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Abstract: The quality of remotely sensed images is usually determined by their 
spatial resolution, spectral resolution, and coverage. However, due to limitations 
in the sensor hardware, the spectral resolution, spatial resolution, and swath width 
of the coverage are mutually constrained. Remote sensing image fusion aims at 
overcoming the different constraints of remote sensing images, to achieve the 
purpose of combining the useful information in the different images. However, the 
traditional spatial–spectral fusion approach is to use data in the same swath width 
that covers the same area and only considers the mutually constrained conditions 
between the spectral resolution and spatial resolution. To simultaneously solve the 
image fusion problems of the swath width, spatial resolution, and spectral 
resolution, this paper introduces a method with multi-scale feature extraction and 
residual learning with recurrent expanding. To discuss the sensitivity of 
convolution operation to different variables of images in different swath widths, 
we set the sensitivity experiments in the coverage ratio and offset position. We also 
performed the simulation and real experiments to verify the effectiveness of the 
proposed framework with the Sentinel-2 data, which simulated the different 
widths. 

Keywords: image fusion; multispectral image; residual network; convolutional 
neural network; recurrent expanding; multi-scale feature extraction 

________________________________________________________________________ 

1. Introduction 

With the rapid development of remote sensing technology, a pattern of joint 
multi-spatio-spectral Earth observation has been formed under different surface 
coverages and revisit cycles. However, due to the difference in the instrument 
design, platform height, data storage, and transmission, the spatial resolution, 
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spectral resolution, and swath width of the images restrict each other. Generally 
speaking, due to the limited amount of incident energy, a satellite system can usually 
only provide data with either a high spatial resolution but a small number of spectral 
bands, or with a large number of spectral bands but a reduced spatial resolution [1]. 
Specifically, those bands in the multi-channel images obtained by sensors such as 
the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 
sensors have different spatial resolutions. In addition, there is also a critical tradeoff 
between the swath width and the other sensor properties, including the spatial 
resolution and spectral resolution. To acquire wider-swath-width images, the 
Landsat Thematic Mapper (TM) sensor reduces the 30 m spatial resolution to 120 m. 
As for the SPOT and Gaofen-1 (GF-1) satellites, acquiring high spatial resolution 
images suffers from a small swath width of 60 km compared to the swath width of 
800 km in its wide-swath-width imaging mode. These limitations of the sensor 
properties mean that it is difficult for us to simultaneously observe the ground 
surface at both a fine resolution and a broad scale. Therefore, many researchers have 
developed fusion methods to improve these properties of the original images, to 
promote the performance of remote sensing applications. 

Image fusion technology, which is an important means of information 
integration in remote sensing, is often used to solve the problems caused by spatial 
and spectral limitations. By taking advantage of the complementary information of 
two images with different spatial resolutions and spectral resolutions, high spatial 
resolution (HR) images with a high spectral resolution can be synthesized [2,3]. The 
typical approach is spatial–spectral fusion, which has attracted extensive research, 
including component substitution methods [2–5], multi-resolution analysis methods 
[6–10], and model optimization based methods [11–17]. For example, researchers 
have used robust principal component analysis (PCA) to decompose multispectral 
images, and have used panchromatic images to incorporate spatial information into 
multispectral images [2]. Other researchers have introduced wavelet transform to 
decompose both the multispectral images and the panchromatic images and have 
then fused the different components based on certain rules, such as the weighted 
averaging method, finally reconstructing HR multispectral images [7]. In addition, 
Song et al. [18] proposed an image degradation model from SPOT5 to TM to improve 
the spatial resolution of the TM multispectral bands by dictionary learning. 

At present, deep learning is being gradually introduced to solve the spatial–
spectral fusion problem [19–22]. In these methods, a neural network is trained to 
extract the spatial and spectral features and then fuse them to obtain high spatial 
resolution and high spectral resolution (HRHS) images. However, for these spatial–
spectral fusion methods, the low spatial resolution (LR) image can only be well 
sharpened when the images cover the same area and the same spectral range. 

With the development of remote sensing satellites and the diversity of sensor 
imaging modes, there are two main challenges. Firstly, the different-band images in 
one multi-channel image have different spatial resolutions and non-overlapping 
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spectral regions [23]. The traditional spatial and spectral fusion method, which is 
limited to the same spectral range, has difficulty dealing with this problem. When 
the spectral range of the high and low-resolution images is not the same, injecting 
spatial information from an HR band into the low-resolution band is prone to 
spectral distortion, which makes it difficult to maintain the spectral information of 
the images. To deal with the above fusion problem, multi-band fusion has recently 
been proposed [24]. For example, Wang et al. [25,26] proposed a two-stage fusion 
method based on geostatistics, which first creates a single HR image from the 
available high spatial resolution images and then use area-to-point kriging to 
upscale the residuals, so as to improve the spatial resolution. However, these 
methods based on geostatistics cannot be easily extended to images produced by 
other sensors. Inspired by deep learning, Palsson et al. [23] proposed to fuse the 
Sentinel-2 images using a deep residual network. However, the existing methods 
cannot accurately express the response functions between different spectra when the 
image’s spatial resolution is enhanced, which causes spectral distortion. 

Secondly, the different-band images in different imaging modes have different 
spatial resolutions and swath widths [27]. Thus, a part of the image needs to be 
clipped because of the inconsistency of the image swath width and size, which leads 
to a waste of information. Faced with the fusion of images with different swath 
widths, the simple way is to interpolate the non-overlapping region, and then splice 
the fusion result with the overlapping region. However, with the under-utilization 
of the complementary information in the overlapping regions, the fused image 
suffers from insufficient high-frequency information and smoothed texture and 
edge regions. To address this issue, Song et al. [18] obtained a satisfactory wide 
spatial detail enhancement result by establishing a coupled sparse model of the 
overlapping region. In addition, Sun et al. [28] realized the effective fusion of EO-1 
Hyperion hyperspectral and Advanced Land Imaging (ALI) wide-swath-width 
multispectral images of the same spatial resolution by establishing a response 
relation model between the spectra. However, the spatial resolution and spectral 
resolution cannot be simultaneously enhanced. 

The spectral, spatial, and swath-width enhancement of remote sensing images 
has been considered in many studies. However, the above methods cannot 
simultaneously incorporate the spectral, spatial, and swath-width information into 
one model. To directly produce HRHS images with a wide swath width, sufficient 
spatial and spectral information should be extracted from the images, which can be 
viewed as a nonlinear mapping. Deep learning is a way of exploring the nonlinear 
mapping between data, which can easily fit an extremely complex nonlinear 
relationship through a nonlinear activation function. Because of this advantage, 
many scholars have applied deep learning to image fusion and super-resolution 
tasks. Among the well-known convolutional neural networks (CNNs) are the super-
resolution convolutional neural network (SRCNN) [29], the pansharpening by 
convolutional neural network (PCNN) [20], the very deep convolutional network 
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(VDSR) [30], ResNet [23], VDsen2 [31], and the deep residual pansharpening neural 
network (DRPNN) [22]. 

In this paper, we propose a deep convolutional neural network with a residual 
learning (DRCNN) based width-space-spectrum (WSS) fusion method to obtain HR 
multispectral images with both a high spectral resolution and wide swath width. By 
mining the nonlinear relationship between the HR and LR information in the 
overlapping areas and mapping the transformation of the different spectral 
information, an integrated framework is built for WSS fusion. The main 
contributions of this paper include: 

(1) A spatial–spectral joint learning algorithm for different-swath-width images 
based on a deep residual CNN is proposed. The deep learning algorithm provides 
more reliable prior spatial and spectral knowledge for the non-overlapping region, 
modeling by training the mapping between the spatial and spectral information in 
the overlapping area. 

(2) By exploring the sensitivity of the CNN to different-swath-width image 
coverage ratios and offsets, a recurrent expanding reconstruction strategy is 
established. Through the discussion of the effects of different variables on the 
network performance, a highly applicable reconstruction strategy is put forward. 

The rest of this paper is structured as follows. In Section 2, the overall framework 
of the proposed method and the recurrent expanding reconstruction strategy are 
introduced. In Section 3, the experiments and the results are discussed. Finally, in 
Section 4, a summary is given. 

2. Methodology 

2.1. Width-Space-Spectrum Fusion 

During the imaging process for remote sensing satellites, the sensor systems 
have an inevitable impact on the spatial degradation, the spectral resolution, and the 
swath width. Different sensors generate different resolution properties. To describe 
the relationships between the different observed images, the specific observation 
model is defined as follows: 

𝑌 = 𝑆_(𝐴𝑀𝑋) + 𝑁 (1) 𝑍 = 𝑆_(𝐵𝑁𝑋) + 𝑁 (2) 

where  𝑋 represents the original HRHS image with a wide swath width; 𝑌 
represents the high spatial resolution and low spectral resolution (HRLS) image with 
a narrow swath width; 𝑍 represents the low spatial resolution and high spectral 
resolution (LRHS) image with a wide swath width; 𝐴 and 𝐵 represent the spectral 
response transform factors of the different imaging modes; 𝑀 and 𝑁 represent the 
corresponding spatial degradation factors; 𝑆 is the field of view in different imaging 
modes, which can be treated as a mask; 𝐴𝑛𝑔𝑙𝑒_𝑌  is the view angle in the HR 
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imaging mode; 𝐴𝑛𝑔𝑙𝑒_𝑍 is the view angle in wide-swath-width imaging mode; and 𝑁 and 𝑁 represent the additive noise present in the real multispectral image. 

The WSS fusion problem is to reconstruct the approximate HR image 𝑋 with 
high spectral resolution and wide swath width using the LR image 𝑍 with a wide 
swath width and the HR image 𝑌 with a narrow swath width. For this fusion, due 
to the missing information caused by the different swath widths, the fusion result 
cannot be directly obtained by a simple linear method. The key to achieving WSS 
fusion is to learn the relationship between the narrow-swath-width HR image and 
the wide-swath-width LR image, which can be expressed as the following nonlinear 
problem: 

𝑋 = 𝑓(𝑌, 𝑍; 𝜃) (3) 

where 𝑓(∙; 𝜃) is the nonlinear model, which can be trained in the deep learning 
approach proposed in this paper, and 𝜃 is the parameter in the DRCNN, which 
represents the weights and biases in different convolution kernels and the hyper-
parameters in the network. The key to WSS fusion is to design a better network 
structure and solve the parameters, which can be expressed as: 𝜃 = 𝑎𝑟𝑔minఏ ‖𝑋 − 𝑓(𝑌, 𝑍; 𝜃)‖ଶଶ + αΩ(𝜃) (4) 

where α is a tradeoff parameter and Ω(∙) is a regularization term that prevents 
overfitting. In this paper, the weight decay term Ω(𝜃) = ଵଶ ‖𝜃‖ଶଶ is introduced as a 
regularized penalty function. 

From Equation (4), it can be concluded that the solution to the WSS fusion 
problem lies in the design of a framework suitable for the fusion problem and 
conducive to optimization. The network framework proposed in this paper is 
elaborated in Section 2.2. 

2.2. Network Framework 

As shown in Figure 1, the framework of the network proposed in this paper is 
to undertake WSS fusion by constantly expanding the image recursively. Based on 
the residual network, a width-space-spectrum residual network (WSSRN) model is 
proposed to extract the spatial features and spectral features with different 
resolutions and swath widths. This network expands the image by a few pixels at 
every iteration. It is worth noting that the weights of the network are shared between 
each iteration, which is good for network training. To fuse the HR and LR images 
with different swath widths, take Sentinel-2 for example. The LR image is first 
upsampled, and the HR image is then expanded to the same size as the upsampled 
LR image. The input images are then concatenated in turn, as shown in Figure 1, 
which allows images with the same resolution to be closer to better extract features. 
After feeding the images into the network, the multi-scale convolutional layers are 
used to extract the features from the images with different swath widths, which 
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consists of three convolution layers with sizes of 3 × 3 × 32, 5 × 5 × 32, and 7 × 7 × 32. 
To ensure the network can be easily optimized, a skip connection between the input 
LR image and the residual image is used. There are six convolution blocks between 
the skip connection and multi-scale convolutional layers, which are composed of a 
7 × 7 × 64 convolution layer followed by a Rectified Linear Unit (ReLU). After 
training such a network, the fused image can be continuously updated through a 
recurrent expanding strategy to finally obtain the HR and wide-swath-width 
multispectral image. 

 
Figure 1. The architecture of the proposed width-space-spectrum residual network (WSSRN) model. 

2.3. The Residual Convolutional Neural Network 

In this paper, the CNN differs from an ordinary neural network in that the 
pooling layer is removed, which causes the loss of HR information. The purpose of 
the convolution operation is to extract different features from the image. After the 
input image is convoluted by the convolution kernel, the feature map can be 
excavated by the non-linearization of an activation function, which is defined as 
follows: 

𝐹 = 𝑔൫𝑊 ∗ 𝐹ିଵ + 𝑏൯ (5) 

where 𝐹 represents the 𝑗-th feature map of the 𝑙 th layer, 𝐹ିଵ indicates the set of 
input feature maps corresponding to the 𝑗-th feature map, 𝑊 indicates the weights 
of the convolution kernel between the feature maps of the 𝑙 − 1-th layer and the 𝑗-
th feature map of the 𝑙-th layer, and 𝑏 represents the bias of the 𝑗-th feature map 
of the 𝑙-th layer. Here, 𝑔 means the rectified linear unit (ReLU), which is selected 
as the activation function. Its specific function expression is: 

𝑔(𝑥) = max(𝑥, 0) (6) 

After the convolutional layer and the activation function complete the feature 
extraction, the extracted features are further input into the reconstruction output 
layer, and the reconstruction output layer works as “fusion reconstruction” in the 
entire CNN, which is essentially a convolutional layer. Passing through the previous 
feature extraction work, the spectral features and the spatial features are distributed 
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in different channels, so it is necessary that a convolutional layer is used to fuse the 
features. 

For a traditional CNN, the deeper the network, the more parameters it has and 
the more powerful nonlinear presentation capabilities it obtains. However, as the 
network gets deeper and deeper, it will cause the gradient disappearance during the 
training process, which leads to the weights of the previous convolutional layers 
being unoptimized [32]. 

To solve this problem, this paper draws on the idea of a deep residual network. 
However, in this paper, the structure of the residual block in a deep residual network 
is not directly used, because such a structure makes the network too complicated. 
Only a single head-to-tail skip connection is used to increase the gradient in the 
network back-propagation. The loss function of the network is as follows: 

𝐿𝑜𝑠𝑠(𝜃) = ‖(𝑋 − 𝑍) − (𝑓(𝑌, 𝑍; 𝜃) − 𝑍)‖ଶଶ୬
୧ୀ  (7) 

where  𝑋  represents the 𝑖 -th band of the ground truth, and 𝑛  represents the 
number of the band. This connection can be called a “global skip connection”, which 
avoids the problem of the vanishing gradient in the network back-propagation. 
Furthermore, this skip connection also accelerates the convergence of the network, 
because, when the gradient is larger, the parameter optimization is faster. 

2.4. Multi-Scale Feature Extraction 

For the fusion task with data at different swath widths, the HR information in 
the overlapping area should be introduced into the non-overlapping region. As is 
well known, in CNNs, the convolutional layers are used to extract features. 
However, the features in remote sensing images appear at different-scale levels. For 
example, the geometric texture of a building is at a larger scale than the texture of 
vegetation. Therefore, inspired by [33,34], multi-scale convolutional kernels are used 
to extract the features from the remote sensing images at different scales, and the 
feature maps are then concatenated and input into the nonlinear mapping layer 
below. 

As shown in Figure 2, it can be seen that the different-scale convolution kernels, 
including 3 × 3, 5 × 5, and 7 × 7, act on the same image for the feature extraction. The 
image thus has different feature images after the different-scale convolution 
operations. It can be seen that a smaller convolution kernel (e.g., 3 × 3) focuses more 
on details, such as the vegetation canopy texture (i.e., the small-scale features). When 
using larger convolution kernels (e.g., 5 × 5 and 7 × 7), more main structures of the 
image are highlighted, such as the building structure, the hills, and the river. In 
addition, the multi-scale convolution also helps to inject HR information from the 
overlapping region into the non-overlapping region in the transition area between 
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the overlapping region and the non-overlapping region. In this way, the utilization 
rate of the features contained in the images with different swath widths can be 
greatly improved, to achieve better cross-width fusion results. 

  
(a) input image (b) extracted by 3×3 kernel 

  
(c) extracted by 5×5 kernel (d) extracted by 7×7 kernel 

Figure 2. The feature maps extracted by the multiple-scale convolution kernels. 

2.5. Recurrent Expanding Strategy 

In this paper, for image fusion with different swath widths, the LR data are first 
upsampled to the same resolution as the HR image. However, due to the difference 
of the swath widths, the non-overlapping area lacks the available HR information. 
It is, therefore, difficult for the network to enhance the resolution of the transition 
region between the HR and LR images in the fusion process. Even the obvious 
resolution difference boundaries and border artifacts may appear in the fused 
image. When the difference in the swath width is small, less missing information is 
introduced, and the artifacts are not as obvious. As the difference increases, the 
artifacts in the results become increasingly obvious. However, the images captured 
by satellites vary greatly in size, which means that the missing information in the 
non-overlapping area is more serious. If the test dataset is notably different from the 
training data, the accuracy of the fusion reconstruction will be decreased. 

In response to this problem, a strategy based on recurrent expansion is proposed 
in this paper. By using this strategy, when fusing images with different swath 
widths, only part of the image is fused in every iteration, which is similar to the 
missing data reconstruction problem. As shown in Figure 3, the input images are 
preprocessed and fed into the network to obtain the fusion results. At each iteration, 
an intermediate fused image expanded by five pixels is obtained and is regarded as 
a new HR image, which then undergoes expansion, cropping, concatenation, and 
fusion, to obtain a new fusion image in the next iteration. After multiple iterations, 
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the WSS fusion is achieved, and the size of the high spatial resolution image is 
expanded by 30 or more pixels based on the difference of the swath widths between 
the observed images. 

 

Figure 3. The process of the recurrent expanding strategy. Step 1: Expand the high spatial resolution 
(HR) data by several pixels assigned to 0. Step 2: Crop the low spatial resolution (LR)_upsample data 
to the same size and same coverage as the HR_input. 

3. Experimental Results and Analysis 

3.1. Datasets 

3.1.1. Training Datasets 

In this set of experiments, the original data used were Sentinel-2 satellite data. 
The Sentinel-2 satellite, launched by the European Space Agency (ESA), covers 
almost all of the major territories and islands, except for the Antarctic, and is capable 
of providing the image data required for almost all types of research related to 
human life. Thirteen bands with a 290 km swath width are sensed by the Sentinel-2 
satellite with a 10 day revisiting period. The spectral characteristics of the 13 bands 
and their resolutions are listed in Table 1; these characteristics are available for free 
from https://scihub.copernicus.eu/. Among them, the images of 10 m and 20 m 
resolution are the most widely used. 

Table 1. The band details for Sentinel-2. 

Band B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12 

Wavelength 
(nm) 

443 490 560 665 705 740 783 842 865 945 1380 1610 2190 

Width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180 

Resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20 

The training data selected were an image in the west of Hubei province, China 
acquired at September 15, 2017. The training data size was 90 × 90 km. This area is 
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rich in water, buildings, green areas, and other ground objects, as shown in Figure 
4. 

 
Figure 4. Coverage of the training data. 

3.1.2. Test Datasets 

The test data were selected from Nanjing, Jiangsu province, China, with a 900 × 
900 m coverage for each image. It should be noted that there is only one swath-width 
imaging mode on the Sentinel-2 satellite. In order to carry out the study of WSS 
fusion, a different-swath-width scenario was simulated. Only four 10 m resolution 
bands (4B_10) and six 20 m resolution bands (6B_20) were selected. For the training 
data, the original image was downsampled to the 4B_20 and 6B_40 images, so that 
the original 6B_20 image could be used as a reference. The 6B_40 image was also 
upsampled to 20 m to match the 4B_20 image. The images were then cut into a series 
of 30 × 30 image patches. In order to simulate the different-swath-width scenario, 
five rows of pixels were cut out around each HR band patch. For the test data, the 
image was clipped into multiple 90 × 90 patches, and then 15 rows of pixels around 
each 20 m resolution band patch were assigned zero values, as shown in Figure 5. 

  
(a) LR data (b) HR data 

Figure 5. Coverage of the test data. 

The aim of the WSS fusion experiment was to obtain an HRHS image with a 
wide swath width. 

3.2. Implementation Details 

3.2.1. Parameter Setting and Network Training 

Table 2 lists the network parameters of each layer of the WSSRN model. The 
proposed model was trained using the stochastic gradient descent algorithm as the 
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optimization method, with a momentum of 0.9 and a learning rate of 0.1, which are 
obtained empirically in many deep learning methods [30]. 

Table 2. The network configuration of the WSSRN model. 

 Configuration 

Layer 1_1 

Layer 1_2 

Layer 1_3 

Conv + ReLU: size=3, stride=1, pad=1 

Conv + ReLU: size=5, stride=1, pad=2 

Conv + ReLU: size=7, stride=1, pad=3 

9 Layers Conv + ReLU: size=7, stride=1, pad=3 

Layer 11 Conv + ReLU: size=3, stride=1, pad=1 

The Caffe [35] framework was used to train the proposed WSSRN model in a 
Windows 10 environment, with 16 GB RAM and one Nvidia RTX 2080 GPU. The 
total training time cost about 3 h 50 min, which is less than VDSR with about 15 h 51 
min and SRCNN with about 18 h 48 m under the same computational environment. 

3.2.2. Compared Algorithms and the Quantitative Evaluation 

For the image fusion of different swath widths, we mainly focus on the 
improvement of the spatial resolution and spectral preservation in the non-
overlapping areas. Since there is no HR information introduced in the non-
overlapping areas, this fusion problem can be regarded as a super-resolution 
problem, as described in [36]. To evaluate the effect of the spectral preservation and 
spatial enhancement, the bicubic algorithm, a CNN consisting of three convolutional 
layers (SRCNN), and a very deep convolutional network using skip connection 
(VDSR), were used as comparison methods. In the simulated-image experiments, 
the correlation coefficient (CC), peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), spectral angle mapper (SAM), and Erreur Relative Global 
Adimensionnelle de Synthèse (ERGAS) were employed as the quantitative evaluation 
indices. Among these indices, CC, SSIM, and PSNR are used to evaluate spatial 
similarity. Therefore, the higher the value, the better the result. Meanwhile, SAM is 
a spectral similarity index, and ERGAS is an integrated indicator, for which the 
lower the value, the better the result. 

3.3. Sensitivity Analysis for the Overlapping Region 

In WSS fusion, the HR information in the overlapping region plays an important 
role in the accuracy of the network. To obtain robust WSS fusion results, two factors 
corresponding to the relative position and size of the overlapping region were 
analyzed in the experiments. One was the ratio of the non-overlapping areas, called 
the coverage ratio, and the other was the starting pixel position of the overlapping 
areas of the two images, called the offset position. 
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3.3.1. Coverage Ratio 

In this experiment, the effect of the coverage ratio of the overlapping regions on 
the network fusion effect was explored. In the experimental process, the WSSRN 
was trained through the dataset with a coverage ratio of 0.4444. The coverage ratio 
is not too great or insufficient, which speeds up the network training and allows the 
network to learn how to handle data with different widths. 

Considering the impact of the offset position, the offsets of the training data and 
test data were set to zero. For the test data, the HR images were clipped into images 
of 40 × 40 to 80 × 80, as shown in Figure 6, so the coverage ratios were, respectively, 
0.1975, 0.3086, 0.4444, 0.6049, and 0.7901. 

   
(a) coverage of original data (b) 40 × 40 HR and 90 × 90 LR (c) 50 × 50 HR and 90 × 90 LR 

   
(d) 60 × 60 HR and 90 × 90 LR (e) 70 × 70 HR and 90 × 90 LR (f) 80 × 80 HR and 90 × 90 LR 

Figure 6. The data coverage in the coverage ratio experiment. 

The results of the different coverage ratios are displayed in Figure 7 by false 
color synthesis. It can be seen from the figure that a higher coverage ratio introduces 
more HR information, giving the results more spatial details. The experimental 
results with low coverage ratio show some blurred edges in the non-overlapping 
area. 

   
(a) ground truth (b) result of 40 × 40 HR (c) result of 50 × 50 HR 
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(d) result of 60 × 60 HR (e) result of 70 × 70 HR (f) result of 80 × 80 HR 

Figure 7. The results of the coverage ratio experiment. 

To better explore the influence of the coverage ratio on the fusion effect, the 
experimental results were quantitatively evaluated. The results of the different 
indices are plotted with the coverage ratio as the abscissa, as shown in Figure 8, and 
it can be seen that when the coverage ratio increases, the value of these evaluation 
indicators increases correspondingly, which shows that the fusion effect of the 
network is almost linearly positively correlated. When the coverage is low (e.g., 0.2 
or 0.3), the rate of the fusion effect decline slows. These phenomena indicate that the 
fusion effect of the network is indeed related to the coverage ratio, but the 
relationship is almost linear. 

   
(a)CC (b)PSNR (c)SAM 

  
(d)UIQI (e)ERGAS 

Figure 8. Quantitative evaluation results for different offset positions. 

3.3.2. Offset Position 

In image fusion, the utilization of the HR information in the overlapping area is 
expected to be maximized, so the coverage ratio of the input image is set to the 
maximum possible value, and thus cannot be optimized further. To obtain the best 
fusion effect, the offset position of the overlapping area relative to the wide-swath-
width LR image was also analyzed through an experiment. In this experiment, the 
WSSRN model first learned the best model through the dataset with an offset 
position of 0. 
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Considering the impact of the coverage ratio, the input LR data and the HR 
image size were fixed. For the test data, the input LR data size was fixed as 90 × 90, 
and the HR image size was fixed as 60 × 60, as shown in Figure 9. For the HR image, 
the offset position was selected as 0, 5, 10, 15, 20, 25, and 30. 

    
(a) Offset 0 (b) Offset 5 (c) Offset 10 (d) Offset 15 

   

(e) Offset 20 (f) Offset 25 (g) Offset 30 

Figure 9. The data coverage in the offset position experiment. 

Similarly, the five quantitative evaluation indicators were again used. The 
results are shown in Figure 10. It can be seen that the fusion effect is diminished once 
the test and training data offsets are inconsistent. From the visual performance 
apparent in Figure 11, it is clear that, except for the experimental result with the 0 
offset, there is a severe striped border effect on the other results. From this 
experiment, we can conclude that the CNN is very sensitive to the pixel rows of non-
overlapping regions when fusing data with different swath widths. The reason for 
this result is that the convolution operation needs to traverse the pixels, and when 
the convolution kernel spans different-swath-width images, the learned mapping is 
inconsistent with the test mapping, resulting in the striped border artifacts in the 
fused result. 

   
(a)CC (b)PSNR (c)SAM 
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(d)UIQI (e)ERGAS 

Figure 10. Quantitative evaluation results for different offset positions. 

    

(a) result with offset 0 (b) result with offset 5 (c) result with offset 10 (d) result with offset 15 

   
(e) result with offset 20 (f) result with offset 25 (g) result with offset 30 

Figure 11. Visual performance with different offsets. 

From the experimental results shown above, it can be seen that the fusion effect 
of the CNN for the data with different widths depends on the coverage ratio of the 
overlapping areas and the offset position in the training data. Furthermore, the 
influence on the fusion effect of the coverage ratio increases linearly and steadily, 
which will never lead to the unexpected white borders or details in the image, 
whereas the change caused by the offset position may result in spatial artifacts. 
Therefore, the offset position can be regarded as the more critical factor for the 
network proposed in this paper. During the training, the offset position can be 
increased to fuse more areas at a time. However, this has high hardware 
requirements and greatly increases the network optimization time. To give the 
fusion network a better generalization ability, a fixed number of pixels are 
reconstructed each time when the fusion is carried out by the proposed recurrent 
expanding strategy described in Section 2.5, which ensures that the offset of the 
training and the test data is the same. 

3.4. Simulated Experiment 
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In order to quantitatively compare the proposed WSSRN model with the other 
methods, the original Sentinel-2 data were downsampled to a 4 m resolution and a 
20 m resolution. In this way, the simulated experiment involved obtaining a 90 × 90 
six-band image with a 20 m resolution by fusing a 90 × 90 six-band image with a 40 
m resolution and a 60 × 60 four-band image with a 20 m resolution. The original 90 
× 90 six-band image with a 20 m resolution could then be used as a reference for the 
quantitative assessment. 

The results of the different methods are shown in Figure 12 (the overlapping 
area is framed by a dotted yellow line). It can be seen that SRCNN and VDSR show 
a certain effect in improving the spatial resolution in the visual performance, but 
their effect on high-brightness areas, as framed by red, is rather poor, and they 
cannot be well enhanced. There is also a visual sharpness that does not conform to 
the real situation. The fusion effect of the WSSRN model proposed in this paper is 
the best of all methods. More texture information is fused into the wide-swath-width 
image through the multi-scale feature extraction, and in the transition zone between 
the HR and LR images, due to the proposed recurrent expanding strategy, the acute 
change in resolution is alleviated. The results of the proposed WSSRN model are 
also more visually natural. 

 Ground truth Bicubic SRCNN VDSR WSSRN 
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Figure 12. Visual performance for the simulated experiment. Each row belongs to one band. From top 
to bottom: band 5, band 6, band 7, band 8a, band 11, and band 12. 

The quality of the fusion improved after using the WSSRN method (Table 3). For 
both spatial similarity and spectral preservation, the fusion framework proposed in 
this paper has certain advantages. The worst effect of all the methods is found for 
the interpolation method. In addition, due to the weak generalization ability of the 
Sentinel-2 imagery, SRCNN introduces a sharpening effect in the highlighted area. 

Table 3. Quantitative evaluation for the simulated experiment. 

Method Index Band 5 Band 6 Band 7 Band 8a Band 11 Band 12 

Bicubic 

CC 0.94  0.94  0.94  0.94  0.97  0.96  

PSNR 35.11  32.06  30.84  29.78  31.24  31.64  

SSIM 0.89  0.86  0.85  0.84  0.89  0.88  

SAM 1.76  

ERGAS 1.55  

SRCNN 

CC 0.95  0.95  0.95  0.96  0.98  0.97  

PSNR 35.27  32.80  31.67  30.64  31.92  31.24  

SSIM 0.92 0.90  0.89  0.89  0.93  0.92  

SAM 2.18  

ERGAS 1.4868  

VDSR 

CC 0.97  0.96  0.96  0.96  0.98  0.98  

PSNR 37.35  34.30  32.89  31.95  34.50  34.62  

SSIM 0.93  0.92  0.91  0.91  0.94  0.93  

SAM 1.48  

ERGAS 1.15  
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WSSRN 

CC 0.97  0.97  0.97  0.97  0.99  0.98  

PSNR 37.23  34.98  33.70  32.88  34.71  34.60  

SSIM 0.95  0.94  0.94  0.94  0.95  0.94  

SAM 1.57  

ERGAS 1.09  

3.5. Real-Data Experiment 

The WSS fusion was also implemented in the real resolution of Sentinel-2 data 
by simulating a multi-width scenario. We get a HRLS data covering a 1.2 × 1.2 km 
area and an LRHS data covering a 2 × 2 km area in Wuhan city, Hubei province, 
China out of the training data and the trained network, using a 5 pixel offset position 
and a 0.4444 coverage ratio. For the real-data experiment, since Sentinel-2 data with 
a 10 m resolution cannot be acquired, a quantitative assessment is impossible, and 
only a rough judgment on the fusion effect of the image can be made from the visual 
performance. Figure 13 shows the change of the false-color synthesis and grayscale 
image of three 20 m resolution bands with the worst fusion effect before and after 
the real-data experiment. 

Because VDSR is much better than SRCNN in its super-resolution, only VDSR 
is compared with the proposed WSSRN model. Comparing Figure 13a,f, it can be 
seen that the swath width of the narrow-swath-width image has increased after the 
fusion, and, at the same time, the spectral resolution of the new HR image is also 
improved, which is consistent with the original LR multispectral image (original 
band 5, band 6, band 7, band 8a, band 11, and band 12). As can be seen from the six 
bands before and after fusion, the spatial resolution of the fused image is greatly 
enhanced. Looking at the results of band 8a, band 11, and band 12, it can be found 
that the spatial enhancement is obvious, not only in the central overlapping area, but 
also in the non-overlapping area. Compared with Figure 13d,e, the result of WSSRN 
contains more texture information than the result of VDSR. Overall, the real-data 
experiment confirms that the proposed WSSRN model and recurrent expanding 
strategy can effectively consider the constraints between the spectra, space, and 
swath width, and can fuse them simultaneously to obtain a good result. 

   

(a) (b) (c) 
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(d) (e) (f) (g) 

    
(h) (i) (j) (k) 

Figure 13. Visual performance before and after fusion. (a) The narrow-swath-width HR data. (b) 
False-color synthesis of band 5, band 6, and band 7 before fusion. (c) False-color synthesis of band 8a, 
band 11, and band 12 before fusion. (d,e) The results of bicubic. (f,g) The results of SRCNN. (h,i) The 
results of VDSR. (j,k) The results of WSSRN. 

4. Discussion 

The traditional method of using LRHS data with wide swath width and the 
HRLS data with narrow swath width is that the overlapped areas of data can be 
fused by spatial–spectral fusion first, and then the non-overlapped areas can be 
reconstructed by super-resolution. Finally, they are spliced together to obtain HRHS 
data. In this way, it is possible to achieve the WSS fusion and utilize all HR and LR 
data at the same time, but it is not clear whether the maximum utilization of the HR 
data has been achieved. 

To discuss whether the WSSRN can use HR data to enhance the spatial 
resolution of non-overlapping areas while fusing the overlapping areas compared 
to traditional splicing methods, the central areas of the super resolution methods 
were replaced by the central area of our WSSRN, because HR data only covers 
central areas, which are shown in Figure 14. 
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 Ground truth Bicubic SRCNN VDSR WSSRN 

     

     

     

     

     

     

Figure 14. Visual performance after the replacement. Each row belongs to one band. From top to 
bottom: band 5, band 6, band 7, band 8a, band 11, and band 12. 

The overlapping area is framed by a dotted yellow line. Due to the insufficient 
extraction of spatial detail information, when the overlapping region is replaced 
with the image patch with rich HR information, the results fused by the bicubic, 
SRCNN, and VDSR methods show a poor fusion effect in the surrounding area. In 
addition, the results of VDSR show a great difference in the fusion effect of the 
different bands, so it is difficult to use the data generated by this method in practical 
applications. However, the performance of the WSSRN is balanced. 
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Table 4. Quantitative evaluation for the simulated experiment with the same center image. 

Method Index Band 5 Band 6 Band 7 Band 8a Band 11 Band 12 

Bicubic 

CC 0.9587  0.9647  0.9642  0.9674  0.9811  0.9735  

PSNR 36.51  33.89  32.69  31.77  33.16  33.39  

SSIM 0.9373  0.9254  0.9194  0.9173  0.9372  0.9254  

SAM 1.59  

ERGAS 1.25  

SRCNN 

CC 0.9624  0.9697  0.9705  0.9727  0.9842  0.9748  

PSNR 36.57  34.31  33.12  32.12  33.37  32.92  

SSIM 0.9456  0.9392  0.9359  0.9345  0.9501  0.9384  

SAM 1.85  

ERGAS 1.24  

VDSR 

CC 0.9656  0.9715  0.9720  0.9744  0.9864  0.9789  

PSNR 37.35  34.62  33.66  32.77  34.66  34.45  

SSIM 0.9472  0.9412  0.9366  0.9352  0.9535  0.9415  

SAM 1.60  

ERGAS 1.11  

WSSRN 

CC 0.9646  0.9724  0.9719  0.9747  0.9868  0.9796  

PSNR 37.23  34.98  33.70  32.88  34.71  34.60  

SSIM 0.9457  0.9421  0.9367  0.9362  0.9538  0.9423  

SAM 1.57  

ERGAS 1.09  

As shown in Table 4, we can see that the indices for VDSR and SRCNN are 
significantly improved after replacement, indicating that the central part contains 
enough HR information. It is, however, clear from the evaluation that the result of 
the proposed method are still better than those of the other algorithms, which 
indicates that the introduction of multi-scale feature extraction combined with the 
recurrent expanding strategy can effectively inject the HR information of the central 
overlapping area into the surrounding area to improve the final fusion results. From 
the experimental results, it can be concluded that the proposed WSSRN model can 
effectively fuse data with different widths, different spatial resolutions, and different 
spectral resolutions. 
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5. Conclusions 

In this paper, a multi-scale residual CNN was proposed to deal with remote 
sensing image fusion problems with different swath widths. This represents an early 
attempt to incorporate swath width, spatial resolution, and spectral resolution into 
one network to simultaneously achieve multi-band fusion and swath-width 
enhancement. In this process, how the CNN deals with the sensitivity of the 
variables between different-width data was explored by experiments, and then a 
step-by-step reconstruction method based on a recurrent expanding strategy was 
proposed. By exploiting and transferring the HR information of the central 
overlapping area from the different swath-width images, the proposed framework 
can effectively improve the resolution of the non-overlapping regions. The 
experiments showed that the WSSRN can achieve a better spatial resolution 
improvement in the surrounding non-overlapping area without HR information 
than the current single-image super-resolution methods. 

Moreover, there are several limits in the proposed WSSRN. Although the spatial 
resolution of the surrounding non-overlapping area without HR information can be 
enhanced by WSSRN, it still seems to be blurred, and if the spatial resolution 
difference between the HR data and LR data is too large, the proposed WSSRN will 
be greatly affected. In our future work, we will consider introducing an attention 
module into the neural network and combining a variational model with deep 
learning to further improve the spatial enhancement. 
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