and dry winters, and most of the precipitation takes
place in the growing season (from May to October). Severe droughts
in Yunnan, such as the droughts in 2005 and 2009, have greatly im-
pacted the ecosystem in the city (Abbas et al., 2014; Liu et al., 2014).
The city of Kunming has also experienced high-speed urbanization
over the last 30 years, especially since the late 1980s, which has led to
Fig. 1. The location o
an obvious increase in the UHI intensity (Wang et al., 2010; Zhang
et al., 2002). In order to distinguish the spatial patterns of the urbaniza-
tion impacts, the total urban area (TA, the city range after urbanization
in 2014) was divided into old city (OC, the city range before urbaniza-
tion in 1989) and expansion area (EA, the difference of the city range
from 1989 to 2014). The city range in each year was obtained from
the land-cover data, as the morphological operation results of impervi-
ous surface (Shen et al., 2016a). In addition, the sub-urban area (SA, a 5-
km buffer region of the TA) and non-urban area (NA, a mountain forest
region near the city with the same size as the TA) were defined to com-
pare with the conditions in the urban area.

2.2. Data sources

2.2.1. The 1-km NPP data from 1982 to 2014
In order to meet the requirements of a long-term urban vegetation

study, we employed the 1-km NPP time series for 1982 to 2014 from
our previous study (Guan et al., 2017). The datawas estimated by fusing
multi-source remote sensing data and observed meteorological and ra-
diation data, based on the Carnegie-Ames-Stanford Approach (CASA)
model. In the NPP estimation framework, two normalized differential
vegetation index (NDVI) products were employed to composite a new
NDVI time series, combining the respective advantages of time span
and spatial resolution. The products used were the Advanced Very
High Resolution Radiometer (AVHRR) Global Inventory Modelling and
Mapping Studies 3rd generation (GIMMS3g) product from 1982 to
2012with an 8-km resolution, and theMODISMOD13A3 data collection
from 2000 to 2014 with a 1-km resolution (Gan et al., 2014; Liu et al.,
2015; Yang et al., 2015). The obtained NPP time series showed good
consistency with the field measurements (r = 0.79), which is much
higher than the NPP calculated from the original NDVI data (Guan
et al., 2017). Thus, the NPP time series can be deemed as suitable for
the ecosystem analysis and for the investigation of the impact of urban-
ization on NPP, because of its superior spatial resolution and time span.
The NPP data can be freely downloaded from (http://rs-pop.whu.edu.
cn).

2.2.2. The urban expansion intensity data
The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper

Plus (ETM+)/Operational Land Imager (OLI) images were applied to
classify the land cover in the city of Kunming at a spatial resolution of
30 m, covering the time period from 1987 to 2014. The urban impervi-
ous surface is a land-cover type that prevents the ingress of water, and
includes roads, parking lots, building roofs, and so on. The identification
f the study area.

http://rs-pop.whu.edu.cn
http://rs-pop.whu.edu.cn


Fig. 2. Inter-annual variation of the percentage of the three land-cover types.
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of the urban impervious surface land-cover type has been widely ap-
plied to represent the development and expansion of cities. Thus, in
this study, the regionwas classified into three land-cover types: vegeta-
tion, impervious surface, and bare soil. The maximum likelihood classi-
fication method was applied to the data after the processes of
radiometric calibration and atmospheric correction. The water bodies
were eliminated using the modified normalized difference water
index (MNDWI), which could efficiently identify water bodies in
urban area using the green and mid-infrared bands (Xu, 2006; Du
et al., 2016). The additional validation samples were carefully selected
from the original images and Google Earth images from 2011, and the
confusionmatrix indicated that the overall accuracy of the classification
results was higher than 90%. Based on the classification results, the
urban expansion intensity of the city could be quantified using the per-
centage of impervious surface in a single pixel (Zhao et al., 2016). By uti-
lizing the spatial resolution differences of the NPP data and land-cover
data, the number of impervious pixels in each NPP pixel could be calcu-
lated, and thus a time series of the urban expansion intensity over the
past decades was obtained. Furthermore, morphological processes
were conducted with the binary impervious surface data, to extract
the urban ranges before and after urbanization. In order to ensure that
the urban expansion intensity in each year was representative, the
Landsat images selected for the classification were all chosen around
the spring season, so the time intervals for each year were as close as
possible. The details of the Landsat images used for each year are pro-
vided in Table S1.

2.3. Methods

Urbanization can have many different impacts on regional ecosys-
tems, including vegetation replacement, urban greening, the UHI effect,
artificial irrigation, pruning, and so on. Among these impacts, the land-
cover replacement is the direct impact, which directly alters the amount
of vegetation and is always negative for urbanization. Climate change
and the anthropogenic factors contribute to the growth status of vegeta-
tion, and together lead to the indirect impact. The indirect impact can
help us to evaluate the contribution of urbanization to the regional eco-
system. Zhao et al. (2016) developed a framework that can identify the
direct and indirect impacts of urbanization on the EVI, based on the con-
cept that the EVI of an urban pixel can be decomposed into contribu-
tions from vegetation and non-vegetated surfaces. However, the
framework can only obtain the urbanization impacts from a specific
time point to the initial time point with full vegetation cover, and the
continuous variation during a time period is not supported.

In order to obtain both the direct and indirect impacts of urbaniza-
tion on NPP in any year, an improved method is proposed in this
paper, assuming that the NPP of an urban pixel is determined by the
fraction of vegetated surface. The overall concepts are shown in
Fig. S1, and are described in detail in the following:

NPP x; tð Þ ¼ 1−β x; tð Þ½ � � NPPFV x; tð Þ

where NPP(x, t) is the NPP in pixel x at time t; β(x,t) is the urban expan-
sion intensity; and NPPFV(x, t) is the NPP value of pixel xwhen it has full
vegetation cover. Thus, based on this concept, we can obtain the direct
and indirect impacts of urbanization on NPP. Assuming that there is
no indirect impact on the vegetation during the urbanization period
from t0 to t1, the hypothetical NPPh after urbanization in t1 can be
expressed as:

NPPh x; t1ð Þ ¼ NPP x; t0ð Þ þ β x; t0ð Þ−βðx; t1Þ½ � � NPPFV x; t0ð Þ

where NPP(x, t0) is the NPP value in pixel x before urbanization in time
t0; β0 and β1 are the urbanization intensities in t0 and t1; and NPPFV0 is
the NPP value of the full vegetation cover pixel before urbanization.
Since there are no other impacts on the vegetation growth, the change
of NPP between the two times should just be the difference of the veg-
etated area, which can be evaluated by the urban expansion intensity.
Based on the NPPh in t1, we can calculate the direct impact IDir and indi-
rect impact IInd of urbanization on NPP as follows:

IDir x; t1ð Þ ¼ NPPh x; t1ð Þ−NPP x; t0ð Þ

IInd x; t1ð Þ ¼ NPP x; t1ð Þ−NPPh x; t1ð Þ

where NPP(x, t1) is the true NPP after urbanization in time t1. As NPPh
(x, t1) is the hypothetical NPP value after urbanization, just considering
the direct impact of land-cover changes, the difference between NPPh
(x, t1) and the NPP at t0 should be the direct impact of urbanization on
NPP during the period. Furthermore, the difference between NPPh
(x, t1) and the true NPP at t1 should be the indirect impact. In this
study, the year of 1989 was set as t0, which means the time before ur-
banization, because the urban expansion intensity from 1987 to 1989
changed very little. Furthermore, the mean NPP value from 1982 to
1989 was regarded as the NPP0 value, to ensure it could represent the
vegetation status before urbanization, and was not affected by the ab-
normal changes in a unique year. According to this concept, we could
calculate the direct and indirect impacts of urbanization on NPP in
every year from 1990 to 2014, based on the NPP and the urban expan-
sion intensity time series. It was indicated that the government has
banned deforestation around the region from a very early date, so the
logging and thinning would be very slight and most of the land cover
change could be detected using satellite images at the resolution of
30 m.

3. Results

In Section 3.1, the urbanization processes in the city of Kunming are
first studied using the percentage of impervious surface. The NPP levels
in the different regions are then compared in Section 3.2, in order to dis-
tinguish the overall impact of urbanization on urbanNPP. The direct and
indirect impacts are analyzed in Section 3.3, including the inter-annual
variation, the spatial difference, and the seasonal heterogeneity. In
Section 3.4, the correlation between the indirect impact and climatic
factors is discussed, to clarify the generation mechanism of the indirect
impact.

3.1. Urbanization of the city of Kunming over the last 25 years

3.1.1. Inter-annual variation of each land-cover type
As shown in Fig. 2, the percentage of impervious surface, which rep-

resents the urban expansion intensity of the city of Kunming, has con-
tinuously increased since 1990, but has shown a decrease in the last
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two years of the study period. After examining different fitting models
(e.g. linear, polynomial, exponential, logarithmic), an exponential re-
gressionwas found to be the best fit for the annual variation of impervi-
ous surface (R2 = 0.98, p b 0.01), which indicates that the region has
suffered from intense urbanization at an accelerating rate. The city ex-
panded the fastest during the period from 2003 to 2012, when the im-
pervious surface percentage was above the exponential fitting line.
However, the urban sprawl has slowed down since 2010, and the im-
pervious surface has even reduced since 2013 after the peak in 2012.
The impervious surface occupied about 33.47% of the region originally,
but the percentage had doubled (66.30%) by 2012. In contrast, the per-
centages of vegetation and bare soil areas have decreased alongwith the
urbanization, but the rate has slowed down since 2008. As a result, the
vegetation coverage was about 50.28% in the study area before the ur-
banization, and the percentage had declined to 20.57% by 2012. It can
also be observed that there was an increase of the vegetation fraction
after 2012, which suggests that urban greening has taken place in the
last two years of the study period. Thismay be because the regional gov-
ernment has paid more attention to the urban ecological environment
since 2012, and corresponding regulations were implemented in
March 2012. Thus, an increase in vegetation cover and a decrease in im-
pervious surface was found in the last two years, because intense urban
greening was conducted by the government to improve the city
environment.

3.1.2. Conversion of each land-cover type
The conversion of the different land-cover types over the last

25 years was further investigated. The spatial locations and statistics
of the six land-cover change types are summarized in the following.
As shown in Fig. 3, it can be observed that large areas (59.12%) in the
city of Kunming have been subject to land-cover changes. Only about
40.88% of the area has maintained the same land cover from 1989 to
2014, and more than half of this is the initial impervious surface area.
The blue colors, which represent the impervious surface increments,
cover 37.68% of the city area, and indicate the drastic urbanization
that has taken place in the region. Among the changes, 54.95% of the
Fig. 3. Spatial distribution of the different land-cover change types from 1989 to 2014 in
the city of Kunming area. Imp means impervious surface. Veg means vegetation cover.
Soil means bare soil. Veg-Imp means land cover that has changed from vegetation to
impervious surface, and the other five land-cover change types are depicted in the same
way.
changes to impervious surface have been converted from vegetation,
amounting to 20.7% of the city area. However, the urban greening, as
demonstrated by the green color, has only occurred in 14.95% of the re-
gion, and most of this was in the city parks or the mountainous regions
around the city fringe. Overall, this means that the urbanization process
has decreased the vegetated area, which will have had a direct negative
impact on the ecosystem structure and function. Furthermore, most of
theOC region (71.71%) hasmaintained the same land cover after the ur-
banization, because impervious surface already covered most of this
area before the urbanization. Among the areas with no land-cover
change, 96.93% are impervious surface. The impervious surface increase
was only 7.25% in the OC area, but the urban greening amounted to
15.57%. This indicates that there was only light construction in the OC
area, but obvious urban greening has taken place, which is different
from the condition in the EA area. In general, these changes indicate
that the region has suffered from intense urbanization, which has had
a great impact on the terrestrial ecosystem structure with huge
heterogeneity.

3.2. NPP spatial differences caused by urbanization

In order to assess the impact of urbanization on NPP, the inter-
annual variation of the NPP in the OC, EA, SA, and NA regions is shown
in Fig. 4. Overall, this indicates that the annual NPP of the four different
regions has showed different variation trends over the last 25 years.
There has been a decrease in NPP in the OC, EA, and SA regions, but in-
creased NPP can be found in theNA region (1.34 gC·m−2 per year). Fur-
thermore, the fluctuations of the NPP in each year are very similar for
the four regions, and differences only exist in the variation trends. The
NA region is near the city area and has remained forested over the
study period, so its NPP variation can thus represent an area that has
not been impacted by urbanization. Thus, if there was no urbanization
process in the urban region, its NPP variation should be the same as
the trend in the NA region. However, impacted by the urbanization pro-
cess, the NPP levels of the three urban regions have all showed decreas-
ing trends with different speeds. This means that the urbanization has
had an apparently negative influence on the regional terrestrial ecosys-
tem carbon cycle. Furthermore, the rates of decrease in the three regions
have also shown huge differences. The NPP in the EA region has de-
clined the fastest, at a rate of −9.83 gC·m−2 per year, and the rate in
the SA region has been the slowest, at −1.19 gC·m−2 per year. The
rate of decrease represents the urban expansion intensity. The EA region
has unquestionably shown the highest rate of urban expansion intensity
increase and the greatest NPP decline, and the urban expansion inten-
sity change in the SA region has been less than that in the OC region.
Overall, the urbanization has clearly reduced the NPP in the urban
Fig. 4. Inter-annual variation of the NPP in the old city (OC), expansion area (EA), sub-
urban area (SA), and non-urban area (NA), where a denotes the variation trends of NPP.
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area, and the spatial distribution of the change is closely related to the
urban expansion intensity variation.
3.3. Direct and indirect impacts of urbanization on NPP

3.3.1. Overall variation
Although the urbanization in Kunming has reduced the urban NPP,

this is the result of the direct impact caused by land-cover replacement,
which led to the decrease of the vegetated area. However, the indirect
impact of climate change and anthropogenic activities can also greatly
alter the ecosystem carbon cycle. As shown in Fig. 5, the direct and indi-
rect impacts have been separated, and their inter-annual variations are
compared. It can be observed that the direct impact of urbanization on
NPP is clearly negative, and the negative impact has grown with the
process of urban sprawl. The NPP loss caused by the direct impact of ur-
banization reached a peak of 233.45 gC·m−2·year−1 in 2012, and then
dropped to 200.45 gC·m−2·year−1 after the urban greening in 2013
and 2014. This indicates that the regional ecosystem carbon losses
could have reached as much as 233.45 g per unit area per year after
the urbanization, due to the land-cover changes. In contrast, after re-
moving the impact of land-cover replacement, we can observe that
the positive indirect impact has shown an increasing trend during the
urbanization process. Although the inter-annual variation has fluctu-
ated, the indirect impact was above zero in almost all the years, and
has shown a logarithmically increasing trend over the last 25 years
(the best fit model, R2 = 0.27, p b 0.05). This means that the urbaniza-
tion has promoted vegetation growth, ignoring the impact of the re-
duced vegetated area, and this promotion increased with the process
of urbanization. The logarithmically increasing trend indicates that the
increasing rate of the indirect impact was obvious before 2000, but
slowed down after this date, and may remain stable in the future. This
is because the influence of the indirect factor has reached saturation, in-
cluding the natural and urbanization-induced climate change, anthro-
pogenic activities, and so on. With the advance of the urbanization
process, the evolution of these factors could enhance vegetation photo-
synthesismore andmore at the beginning, but this eventually reached a
bottleneck. For the last five years, on average, the indirect impact could
offset 30.12% of the NPP loss caused by the direct impact of land-cover
change. What is more, the indirect impact was also abnormal in some
years with extreme climate phenomena, such as the very low values
in 2005 and 2009 caused by the extreme droughts. Overall, the urbani-
zation has reduced the regional NPP, mainly due to the replacement of
vegetation, but it has also resulted in a significant positive indirect im-
pact on vegetation growth, which has shown a logarithmically increas-
ing trend.
Fig. 5. Inter-annual variation of the direct and indirect impacts of urbanization on NPP.
3.3.2. Spatial differences
Urbanization has shown a positive indirect impact and a negative di-

rect impact on NPP in most of the urban area. In order to establish the
spatial differences of the urbanization impacts on NPP, the statistics of
the direct and indirect impacts in the different regions were further cal-
culated, as shown in Table 1. It can be observed that the direct land-
cover replacement has affected the NPP in the EA region the most,
with the direct impact more than double that of the OC area. This can
be considered a reasonable result, because the vegetation percentage
loss should be the highest in the EA region, and is lower in the other re-
gion. In contrast, the indirect impact in the OC region is the highest, and
the value in the SA region is much lower than in the other two urban re-
gions. This indicates that the urbanization process has promoted the
vegetation growth in the urban area, including the OC and EA regions.
We also calculated the linear trends of the annual direct and indirect im-
pacts in the different regions. As shown in Table 1, the spatial distribu-
tion of the direct impact variation trends agrees with its value, which
is highest in the EA area and much less in the other two regions. For
the indirect impact, the mean trend value is 1.55 gC·m−2 per year,
which is higher than the increasing trend of NPP in the NA area
(1.34 gC·m−2 per year). This indicates that the NPP under natural envi-
ronments has increased slower than the NPP impacted by the urbaniza-
tion, which reveals an interesting finding, in that the vegetation has
actually been growing faster in the urban region than in the natural en-
vironments. This further proves that urbanization has brought many
positive factors to the Kunming region that can enhance the vegetation
growth. The urban heat/rain island effect, anthropogenic activities, and
other favorable factors caused by urbanization are themain positive fac-
tors, which result in a much more suitable growing environment and
benefit vegetation photosynthesis. What is more, the spatial heteroge-
neity of the indirect impact trend also agrees with the distribution of
these positive factors. In the OC region, where the heat island intensity
is the strongest, the indirect impact shows the highest value. The indi-
rect impact trend in the SA region is very similar to the NPP trend in
the NA region, because there is no heat island phenomenon in this re-
gion. Thus, it can be concluded that the urbanization has led to an obvi-
ously positive impact on vegetation, because the induced UHI effect and
other factors can greatly benefit photosynthesis.

3.3.3. Seasonal heterogeneity
The impacts of urbanization onNPP also showhuge seasonal hetero-

geneity. The seasonal distribution of the direct impact completely
agreeswithNPP, because thedirect impact is causedby the replacement
of the vegetated areas, which would maintain a stable percentage for
different seasons. However, this is completely different for the indirect
impact, which shows great seasonal heterogeneity, as shown in Fig. 6
(a). Overall, the indirect impact in the winter months is higher than in
the summer months. The lowest value is observed in the summer
months with the highest temperatures, and the highest value appears
in the months with the greatest temperature change (March and Sep-
tember). Due to the difference in the NPP amount in each month, the
ratio of the indirect impact andNPP is amore effective index to evaluate
the seasonal heterogeneity, which we name the percentage of indirect
impact (PII). The PII shows an obvious U-shaped intra-annual variation,
with high values in winter and low values in summer. This means that
the indirect change caused by urbanization promotes the vegetation
growthmore in the coldermonths, but is limited in thewarmermonths.
The seasonal variation of temperature is the reason for this, because the
higher temperature brought by the UHI effect benefits the vegetation
more when the temperature is the main limiting factor for growth in
thewinter months. Nevertheless, the temperature in summer is usually
quite suitable for vegetation photosynthesis, so the extra warming does
not further promote the NPP. What is more, the PII in the OC and EA re-
gions was also calculated, but the SA region was not included because it
was established that there has been little vegetation promotion in this
region. The PII in the OC region is usually higher than that in the EA



Table 1
Annual variation trends of the direct and indirect impacts on NPP in the different regions.

Impact TA OC EA SA NA

Mean value in 2010–2014
(gC·m−2·year−1)

Direct impact −212.05 −99.49 −238.26 −56.58 /
Indirect impact 62.66 66.37 61.79 19.21 45.77

Variation trend
(gC·m−2·year−1)

Direct impact −10.03 −4.28 −11.37 −2.46 /
Indirect impact 1.55 1.62 1.53 1.30 1.34

Note: TA denotes the total city area, OC denotes the old city area, and EA denotes the expansion area, SA denotes the sub-urban area, and NA denotes the non-urban area.
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region, except for July and August. This indicates that the vegetation in
the OC region benefits more than that in the EA region, for most of the
time, except for the two months with the highest temperature. This is
likely a result of the UHI intensity in the OC region being greater than
that in the EA region, which has been proved in many studies (Shen
et al., 2016a). Therefore, the indirect impact can promote NPP more in
the OC region, most of the time, but a negative impact occurs when
the monthly temperature is originally high. Thus, the NPP promotion
brought by the indirect impact is generally higher in the winter months
than the summer months, which is a result of the spatio-temporal dis-
tribution of temperature and UHI intensity.

3.4. Relationship between climate and the indirect impact

The direct impact is the result of vegetated area replacement, but the
reasons for the indirect impact of urbanization onNPPhave not yet been
clarified. In order to quantitatively describe this issue, the correlation
coefficients of the indirect impact and climatic factors in different time
periods and different regions were calculated and are shown in
Table 2. For the entire period from 1990 to 2014, the indirect impact
has shown a significant positive correlation with temperature (r =
0.44, p b 0.05), but no significant relationship can be found for precipi-
tation, which means that the temperature is the main driving force for
the indirect impact. Furthermore, according to the inter-annual varia-
tion of the indirect impact, it apparently increased with the urban
sprawl from 1990 to 1999, but fluctuated at a relatively stable level
after 2000. Thus, the relationships between the indirect impact and cli-
matic factors were further analyzed in these two periods. In the first
time period from 1990 to 1999, when the indirect impact apparently in-
creased, the temperature showed an even higher correlation with the
indirect impact (r = 0.70, p b 0.05). However, the correlation became
very low in the second period after 2000, when the urban expansion in-
tensity was already high. Thus, it can be concluded that the higher tem-
perature caused by urbanization (both natural climate change and the
UHI effect) was themain factor responsible for the positive indirect im-
pact onNPP. In the first 10 years, the temperature persistently increased
and enhanced the NPP, so the indirect impact grew with the urbaniza-
tion process. Whereas, when the urban temperature was already suit-
able for vegetation growth, even the intense UHI effect could not
Fig. 6. Intra-annual variation of: (a) urbanizatio
further benefit the vegetation growth, which remained at a relatively
stable level after this period.

For the correlations in the OC and EA regions, spatial differences can
also be found. The correlation between temperature and the indirect
impact is higher in the EA region than in theOC region, both over the en-
tire period and in thefirst period. This could be a result of the higher UHI
intensity in the OC region, whichmeans that the temperature in the old
city was originally high and was usually higher than that in the EA re-
gion at the same time. Therefore, the climate condition in the OC region
was years ahead of that in the EA region, so the temperature increment
benefited the vegetation less in theOC regionwith lower correlation co-
efficient, especially in the first period before 2000. In general, the tem-
perature was the major driving force for the growing positive indirect
impact, but their correlation was weakened during the urbanization
process, with generally higher values in the EA region.

4. Discussion

Urbanization can have a huge influence on the terrestrial ecosystem.
In this study, the direct and indirect impacts of urbanization on NPP
were separated and analyzed. Although a number of conclusions could
be drawn, some issues still need to be further discussed. In this section,
the necessity of separating these two impacts isfirst established. How to
offset the impacts of urbanization on the regional carbon budget is then
explored, considering the huge heterogeneity of the indirect impact. Fi-
nally, the quality/uncertainty of the data applied in this study is
discussed, and some potential directions for future study are described.

4.1. Necessity of separating the impacts of urbanization on NPP

Most of the previous studies about the impact of urbanization on
vegetation have only concentrated on the gross influence, and they
have not identified the direct and indirect impacts. If the indirect impact
was not considered in the city of Kunming, we could onlymake the con-
clusion that urbanization has reduced the urban NPP over the last
25 years, as shown in Fig. 4. However, in fact, although the urban NPP
decreased with the urbanization, the vegetation growth was promoted
during the process. The reduced NPP was the result of more than half
the area of vegetation being replaced over the past 25 years, but the
n impact on NPP; and (b) climatic factors.



Table 2
Correlation coefficients between the indirect impact and climatic factors in different time
periods and different regions.

Region R 1990–2014 1990–1999 2000–2014

TA rP 0.061 0.38 −0.06
rT 0.44* 0.70* 0.014

OC rP −0.19 0.23 −0.45
rT 0.43* 0.59 0.17

EA rP 0.11 0.41 0.039
rT 0.45* 0.72* 0.054

Note: TA denotes the total city area, OC denotes the old city area, and EA denotes the ex-
pansion area; rP denotes the correlation between the indirect impact and precipitation,
and rT denotes the correlation between the indirect impact and temperature; * denotes
a significant correlation (p b 0.05).
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remaining vegetation was much more productive after the urbaniza-
tion. The indirect impact also increased alongwith the urbanization pro-
cess, and its trend was greater than the increasing trend of the NPP in
the NA region near the city. The difference reached 0.25 gC·m−2 per
year, which indicates that the positive impact of urbanization can help
vegetation produce an extra 0.25 gC in each year in one square meter.
The anthropogenic influences and the urbanization-induced climate
change are the main reasons for the positive indirect impact. For exam-
ple, artificial irrigation, pruning, the UHI effect, and so on, can result in
superior conditions in the urban region. All these conclusions could
only be made by separating the direct and indirect impacts of urbaniza-
tion onNPP, and the identification of the two impacts can help us to rec-
ognize the deep relationship between urbanization and ecosystems.

Furthermore, separating the impacts of urbanization onNPP can also
help us to identify the real relationship between NPP and climatic fac-
tors. Due to the presence of the direct impact, the overall urbanNPP var-
iation cannot represent the vegetation status in the region, because
even though the vegetation growth is promoted, the regional NPP is de-
creased due to the reduced vegetated area. In this case, directly calculat-
ing the correlation between urban NPP and the climatic factor cannot
reflect the true relationship between them. Table 3 shows the correla-
tion between NPP and the climatic factors in different time periods
and different regions. It can be concluded that precipitation is the
main factor influencing the urban vegetation variation, and there is a
negative relationship with temperature. Compared to the information
of the indirect impact in Table 2, completely opposite conclusions can
be reached. The conclusions obtained from the NPP would, however,
be wrong, because the close correlation with precipitation is the result
of their decreasing trends. However, it was found that the vegetation
has grown much better with the process of urbanization, and the
lower urban NPP was just because of the reduced productive area.
Therefore, the positive relationship between NPP and precipitation
would a wrong answer, which would not reflect the true climatic driv-
ing mechanisms for urban vegetation. Actually, it is the temperature
that has dominated the vegetation growth status in the Kunming
urban area, which is a conclusion that could only be made by
Table 3
Correlation coefficients betweenNPP and climatic factors in different time periods and dif-
ferent regions.

Region r 1990–2014 1990–1999 2000–2014

TA rP 0.55* 0.17 0.59*
rT −0.41* 0.33 −0.34

OC rP 0.34 0.07 0.14
rT −0.21 0.21 0.14

EA rP 0.56* 0.19 0.60*
rT −0.42* 0.34 −0.36

Note: TA denotes the total city area, OC denotes the old city area, and EA denotes the ex-
pansion area; rP denotes the correlation between the indirect impact and precipitation,
and rT denotes the correlation between the indirect impact and temperature; * denotes
a significant correlation (p b 0.05).
considering the indirect impact. Thus, it is necessary to separate the di-
rect and indirect impacts of urbanization on NPP, in order to discover
the true relationship between urbanization and the urban ecosystem.

4.2. How to offset the impacts of urbanization on the regional carbon
budget

Due to the land-cover change and climate change, urbanization
leads to changes of the local ecosystem carbon budget. The total NPP
(T-NPP), which denotes the sum of the pixel NPP multiplied by
the pixel area in the region, is used to represent the regional carbon
budget. The average NPP in the last 8 years is used as the NPP value
after urbanization, to weaken the impact of the abnormal variations in
some years, and keep the same as the NPP before urbanization. As
shown in Fig. 7, the urbanization has led to an obvious carbon sink
loss in the past decades, at a rate of 0.088 TgC·year−1. Among the differ-
ent regions, the EA region contributed the most, with a loss of 67.03%
(0.059 TgC·year−1), and the change in the OC region was the lowest
(4.43%, 0.0039 TgC·year−1). This was mostly due to the replacement
of the vegetated area, and the low value in the OC region can be attrib-
uted to the highly promoted vegetation growth. The actual NPP of the
full vegetation cover area (NPP-FV), which denotes the genuine status
of the vegetation growth, showed the greatest increment in the OC re-
gion, at a rate of 391.91 gC·m−2·year−1. The increments of NPP-FV
were 255.24 gC·m−2·year−1 and 23.75 gC·m−2·year−1 for the EA
and SA regions, respectively. It was found that the change of NPP-FV
was totally different from that of T-NPP, with increments in all three re-
gions after the urbanization. Themagnitude of NPP-FV in the OC and EA
regions is clearly higher than that in the SA region, due to the contribu-
tion of the indirect impact, and the decrease of T-NPPwasmostly the re-
sult of the direct impact.

Since the urbanization has led to huge carbon sink losses in the Kun-
ming region, it was necessary to analyze themost effectiveway to offset
the changes by urban greening. During the urbanization process, about
104.76 km2 of vegetated areas were replaced by other land covers,
whichwas themajor cause of the carbon loss. However, amuch smaller
area of urban greening is needed to compensate for this, because the
NPP-FV has been improved due to the positive indirect impact. For the
average of the whole region, the NPP-FV increased by 1.33 times after
urbanization, which indicates that adding 75.36% of the vegetation
area loss (78.94 km2) would be enough to offset the carbon loss in the
region. What is more, the vegetation demands vary with the different
regions, because of the NPP-FV differences. As shown in Table S2, the
minimum urban greening area would be required if all the vegetation
was added in the OC region (61.77 km2), due to the high NPP-FV in
this region after urbanization. However, the area required amounts to
70.27% of the total OC region, so it would be impossible to convert this
much area into vegetation, since this is a residential area. Converting
the land in the EA region to vegetation would be ideal, because this
would only require 24.46% of the EA region land surface (82.21 km2).
If the vegetated area was concentrated in the SA region, almost double
the area of the OC region would be needed (100.81 km2). In conclusion,
it would be better to undertake the urban greening in an order of prior-
ity of OC, EA, and SA, in order to offset the carbon sink loss caused by ur-
banization. Undertaking rational urban greening in the OC area would
be an ideal way to save on total land consumption and leave more
land for human use.

4.3. Data uncertainty and future works

The major uncertainties of this study come from the applied NPP
data and the land-cover series, so it is necessary to discuss these issues.
The NPP estimated by the CASA model was employed to represent the
vegetation growth status, but the input data and model applicability
can greatly affect the results. As one of the most important inputs, the
NDVI data were obtained by fusing multi-source remote sensing data,



Fig. 7. Comparison of carbon budget and NPP-FV after urbanization in the different regions, where T-NPP denotes the total NPP in the region, NPP-FV denotes the actual NPP of unit full
vegetation cover area, OC denotes the old city area, EA denotes the expansion area, and SA denotes the sub-urban area.
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to combine the spatial resolution and long-time span characteristics
from different sensors. Themonthly total solar radiation was calculated
based on the improved Yang hybrid model (YHM2), in order to reduce
the interpolation error caused by inadequate data sites. Although the
applicability of all the employed data has been proved, the data pro-
cesses and the parameter value definition could bring some bias to the
NPP results. For example, the values of maximum light use efficiency,
which have been proved to vary in different species, were derived
from the previous study of Zhu et al. (2007), but it would be much bet-
ter to adjust this to be suitable for urban vegetation. The estimated NPP
dataset shows good consistencywith the fieldmeasurements (r=0.79,
p b 0.01) in the whole of Yunnan province, good accuracy also could be
observed among different vegetation types with bias ranged from
−5 gC·m−2·year−1 to 74 gC·m−2·year−1. However, the reliability in
the Kunming urban area has not yet been validated, due to the lack of
field measurements. Thus, using the MODIS NPP product (MOD17A3)
was an effective way to assess its accuracy, and the result indicated a
good consistency in the inter-annual variation (r = 0.83, p b 0.01).
Themuch lower value for the estimatedNPP also agreedwith the previ-
ous studies, which declared that theMODIS product overestimated NPP
in low-productivity areas (Turner et al., 2006).

The land-cover data series could also bring uncertainty to the con-
clusions, because these data are the specific data used to evaluate the
urbanization status. Due to the 30-m spatial resolution of the Landsat
data, and the fact that only three classes (impervious surface, vegeta-
tion, bare soil) were considered, the overall classification accuracy was
generally higher than 90%. However, the seasonal differences of the ac-
quired data would also cause uncertainty, because the phenological dif-
ference of the vegetation in the different data would induce error when
evaluating the vegetation cover in each year. Although all the classified
Landsat images were selected as near as possible to the spring season,
certain seasonal differences still existed. In order to further minimize
the effects of the seasonal differences of the data, the separation of the
direct and indirect impacts was based on the urban expansion intensity
β. Due to the fact that β was defined as the fraction of impervious sur-
face, this ignored the impact of the phenological differences of the
vegetation.

In general, although there are some uncertainties in the employed
data, we believe that the conclusions obtained in this study are credible
and valuable. However, further efforts are still required for an in-depth
exploration of the impact of urbanization on regional terrestrial ecosys-
tems. First of all, this study only separated the impact of urbanization
into two classes, so it would bemeaningful to divide the indirect impact
intomore detailed classes. The direct impact in this studywasdefined as
the change of vegetated area, but the changes of the vegetation species
should also be included in further study. The indirect impact was made
up of the effects of climate change and anthropogenic activities, and the
impact of climate change covered the natural changes and
urbanization-induced changes, such as the UHI effect, the urban rain is-
land effect, and so on. The high-rise buildings caused by urbanization
could also bring huge indirect impacts and alter the growth environ-
ment of vegetation. How to separate these different factors is an inter-
esting direction for future work, and it will be of great significance in
advancing our knowledge of urbanization and terrestrial ecosystems.
Furthermore, the spatial resolution of the applied NPP data was 1 km.
However, considering the complex land cover in urban area, even
higher spatial resolution data (e.g., Landsat data at a 30-m spatial reso-
lution) would be superior. It could not only obtain the detailed spatial
heterogeneity in urban area, but also retrieve more accurate informa-
tion of vegetation and urbanization (Chen, 1999). Although there exists
trade-off between the spatial and temporal resolutions, combining
multi-sensor information and data integration method should be an ef-
fective approach to break this limitation, and some researches have al-
ready studied the vegetation in urban at the Landsat scale based on it
(Yan et al., 2018; Liu et al., 2018).

5. Conclusions

In this paper, the continuous direct and indirect impacts of urbaniza-
tion on regional NPP have been analyzed from 1990 to 2014 for the city
of Kunming, China. A 1-km long-termmonthly NPP time series obtained
by the fusion of multi-source data was applied, and the fine-resolution
land-cover time-series data were derived from Landsat images. Based
on the concept that the NPP of an urban pixel can be determined by
the fraction of the vegetated area, the direct and indirect impacts in
each year were separated and analyzed. The main conclusions can be
summarized as follows:

1) The city of Kunming has suffered intense urbanization at an acceler-
ating rate over the past 25 years, with an exponential increase in im-
pervious surface coverage. Most of the urban sprawl has been
concentrated in the EA region, whereas more urban greening than
impervious surface increment has taken place in the OC region.

2) The direct and indirect impacts of urbanization on NPP were
completely different, in both the values and variation trends. The di-
rect impact becamemore andmore negative over time, resulting in a
decreased average NPP in the region. However, the indirect impact
was positive and showed a logarithmic increase, which represented
the improved growth status of vegetation in the urban area.

3) The inter-annual variation trend of the indirect impact
(1.55 gC·m−2·year−1) in the urban area was higher than the NPP
trend in the NA region (1.34 gC·m−2·year−1), which indicates that
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urbanization has brought positive factors and has enhanced the veg-
etation growth. The positive indirect impact shows apparent spatial
and temporal heterogeneity,with higher values in theOC region and
the winter months. Considering the positive indirect impact, urban
greening in the OC regionwould be the bestway to offset the carbon
sink loss caused by urbanization.

4) The correlation analysis indicated that temperature variation was
the main driving force of the indirect impact, and it could explain
the heterogeneity of the indirect impact. However, the correlations
between NPP and climatic factors were completely different, which
proved the necessity of separating the indirect impact from the di-
rect impact.
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