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Abstract: Cloud cover is a common problem in optical satellite imagery, which leads to missing
information in images as well as a reduction in the data usability. In this paper, a thick cloud removal
method based on stepwise radiometric adjustment and residual correction (SRARC) is proposed,
which is aimed at effectively removing the clouds in high-resolution images for the generation of
high-quality and spatially contiguous urban geographical maps. The basic idea of SRARC is that the
complementary information in adjacent temporal satellite images can be utilized for the seamless
recovery of cloud-contaminated areas in the target image after precise radiometric adjustment.
To this end, the SRARC method first optimizes the given cloud mask of the target image based on
superpixel segmentation, which is conducted to ensure that the labeled cloud boundaries go through
homogeneous areas of the target image, to ensure a seamless reconstruction. Stepwise radiometric
adjustment is then used to adjust the radiometric information of the complementary areas in the
auxiliary image, step by step, and clouds in the target image can be removed by the replacement
with the adjusted complementary areas. Finally, residual correction based on global optimization is
used to further reduce the radiometric differences between the recovered areas and the cloud-free
areas. The final cloud removal results are then generated. High-resolution images with different
spatial resolutions and land-cover change patterns were used in both simulated and real-data cloud
removal experiments. The results suggest that SRARC can achieve a better performance than the
other compared methods, due to the superiority of the radiometric adjustment and spatial detail
preservation. SRARC is thus a promising approach that has the potential for routine use, to support
applications based on high-resolution satellite images.

Keywords: cloud removal; high-resolution images; multi-temporal; stepwise radiometric adjustment;
residual correction; SRARC

1. Introduction

Clouds and the accompanying shadows are inevitable contaminants for high-resolution remote
sensing images, which are widely used for urban geographical mapping, land-use classification,
change detection [1,2]. According to the estimation of the International Satellite Cloud Climatology
Project (ISCCP), the global annual mean cloud cover is as high as 66%. Cloud cover results in missing
information and spatio-temporal discontinuity, and thus affects the precise application of time-series
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satellite images [3]. However, the periodicity of the satellite revisit cycle makes the acquisition of
multi-temporal images of a specific region possible. Reconstructing contaminated areas in the cloudy
satellite image with the aid of close-date temporal images can help to increase the data usability,
and can be used to generate cloud-free and spatio-temporally continuous images for time-series
analysis, especially for areas heavily contaminated by clouds. Examples of applications that benefit
from cloud removal include land-cover/land-use mapping, change detection, urban planning, etc.
Therefore, cloud removal for optical satellite images is of great significance.

In recent years, scholars have undertaken a great deal of research into thick cloud removal for
remote sensing images. Considering that thick cloud removal in satellite images is essentially a process
of missing information reconstruction [4], thick cloud removal methods can be divided into two main
categories, according to the domain of the used complementary information, namely, spatial-based
methods and temporal-based methods. We review these two categories of methods in the following.

Spatial-based cloud removal methods use the remaining cloud-free regions in the image to reconstruct
the cloud-contaminated regions, without the aid of other auxiliary data. Accordingly, the single-image
inpainting approaches can be utilized for the reconstruction of missing regions in an image. Single-image
inpainting methods include the commonly used interpolation-based methods [5]; propagated diffusion
methods [6], which propagate the local information from the exterior to the interior of the missing
areas; variation-based methods [7], which use a regularization technique to implement information
reconstruction; and exemplar-based methods [8], which are aimed at reconstructing large missing areas.
More relevantly, several recent studies have proposed spatial-based cloud removal methods based on
cokriging interpolation [9], bandelet-based inpainting [10], compressive sensing [11], sparse dictionary
learning [12], and structure-preserving global optimization [13]. Generally speaking, the spatial-based
cloud removal methods can obtain visually plausible results, but they are less effective at coping with
large-area clouds and complex heterogeneous areas.

Temporal-based cloud removal methods reconstruct cloud-contaminated regions in the target
image based on the complementary information from adjacent temporal images. Since the cloud
removal results of the temporal-based methods are usually more reliable than those of the spatial-based
methods, especially for removing large-area clouds, the temporal-based cloud removal methods have
been more intensively studied. On the one hand, time-series methods reconstruct cloud-contaminated
regions by a sliding window filter, function-based curve fitting, etc., and are commonly utilized
for the time-series reconstruction of normalized difference vegetation index (NDVI) data [14–16],
land surface temperature (LST) data [17], and surface reflectance data [18,19]. Since time-series methods
have mainly been developed for images with a high temporal resolution, they are not suitable for
high-resolution images, which are usually hard to acquire as monthly or seasonal time-series data
with a short time interval. On the other hand, cloud removal methods which involve one or more
auxiliary images mine the complementary information from the auxiliary image(s) and reconstruct the
cloudy areas in the target image through temporal replacement [20–23], temporal regression [24–28],
temporal learning [29–33], etc. The key to these methods is to ensure radiometric consistency and
spatial continuity between the recovered areas and the cloud-free areas. In addition, multi-sensor
cloud removal methods have also been investigated in recent studies. These methods utilize optical
images of a different sensor [34,35] or synthetic aperture radar (SAR) data [36–38] to make up for
the lack of available target images, and they enhance the ability to reconstruct areas with land-cover
changes. However, multi-sensor cloud removal methods may not be applicable for routine use due to
the requirement for acquiring a corresponding auxiliary data source.

While many cloud removal methods have been proposed in recent years, most of them are
designed for medium- and low-resolution images, such as Landsat [25,27,39] and Moderate Resolution
Imaging Spectroradiometer (MODIS) [40,41], and thus may not be suitable for high-resolution images.

There are several major problems for cloud removal in high-resolution images. On the one hand,
radiometric consistency between the reconstructed areas and cloud-free areas is difficult to preserve,
due to the significant radiometric variations and the dynamic land-cover changes existing between
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multi-temporal high-resolution images, which brings more challenges for the seamless reconstruction
of cloud-contaminated areas. On the other hand, the cloud removal results for high-resolution images
are easily affected by noise or artifacts, which leads to missing spatial details, as spatial details in
high-resolution images are usually more complex. This results in the actual ground details below the
clouds in contaminated imagery being difficult to accurately recover, especially for images covered by
large-area clouds.

In this paper, in order to improve the cloud removal results in high-resolution images, we propose
a cloud removal method based on stepwise radiometric adjustment and residual correction (SRARC).
The basic idea of SRARC is that the complementary information in adjacent temporal satellite images
can be utilized for the reconstruction of cloud-contaminated areas in the target image through precise
radiometric adjustment, which is achieved by stepwise adjustment and residual correction. The SRARC
method has the advantage of being able to preserve the spatial details and radiometric consistency
in the reconstructed areas. The experimental results suggest that SRARC is a promising approach,
especially for cloud removal in high-resolution satellite images, which will benefit the applications
based on high-resolution satellite images, such as large-scale urban mapping.

The rest of this paper is organized as follows. Section 2 introduces the proposed SRARC method
and provides the implementation details. The performances of SRARC and the compared methods
are evaluated in Section 3, in which images with different resolutions and land-cover change patterns
are considered. The parameter settings in SRARC are also analyzed, as well as the efficiency of the
different methods. In Section 4, we discuss the superiority and limitations of SRARC. Our conclusions
are drawn in Section 5.

2. Method

The inputs of the SRARC method are a target image which is contaminated by cloud, an auxiliary
image which is an adjacent temporal image that covers the same area as the target image, and cloud
masks of the target image and auxiliary image, which are used as the guidance for the subsequent
cloud removal. The masks can be acquired by the existing cloud detection techniques or manual
labeling, in which cloud shadow can also be included and finally removed as cloud. In this paper,
the acquired target and auxiliary images have already been geometrically registered, and we assume
that the regions which are contaminated by clouds in the target image are cloud-free in the auxiliary
image. Please note that cloud regions in the target image will not be removed if there is no available
cloud-free complementary information in the auxiliary images.

The proposed SRARC method consists of three main steps, as shown in Figure 1. Firstly, the boundaries
of the target mask are optimized based on the results of superpixel segmentation, to ensure that they go
through homogeneous areas in the target image and avoid spatial discontinuity in the boundaries of
recovered areas. The complementary areas from the auxiliary image are then normalized, pixel by pixel,
and used to fill the cloud-contaminated areas in the target image, which is achieved by stepwise local
radiometric adjustment based on the same cloud-free areas in local windows of the target and auxiliary
images. Finally, residual correction is conducted on the filled areas to further eliminate any radiometric
differences between the filled areas and the cloud-free areas. The final cloud removal result for the target
image can then be generated. For the convenience of the method description in the following subsections,
we clipped a pair of experimental images to illustrate the detailed process of SRARC, in which the auxiliary
image patch is cloud-free, and we further explain how to cope with the case of the auxiliary image patch
also being cloudy.
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2.1. Mask Optimization Based on Superpixel Segmentation

Since clouds in the target image are randomly distributed, the boundaries of the labeled clouds
in the target mask may also be arbitrarily determined, which can lead to spatial discontinuity in the
boundaries of the reconstructed areas. In addition, considering that temporal-based cloud removal is
essentially a process of image mosaicing, in which the complementary areas from the auxiliary image
are mosaiced to the target image, the optimal seamline is determined by ensuring that it goes through
continuous homogeneous areas. Therefore, before the complementary areas are transferred to fill
the cloud-contaminated areas in the target image, the boundaries of the target cloud mask should be
optimized to ensure the spatial continuity in the reconstruction results, especially for high-resolution
images which have complex land structures.

Unlike the seamlines in image mosaicing, the optimized cloud boundaries must form closed areas
in the improved cloud mask. In this paper, we optimize the cloud boundaries of the target image by
ensuring that they cross the regions of segmented superpixels around the initial cloud boundaries,
each of which can be regarded as a local homogeneous region. Since land-cover changes may occur
between the cloud-contaminated target image and the auxiliary image, the superpixel segmentation
must consider both images, to ensure that they share the same segmentation results. An example of
mask optimization is provided in Figure 2. If we assume that the target image and auxiliary image
are respectively denoted as T = {t1, t2, . . . , tn} and R = {r1, r2, . . . , rn}, where n is the number of image
bands, we stack the two images and denote this as TR = {t1, t2, . . . , tn, r1, r2, . . . , rn}. The stacked image
TR is then utilized for superpixel segmentation with the simple linear iterative clustering (SLIC)
algorithm [42], which is effective and easy to implement. The SLIC algorithm generates superpixels by
applying k-means clustering, in which the spatial distance and color differences are both considered to
measure the weight distance and cluster local pixels. Specifically, the initial number N of pixels in a
superpixel for the segmentation is empirically set to 50, and all the bands in the stacked image are
utilized for the segmentation.

The nearest superpixels around cloud boundaries, which are denoted as S = {s1, s2, . . . , sm},
can be acquired by extracting the minimum enclosing segmented lines of cloudy areas. Accordingly,
the optimized cloud boundaries can be acquired by connecting the m centroids of S and the m centers of
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shared segmented lines of S. Specifically, the centroid of each superpixel can be acquired by calculating
its image moment [43], as in the following equation:

Mpq =
m∑

x=1

n∑
y=1

xpyqs(x, y) (1)

where (p + q) is the order of moment to be calculated; s(x, y) denotes the binary image bounding the
superpixel, which has a size of m× n; and s(x, y) = 1 in the region of the superpixel. The centroid of
the superpixel can be calculated as follows.

XG =
M10

M00
, YG =

M01

M00
(2)
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Figure 2. Illustration of mask optimization based on superpixel segmentation. (a) Target image.
(b) Auxiliary image. (c,d) Superpixel segmentation results overlay on (a,b), respectively. (e) Centroids
of superpixels and centers of segmented lines. (f) Optimization result for the mask boundaries.

Thus, (XG, YG) are the coordinates of the centroid point of each superpixel. In addition, the center
point (XC, YC) of the shared segmented line of adjacent superpixels can be approximately obtained by
calculating the centroid of each shared segmented line. The optimized cloud boundaries can be generated
by connecting (XG, YG) and (XC, YC) of each adjacent superpixel, and according to the formed closed
areas, the optimized cloud mask of the target image is acquired. An example comparing the cloud removal
results with and without mask optimization is shown in Figure 3, from which we can see that the cloud
removal result with mask optimization has better spatial continuity and is more visually plausible.
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Remote Sens. 2019, 11, 1925 6 of 19

2.2. Cloud Removal by Stepwise Local Radiometric Adjustment

The stepwise local radiometric adjustment is undertaken to fill cloud-contaminated areas after
mask optimization, and is conducted on each cloud region of the target image. For each cloud pixel of
each band with coordinates (i, j) in a cloud region, the target image and auxiliary image in a rectangular
window k centered at (i, j) are used for the normalization to correct the radiation of R(i, j) and replace
the cloud-contaminated pixel T(i, j) with T′(i, j), which can be calculated as follows.

T′(i, j) =
σTk

σRk

·R(i, j) + µTk −
σTk

σRk

·µRk (3)

where T′(i, j) is the recovery result of cloud pixel T(i, j); σTk and σRk are the standard deviations of the
valid cloud-free pixels in window k of the target and the auxiliary image, respectively; µTk and µRk are
the mean values; and the size of window k is 2r + 1, where r is the window radius, which is empirically
set to 80 in the stepwise adjustment.

There are several strategies used in the process of stepwise local radiometric adjustment which
help SRARC to more effectively cope with the recovery of large-area cloud regions. The details of the
strategies are described in the following.

(1) Pixel-by-pixel reconstruction from cloud boundary to center. Since the boundary pixels in cloud
regions are closer to the cloud-free pixels and have more reference information for reconstruction,
a higher priority for the reconstruction should be set for boundary pixels in cloud regions. Accordingly,
in the recovery process of a cloud region, as shown in Figure 4, the recovery order should be from
the region boundary to the center, which can be controlled by stepwise one-pixel erosion of the cloud
mask until all the cloud pixels have been recovered.
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(2) Regarding the recovered pixels of the current cloud region as cloud-free. Instead of increasing the
radius of window k to acquire enough valid cloud-free pixels for the recovery of cloud pixels in the
center of a large cloud region, the recovered pixels are regarded as valid cloud-free pixels in the
reconstruction of the current cloud region, and are utilized for the recovery of the remaining cloud
pixels. Such a strategy makes the reconstruction of large-area clouds more effective.

(3) Setting a minimum number of valid pixels for recovery. An insufficient number of valid pixels for
normalization in Equation (3) may lead to an unnatural reconstruction result. In SRARC, when the
number of involved cloud-free pixels for the recovery of a cloud pixel is less than 30, the recovery is
considered as invalid until the condition is met in the following iteration of the stepwise adjustment.
Setting a minimum number of valid pixels is beneficial for the reconstruction of cloud pixels around
image borders, for which it is usually difficult to find enough valid pixels in the local window.

In the implementation of SRARC, a box filter, which is also called a mean filter, can be utilized
to accelerate the calculation of the mean and standard deviation in the local window. Contaminated
pixels of each cloud object are recovered by the stepwise local radiometric adjustment, and the initial
cloud removal results can then be obtained.
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2.3. Residual Correction Through Global Optimization

Since the large radiometric differences have been reduced by the stepwise adjustment, the recovered
image will generally have good consistency between the recovered regions and the cloud-free areas.
However, due to the limitation of normalization based on local windows, the recovered regions
are sometimes not perfectly corrected, and may still be visually inconsistent in the spectral domain,
especially for recovered regions containing both land and water areas which have a larger local
deviation (see Figure 5a). Therefore, residual correction based on global optimization is utilized to
further correct the recovered regions.
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We denote the initial recovered image produced by stepwise adjustment as T′, and the adjusted
image after residual correction as T′′ . In order to make T′′ seamless in the boundaries of the corrected
areas (i.e. the recovered areas) while maintaining image details, it is essential to minimize the gradient
and intensity differences between T′ and T′′ at corrected region Ω, as well as to ensure that the
intensities of T′ and T′′ are equal at boundaries ∂Ω of corrected areas. Thus, we should solve the
following global optimization problem defined in Equation (4), which includes constraints of the
gradient and intensity, and a Dirichlet boundary condition.

T′′ |∂Ω = argmin
x

Ω

(|∇T′′ −∇T′|2 + λ|T′′ − T′|2), T′′ |∂Ω = T′∗|∂Ω (4)

where ∇ is the gradient operator, ∂Ω denotes the boundaries of corrected region Ω, and T′∗ is the regions
around Ω in T′. Note that λ is the weight used to balance the fidelity of the gradient and intensity,
which is empirically set to a small value to preserve spatial details and spectral information in the
residual correction result.

In the study of Pérez et al. [44], only a gradient constraint was used to implement a seamless image
clone, which was utilized to reduce the intensity differences after cloning the source image patch to the
destination image. In this paper, we additionally introduce the intensity constraint in Equation (4) to
better preserve radiometric information in corrected areas, as well as to improve the unnatural results
after residual correction in some cases caused by the error propagation from boundaries to the center
of the corrected areas [21]. In order to simplify the solving of Equation (4), the above optimization
problem is converted into an interpolation problem by introducing the residual term T̃′ and defining
the following equation.

T′′ = T′ + T̃′ (5)

According to Equation (5), Equation (4) can be simplified as follows:

T̃′|∂Ω = argmin
x

Ω

(|∇T̃′|
2
+ λ|T̃′|

2
) (6)
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The residual term T̃′ at corrected region Ω can be acquired by solving the Laplace equation with
boundary condition, and then T′′ is obtained according to Equation (5). An example of residual
correction is provided in Figure 5.

In addition, considering that the gradients and intensities vary significantly in high-resolution
images, the process of residual correction can be iteratively conducted to improve the correction results.
The appropriate number of iterations is discussed in the parameter analysis subsection. After the
iterative residual correction for each recovered region, the final cloud removal result for the target
image can be acquired.

3. Experimental Results and Analyses

In order to evaluate the performance of the proposed SRARC method, we tested SRARC in
a series of experiments, in which images with different spatial resolutions and land-cover change
patterns were used for the accuracy assessment in both visual and quantitative manners. The compared
methods were localized linear histogram match (LLHM) [45], the modified neighborhood similar
pixel interpolator (MNSPI) [25], and weighted linear regression (WLR) [26]. Specifically, LLHM is a
linear radiometric adjustment method which was originally utilized for gap filling in flawed Landsat
Enhanced Thematic Mapper Plus (ETM)+ images, MNSPI combines spectro-spatial information and
spectro-temporal information for the prediction of cloudy pixels, and WLR reconstructs missing
pixels by weighted linear regression based on local similar pixels. The experiments included both
simulated-data experiments and real-data experiments.

3.1. Simulated-Data Experiments

In the simulated-data experiments, the cloud-contaminated target images were simulated by adding
simulated thick clouds to the cloud-free images, and the cloud-free images were then considered as
the ground truth in the accuracy evaluation. The metrics used to measure the differences between the
cloud-removed images and the ground truth for the accuracy evaluation were the correlation coefficient
(CC), the root-mean-square error (RMSE), the universal image quality index (UIQI), and the structural
similarity (SSIM) index. In addition, the non-reference metric NL (noise level) proposed in [46] for
single-image noise level estimation was also utilized for the accuracy evaluation. Note that the accuracies
of CC, RMSE, UIQI, and SSIM were calculated based on the recovered areas, while NL was estimated
over the whole image. Moreover, the results of SRARC were evaluated over the same recovered areas
as the compared methods. Table 1 lists the quantitative evaluation results for the three simulated cloud
removal experiments, and the cloud removal results of the different methods are shown in Figures 6–8.

Table 1. Accuracy evaluation results for the simulated cloud removal experiments. The bold values denote
the highest accuracies in each experiment, while the underlined values indicate the second-highest accuracies.

Method CC (↑) RMSE (↓) UIQI (↑) SSIM (↑) NL (↓)

Figure 6

LLHM 0.7195 0.0625 0.7054 0.7660 3.60E–03
MNSPI 0.4551 0.2386 0.4159 0.7624 4.93E–03
WLR 0.4912 0.3494 0.4651 0.7462 5.96E–03

SRARC 0.8240 0.0442 0.8228 0.7967 2.04E–03

Figure 7

LLHM 0.7512 0.0537 0.7417 0.7309 5.56E–03
MNSPI 0.7741 0.0435 0.7604 0.7281 6.21E–03
WLR 0.8016 0.0410 0.7915 0.7495 5.26E–03

SRARC 0.8248 0.0408 0.8244 0.7714 4.38E–03

Figure 8

LLHM 0.8789 0.0113 0.8778 0.9599 2.33E–03
MNSPI 0.9083 0.0093 0.9053 0.9616 2.26E–03
WLR 0.9077 0.0095 0.9074 0.9618 2.53E–03

SRARC 0.9195 0.0090 0.9192 0.9642 1.83E–03
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respectively. The cloud removal results of SRARC and WLR are better than those of LLHM and 
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Figure 6. The first simulated experiment results obtained with Beijing-2 Panchromatic and Multi-Spectral
(PMS) images. (a) Target image. (b) Auxiliary image. (c–f) are cloud removal results of LLHM, MNSPI,
WLR and SRARC, respectively. (g) Ground truth. (h–n) and (o–u) are zoomed-in views of the subset
regions marked in yellow and red in (a), respectively.
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bands (three visible bands and a near-infrared band) of urban areas, acquired on September 15, 2018, 
and September 5, 2018, respectively. In this experiment, the results of all the methods are satisfactory 

Figure 7. The second simulated experiment results obtained with Gaofen-2 Panchromatic and
Multi-Spectral (PMS) images. (a) Target image. (b) Auxiliary image. (c–f) are cloud removal results
of LLHM, MNSPI, WLR and SRARC, respectively. (g) Ground truth. (h–n) and (o–u) are zoomed-in
views of the subset regions marked in yellow and red in (a), respectively.

In the first simulated experiment (Figure 6), 4-m resolution Beijing-2 Panchromatic and
Multi-Spectral (PMS) images with a size of 1000 × 1000 × 4 over urban and water areas were
utilized as the experimental images. Note that significant land-cover changes can observed between the
target image and auxiliary image, which were acquired in October 2017 and October 2016, respectively.
We can see from the results in Figure 6 that the cloud removal results of LLHM have some color
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distortion and radiometric inconsistencies in the recovered areas. The results of MNSPI and WLR are
heavily affected by the produced noise and artifacts, and thus have a much higher NL than SRARC and
much lower CCs of 0.4551 and 0.4912 than SRARC (0.8240), as shown in Table 1. The results of SRARC
preserve the details transformed from the auxiliary image and have good spatial-spectral consistency,
and thus SRARC achieves the best results, in both the visual and quantitative evaluations.
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(MSI)bands. (a) Target image. (b) Auxiliary image. (c–f) are cloud removal results of LLHM, MNSPI,
WLR and SRARC, respectively. (g) Ground truth. (h–n) are zoomed-in views of the subset region
marked in red in (a).

The second simulated experiment (Figure 7) mainly involved phenological changes between the
target and auxiliary images, which were derived from 8-m resolution Gaofen-2 PMS images with a
size of 800 × 800 × 4. The target and auxiliary images were acquired in April 2016 and December
2015, respectively. The cloud removal results of SRARC and WLR are better than those of LLHM and
MNSPI, which have obvious color distortion and artifacts in the recovered areas. Likewise, noise and
artifacts occur in the results of WLR, which achieves a UIQI score of 0.7915, which is lower than that of
SRARC (0.8244). In this experiment, due to the better radiometric adjustment and detail preserving
ability, SRARC generally achieves the most satisfactory results among the different methods.

The temporal gap of the data in the third simulated experiment (Figure 8) was short, and only
a few radiometric differences and land-cover changes existed. The target and auxiliary images with a
size of 600 × 600 × 4 were derived from four 10-m resolution Sentinel-2 Multispectral Instrument (MSI)
bands (three visible bands and a near-infrared band) of urban areas, acquired on September 15, 2018,
and September 5, 2018, respectively. In this experiment, the results of all the methods are satisfactory
in the visual evaluation, and the acquired quantitative accuracies are much higher than in the first two
simulated experiments. Due to the complex land structures in the experimental images, the recovery
results of LLH, MNSPI, and WLR are still partially affected by color distortion and noise, while SRARC
achieves the best performance among the different methods, confirming the effectiveness of SRARC in
cloud removal for high-resolution images under complex land-cover conditions.
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3.2. Real-Data Experiments

The real-data experiments were conducted on images covered by real cloud as well as cloud
shadow. Two kinds of images with different spatial resolutions were used for the method evaluation in
a visual manner. Considering that the cloud removal results of MNSPI were similar to those of WLR
in the simulated experiments, and that the public code of WLR is implemented in a more effective
manner than MNSPI, only WLR was used for the comparison in the real-data experiments.

The first real-data experiment was conducted on Beijing-2 PMS images with a 4-m resolution.
The cloud-contaminated target image and the cloud-free auxiliary image were acquired on October
9, 2017, and October 11, 2016, respectively, and both contained four NIR-R-G-B bands with a size of
2678 × 4567 × 4. As shown in Figure 9, the red lines in the target image denote the areas of labeled cloud
and cloud shadow, and significant radiometric differences can be observed between the target and
auxiliary images. Both the WLR and SRARC methods successfully reconstruct the cloud-contaminated
areas in the target image, and acquire visually satisfactory results in both homogeneous urban areas
and heterogeneous areas which are mainly covered by vegetation. However, obvious noise and
artifacts can be observed in the cloud removal result of WLR, while the result of SRARC is clearer in
the recovered regions, especially in the complex urban areas, due to the better detail preserving ability.
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As shown in Figure 10, three temporally adjacent Sentinel-2 MSI images were used in the second
real-data experiment, in which all three images were covered by different degrees of cloud cover.
The images were acquired on August 16, September 5, and September 15 in 2019. The three images
had a size of 7000 × 7000 × 4, and only four 10-m resolution NIR-R-G-B bands were used in the
experiment. It can be seen that all the scenes acquired by the satellite imaging system are cloudy,
and thus cloud removal based on complementary temporal information is essential to composite clear
views of the areas of interest. In this case, cloud and cloud shadow masks of the three images were first
automatically generated by a cloud detection method based on multi-scale convolutional feature fusion
(MSCFF) [47]. The images acquired on September 5 and September 15 were then used to reconstruct
the contaminated areas, based on the complementary information in each image. Finally, the clouds in
the image acquired on August 16 were removed using the recovered image acquired on September 5
as the auxiliary image. It can be seen from the results shown in Figure 10 that the thick clouds and
cloud shadows in all three images are removed clearly and seamlessly, and only the image acquired on
September 5 is partially affected by haze. As shown in Figure 11, the spatial details in the recovered
results of SRARC are continuous, whereas noise and artifacts can be observed in the results of WLR,
which suggests that the SRARC method is more effective for the removal of large-area clouds.
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Note that the superiority of SRARC over WLR is more obvious in this experiment, due to the
larger missing areas when combining clouds and cloud shadows, as well as the fact that there is less
available complementary information in some areas, as the auxiliary image is also cloudy. Benefiting
from the strategies of regarding the recovered pixels of the current cloud region as cloud-free and
the pixel-by-pixel reconstruction from cloud boundary to center, SRARC has more advantages when
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dealing with large-area clouds and cloud shadows than WLR, which recovers cloud pixels completely
based on the cloud-free areas and in row-by-row order.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19 
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According to the results of the simulated experiments and the real-data experiments under
different circumstances, the results of LLHM often contain color distortion, especially when coping
with large-area clouds, and the accuracies of MNSPI and WLR are easily affected by the produced
noise and artifacts. The three compared methods show their respective advantages with regard to the
quantitive accuracy evaluation results in the three groups of simulated experiments. In contrast, we can
observe that SRARC is more effective at dealing with different land-cover change patterns, and can
acquire high-accuracy cloud removal results which have better radiometric consistency and spatial
continuity. Moreover, with the increase of the spatial resolution and the areas of clouds, the superiority
of SRARC over the other methods becomes more obvious.

3.3. Parameter Analysis

There are several key parameters in the SRARC method which can affect the reconstruction
accuracy for cloud-contaminated areas. In this subsection, the influences of these parameters on the
reconstruction accuracy are discussed, and then the recommended parameter settings are given.

The first parameter is the initial number N of pixels in a superpixel for SLIC superpixel
segmentation, where a large value of N will result in larger superpixels in the segmentation result.
Considering that heterogenous areas in high-resolution images are common, and that larger superpixels
are more likely to contain heterogenous pixels, our default setting of N was 50 for the high-resolution
images considered in this paper, which can acquire a balanced result between under-segmentation
and over-segmentation.

The radius of the window k for the stepwise adjustment affects the results of the radiometric
adjustment. Generally speaking, a smaller window radius brings more accurate correction results,
but it may also lead to radiometric distortion, especially in areas which have large spectral variations.
The most appropriate window radius can be determined by evaluating the reconstruction accuracy
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with the change of the window radius. According to our evaluation results shown in Figure 12a,
which were acquired based on the simulated experiments, a window radius in a range of 20–160
is recommended. Specifically, we empirically set the default window radius as 80 in the stepwise
adjustment. Note that the setting of a larger window radius is essential for cloud removal in medium-
and low-resolution images.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 19 
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In the process of residual correction, the iteration number of the residual correction is also related 
to the reconstruction accuracy of cloud-contaminated areas. The evaluation results shown in 12b 
reveal that the iteration of the residual correction contributes to the accuracy improvement, whereas 
the accuracy is slightly reduced when the iteration exceeds a certain threshold. According to our 
evaluation, three times residual correction achieves the best correction results, and was thus set as 
the default. 

3.4. Efficiency Analysis 

Taking the first simulated experiment as an example, in which the cloud-contaminated target 
image had a size of 1000 × 1000 × 4 and a cloud percentage of 23.44%, we evaluated the efficiency of 
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In the process of residual correction, the iteration number of the residual correction is also related
to the reconstruction accuracy of cloud-contaminated areas. The evaluation results shown in 12b reveal
that the iteration of the residual correction contributes to the accuracy improvement, whereas the
accuracy is slightly reduced when the iteration exceeds a certain threshold. According to our evaluation,
three times residual correction achieves the best correction results, and was thus set as the default.

3.4. Efficiency Analysis

Taking the first simulated experiment as an example, in which the cloud-contaminated target
image had a size of 1000 × 1000 × 4 and a cloud percentage of 23.44%, we evaluated the efficiency of
the proposed method on a laptop with an Intel Core i7-8500U CPU. The repeated test results indicate
that SRARC implemented in MATLAB language costs 38.7 seconds to complete the cloud removal
under such a situation, which can be considered as satisfactory. Note that the time cost of SRARC is
mainly related to the number of cloud-contaminated pixels in the target image, and a slightly longer
computation time will be required in cloud removal for fragmentary clouds than for large-area clouds
of equal pixels. Furthermore, with the implementation of SRARC using the more effective C/C++

language, the efficiency of SRARC could be further improved.

4. Discussion

Due to the significant spectral variations, abundant spatial details, and dynamic land-cover changes
in high-resolution images, the cloud removal methods based on local linear histogram matching usually
cannot acquire satisfactory results, in which color distortion occurs in local reconstructed areas, and the
results also show radiometric inconsistency. Moreover, the cloud removal results of the methods based
on similar pixel regression usually show good radiometric consistency, but they suffer from noise and
artifacts in the reconstructed areas, which leads to missing spatial details. As most of the cloud removal
methods proposed in the previous studies were developed for medium- and low-resolution images,
the results may suffer from radiometric inconsistency and missing spatial details when applying these
methods to high-resolution images, resulting in potential errors in the application of the generated
cloud-free high-resolution images.

Accordingly, in this paper, we have proposed a thick cloud removal method based on stepwise
radiometric adjustment and residual correction (SRARC) for high-resolution images. The SRARC
method makes full use of the complementary information from the auxiliary image to recover



Remote Sens. 2019, 11, 1925 16 of 19

cloud-contaminated areas in the target image, through a series of steps, including mask optimization,
stepwise local radiometric adjustment, and residual correction. Specifically, a mask optimization
procedure based on superpixel segmentation is applied to ensure the spatial continuity in the
reconstruction results. Moreover, stepwise radiometric adjustment is conducted to reconstruct
cloud-contaminated areas, which also preserves spatial details. The minor radiometric differences
between the reconstructed areas and cloud-free areas are then eliminated by the following residual
correction, finally achieving seamless reconstruction of the cloudy areas. The simulated and real-data
experimental results obtained in this study suggest that SRARC is an effective approach that can
achieve a better performance than the compared methods in terms of radiometric consistency and
spatial continuity, which makes it a promising approach for operational use.

Considering that only the radiometric brightness of the complementary temporal information
from the auxiliary image is corrected by SRARC and used to fill the cloud-contaminated areas,
cloud-contaminated areas in the target image cannot be accurately recovered under the condition
that abrupt land-cover changes have occurred between the target image and auxiliary image.
Furthermore, although the strategy of regarding the recovered pixels of the current cloud region as
cloud-free in the step of stepwise radiometric adjustment makes SRARC more effective in removing
large-area clouds, it may propagate potential error from the previous recovered pixels of the current
cloud region. Fortunately, the recovery results for the different cloud regions are free of influence from
each other, and the error can be restricted, to some degree, due to the setting of large local window
sizes and the use of a minimum number of valid pixels for recovery.

Therefore, as with most of the multi-temporal cloud removal methods proposed previously,
SRARC is more suitable for cloud removal in images which have a relatively short temporal interval
and no significant land-cover changes. For instance, SRARC could be used to generate high-quality
and spatio-temporally continuous satellite images to support high-resolution urban geographical
mapping at monthly/seasonal/yearly scales.

5. Conclusions

In this paper, with the aim of improving the cloud removal results in high-resolution satellite
images, which often suffer from the problems of radiometric distortion, noise and artifacts, we have
proposed a thick cloud removal method based on stepwise radiometric adjustment and residual
correction (SRARC). The experimental results reveal that the proposed SRARC method is effective
in removing the thick clouds in high-resolution satellite images. As a result of the radiometric
adjustment and spatial detail preservation ability, SRARC outperforms the other compared cloud
removal methods, suggesting that SRARC has the potential for routine use to support applications
based on high-resolution satellite images.

In our future study, multi-source data will be incorporated with the target image to allow
the proposed method to better cope with the reconstruction of cloud-contaminated areas suffering
significant land-cover changes. Furthermore, the proposed cloud removal method will be applied
to generate clear views of desired areas and dates, and to support urban land-use mapping with
time-series and high-resolution satellite images.
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