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Abstract— In the field of spatial–spectral fusion, the varia-
tional model-based methods and the deep learning (DL)-based
methods are state-of-the-art approaches. This paper presents a
fusion method that combines the deep neural network with a
variational model for the most common case of spatial–spectral
fusion: panchromatic (PAN)/multispectral (MS) fusion. Specif-
ically, a deep residual convolutional neural network (CNN) is
first trained to learn the gradient features of the high spatial
resolution multispectral image (HR-MS). The image observation
variational models are then formulated to describe the rela-
tionships of the ideal fused image, the observed low spatial
resolution multispectral image (LR-MS) image, and the gradient
priors learned before. Then, fusion result can then be obtained
by solving the fusion variational model. Both quantitative and
visual assessments on high-quality images from various sources
demonstrate that the proposed fusion method is superior to all
the mainstream algorithms included in the comparison, in terms
of overall fusion accuracy.

Index Terms— Deep learning (DL), gradient network,
model-based optimization, spatial–spectral fusion.

I. INTRODUCTION

SPATIAL–SPECTRAL fusion [1] is an important approach
in remote sensing image fusion. It is aimed at obtaining

a fused image with both high spatial and high spectral resolu-
tions. Classic spatial–spectral fusion methods include panchro-
matic (PAN)/multispectral (MS) fusion, PAN/hyperspectral
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(HS) fusion, and MS/HS fusion. Among them, PAN/MS
fusion, which is also called pansharpening, is the most com-
mon case, and aims at integrating the geometrical details of
the high spatial resolution panchromatic image (HR-PAN) and
the rich spectral information of the low spatial resolution
multispectral image (LR-MS) to obtain a high spatial res-
olution multispectral image (HR-MS) [2]. To date, a large
number of PAN/MS fusion methods have been proposed,
which can be generally divided into four major branches [3]:
1) the component substitution (CS)-based methods; 2) the mul-
tiresolution analysis (MRA)-based methods; 3) the variational
model-based methods; and 4) the deep learning (DL)-based
methods.

The CS-based methods are the simplest and the most
widely used methods in PAN/MS fusion [3]. The traditional
understanding of this approach is to first project the upsampled
LR-MS image into a new space. The component representing
the spatial information is then replaced by the HR-PAN image.
The fused image is obtained by a final inverse projection. The
representative methods in this class include the intensity–hue–
saturation (IHS) methods [4], the principal component analy-
sis (PCA) methods [5], the Gram–Schmidt (GS) methods [6],
and the adaptive GS (GSA) methods [7]. Unfortunately, the
traditional methods of this class can produce significant spec-
tral distortions when rendering the spatial details [8]. The
many advanced CS-based pansharpening methods proposed in
recent years have changed this situation, and they perform well
in both the spatial and spectral fidelity [9]–[12]. For example,
the data fitting method proposed by Xu et al. [12] was found
to be effective in reducing spectral distortion, without blurring
the spatial details.

Differing from the CS-based methods, the MRA-based
methods produce fewer spectral distortions in the fused image,
but they are sensitive to the spatial distortions. In general,
this method first separates the high-pass information and low-
pass information of images by wavelet transform, Laplacian
pyramid, etc., and then injects the spatial structure information
extracted from the HR-PAN image into the upsampled LR-MS
image to obtain the fused image. Examples of this type of
method include the high-pass filter (HPF) [13], decimated
wavelet transform (DWT) [14], smoothing filter-based inten-
sity modulation (SFIM) [15], and the generalized Laplacian
pyramid with modulation transfer function (MTF) matched
filter (MTF-GLP) [16]. Due to the widespread use and high
efficiency of the CS-based methods and the MRA-based
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methods, they can be considered as reference state-of-the-art
algorithms for pansharpening [8]. However, neither of these
approaches set up an explicit relation model between the
observed images and the desired images.

The variational model-based were developed after the
CS-based methods and the MRA-based methods, and con-
sidered as a second-generation models [17].The variational
model-based methods regard the fusion process as an ill-posed
inverse optimization problem and construct the energy function
based on the HR-PAN image, the LR-MS image, and the ideal
fused image. The construction is usually based on observation
models [18]–[20] and the sparse representation [21], [22].
An iterative optimization algorithm, such as the gradient
descent algorithm [23], the conjugate gradient algorithm [24],
the split Bregman iteration algorithm [25], or the alternating
direction method of multipliers (ADMM) algorithm [26]–[29],
is then used to solve the fusion model to obtain the fused
image. Due to the solid mathematical foundation and the strict
logic system of this kind of methods, the variational model-
based methods generally produce precise fusion results. How-
ever, these methods are usually very sensitive to the unavoid-
able inaccuracies of the adopted observational model [30].
The linear simulation from the observed and fusion images
is still a limitation and cannot fully describe the potentially
complex relationship between the observed and fusion images.
For instance, according to the spectral response of recent
spaceborne sensors, no obvious relationship exists between
the PAN and MS input modalities, and such a relationship
is certainly not linear [1]. Using the linear simulation between
the desired HR-MS image and the observed HR-PAN image
would thus restrict the fusion quality.

With the specific capability of feature extraction and learn-
ing [31], DL tends to deliver a promising performance in
describing the nonlinear relationship between data, which have
been applied to various remote sensing problems [32]–[36].
The DL-based pansharpening methods have been proposed in
recent years and can be regarded as another new branch of
the PAN/MS fusion methods [3]. In general, the DL-based
pansharpening methods train a network model to learn the
mapping between the LR-MS image, the HR-PAN image, and
the ideal HR-MS image, and then obtain the fused image by
inputting the LR-MS image and the HR-PAN image into the
learned network model. Masi et al. [37] stacked the HR-PAN
image with the upsampled LR-MS image to form an input
volume and used a convolutional neural network (CNN) to
learn the mapping between the input volume and the HR-
MS image. Wei et al. [38] adopted deep residual learning
to learn the mapping. Yuan et al. [39] proposed a multiscale
CNN for PAN/MS fusion, where each layer was constituted
by filters with different sizes for multiscale features. It is well
known that the fusion methods of pansharpening make tradeoff
between the spatial enhancement and the spectral fidelity. The
DL-based methods usually achieve superior spectral fidelity,
which means that the spatial enhancement in the fused result is
insufficient, that is to say, a more or less fuzzy result will occur.

As discussed above, on the one hand, the nonlinear mapping
capacity of the DL-based methods can make up for the defi-
ciency of the variational model-based approach; on the other

hand, the variational model-based methods have strong spatial
enhancement capabilities, unlike the DL-based methods. It is
therefore of interest to combine a DL-based method with a
variational model-based fusion method.

In this paper, we propose a fusion mothed that combines
a deep residual gradient CNN with a variational model-based
fusion method. Specifically, a deep residual gradient CNN is
first trained to generate the gradient information of the HR-MS
image. The generated gradient priors are then plugged into
a variational model-based optimization method, which can
simultaneously utilize the precise characteristics of the varia-
tional model-based method and the feature learning capacity
of DL to obtain a high-quality fusion performance.

The rest of this paper is organized as follows. Section II
gives a detailed description of the proposed method.
In Section III, the experiments and discussions are presented.
The conclusions and future research directions are summarized
in Section IV.

II. PROPOSED METHOD

A. Variational Model-Based Fusion Framework
In general, the energy function of the variational model-

based spatial–spectral fusion methods can be summed up
as three terms: 1) the spectral fidelity model; 2) the spatial
enhancement model; and 3) the prior model. This can be
generally represented as the following expression:

E(X) = pspectral(X, Y) + pspatial(X, Z) + pprior(X) (1)

where X denotes the ideal fused image, Y denotes the high
spectral resolution but low spatial resolution image, and Z
denotes the high spatial resolution but low spectral resolution
image. More specifically, in PAN/MS fusion, X ∈ RMN×S

represents the desired HR-MS image; M , N , and S are the
width, the height, and the band number of the ideal image. Y ∈
R

mn×S denotes the LR-MS image, and Z ∈ R
MN×1 denotes

the HR-PAN image. M/m is the spatial resolution ratio of the
LR-MS image to the HR-MS image.

The first term is the spectral fidelity model, which represents
the relationship between the ideal fused image and the LR-MS
image. The second term is the spatial enhancement model,
which relates the ideal fused image to the HR-PAN image.
The last term is the regularization term that imposes con-
straints on the ideal fused image, where Laplacian priors [40],
Huber-Markov priors [18], total variation (TV) priors [41],
a nonlocal priors [42], and low-rank priors [43] have been
proposed in the many variational model-based PAN/MS fusion
methods.

B. Combining Deep Learning and Variational Model

The existing papers that have combined DL and varia-
tional model-based optimization have mainly trained a set of
fast and effective regularization terms by DL, such as the
denoisers [31]. However, the spatial–spectral fusion focuses
on mining and integrating the high-resolution information into
the desired image, meaning that it is reasonable to incorporate
a DL-based spatial enhancement term into the variational
model-based methods. In general, the spatial enhancement
term is constructed based on two assumptions. The first
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Fig. 1. Flowchart of the proposed method. (1) Upsampling process of the LR-MS image. (2) Stack the upsampled LR-MS image and the HR-PAN image
in the spectral dimension first, and then obtain the horizontal and vertical gradients of the stacked volume. (3) Select the gradient of the HR-MS image from
the stacked gradients. (4) Construct the fusion variational model with the original LR-MS image and the gradients of the HR-MS image learned from the
gradient CNN.

assumes spectral degradation between the HR-MS image and
the HR-PAN image, i.e., the HR-PAN image is assumed
to be a linear combination of the various bands of the
HR-MS image [18], [44]. The second assumes that the spa-
tial structures of the ideal HR-MS image are approximately
consistent with the HR-PAN image [30], including gradient
features [45], [46] and wavelet coefficients [47]. In the first
assumption, a complex nonlinear relationship exists between
the HR-PAN image and the spectral bands of the HR-MS
image [1], which is unsuitable to express as a linear function.
In the second assumption, a consistency constraint fidelity term
is usually used to retain the high spatial information such as
gradient features. The relationship between the gradients of the
HR-PAN image and the HR-MS image can also be nonlinear
since the gradients are usually obtained by linear operators on
the images. Therefore, nonlinearity can be more suitable to
describe the relationship of the images’ spatial structures.

With the capability in feature extraction and mapping learn-
ing, DL has great potential to model this complex nonlinear
relationship [48]. It is therefore of interest to integrate DL
into the variational model construction. In this paper, we train
the mapping from the gradient of the HR-PAN image and the
LR-MS image to that of the HR-MS image via a deep residual
CNN, as the gradient features can reflect the spatial structures
in images most directly. We then construct a variational model
based on the learned gradient guidance. Details are provided
in Fig. 1.

1) Gradient Generation Using the Deep Residual CNN:
Instead of directly mapping the HR-PAN image and the
LR-MS image to the HR-MS image, we stack the gradient
of the HR-PAN image and that of the upsampled LR-MS

image in the spectral dimension to form the input volume of
the proposed network. On the one hand, using the gradient
directly makes the goal of the network more clear, which is to
obtain accurate spatial structures of the HR-MS image, i.e., the
gradient. On the other hand, most pixel values in the gradient
image will be very close to zero, and the spatial distribution of
the feature maps should be very sparse, which can transfer the
gradient descent process to a much smoother hyper-surface of
loss to the filtering parameters, as in residual learning [34].

Instead of directly mapping the input volume to the gradient
of the ideal HS-MS image, we utilize the popular residual
learning strategy [49] and map the input gradient volume to the
gradient residual volume. The residual learning strategy was
first proposed to solve the degradation of training accuracy
with increasing network depth [49]. It is assumed that if
the optimal function is closer to an identity mapping, it is
easier to learn the residual mapping than the original identity
mapping. Different from the residual network [49] that utilizes
many residual units, the proposed deep residual CNN uses one
residual unit to predict the gradient residual image. Note that,
prior to the residual network [49], the strategy of learning
the residual image has been utilized in many tasks [50], [51].
Furthermore, when combined with mapping the gradient, the
residual learning strategy further improves the sparsity of the
network, which can boost the learning performance.

2) Architecture of the Deep Residual Gradient CNN: A
general CNN architecture is adopted in this paper (see the deep
residual gradient CNN part in Fig. 1). Inspired by the deep
residual network for image denoising (DNCNN) [31], this
paper presents a specific improvement of the architecture for
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Fig. 2. Architecture of the proposed deep residual gradient CNN network.

Fig. 3. Loss curves of deep residual gradient CNN and deep plain gradient
CNN.

the task of gradient training. Structural details of the network
can be seen in Fig. 2.

For better understanding the architecture of the proposed
deep residual gradient CNN, two stacks are first introduced.
Stack-1 is the stack of the upsampled LR-MS image and the
HR-PAN image in the spectral dimension. Stack-2 is the stack
of the ideal HR-MS image and the HR-PAN image in the
spectral dimension. The input of the proposed network is the
gradients of stack-1 in both horizontal and vertical directions.
As displayed in the input volume of Fig. 2, the blue boxes
represent gradients of the HR-PAN image; the yellow boxes
represent gradients of the upsampled LR-MS image.

The output of the proposed CNN is the gradient residual
image between the gradient of stack-1 and the gradient of
stack-2. As displayed in the output volume of Fig. 2, the
orange boxes represent the residual image between the gra-
dient of the HR-MS image in stack-2 and the gradient of the
upsampled LR-MS image in stack-1. The blue boxes represent
residual images between the gradients of the HR-PAN image
in stack-2 and stack-1, respectively. The same size between
the output and the input makes it convenient to calculate.

To illustrate the superiority of the residual learning strategy,
Fig. 3 shows the comparison of the loss curve of the proposed
deep residual gradient CNN and the loss curve of deep plain
gradient CNN. The architecture and input of the plain network
are the same as that of the residual network, but the output
is different. The output of the plain network is the gradient
image of stack-2 in both horizontal and vertical directions,
while the output of the residual network is the gradient residual
image. The network models are trained on QuickBird images.
As clearly displayed in Fig. 3, the adopted residual learning

strategy not only helps to speed up the convergence but also
leads to lower training errors.

As shown in Fig. 2, the proposed residual CNN
has 17 blocks, which consists of three types.

1) Conv + ReLU, for block 1, 64 filters of size
3 × 3 × (2S + 2) is first employed to generate 64 feature
maps, and then the ReLU is used on the generated
feature maps, where S denotes the band number of the
original LR-MS image.

2) Conv+ReLU, for blocks 2–16, 64 filters of size 3×3×64
and the ReLU are utilized.

3) Conv + Loss, for the last block, (2S + 2) filters of size
3×3×64 is used to obtain the output. The mean square
error MSE) is used as the loss function

loss = 1

2C

C∑

k=1

‖ f (Ink) − (Trk − Ink)‖2
F (2)

where In is the input gradient, i.e., the gradient of
stack-1 in horizontal and vertical directions. Tr is the
ground truth gradient, i.e., the gradient of stack-2 in
horizontal and vertical directions. Tr − In is the label
data of the proposed network. f (·) is the mapping
process, f (Ink) means the output of the CNN, and C
represents the training image (patch) pairs in a mini-
batch, which is set 128 in this paper.

C. Learned Gradient Guidance-Based Fusion Model

The proposed fusion method combines the deep residual
gradient CNN with the variational model-based framework.
Specifically, the method includes three main steps. First,
a deep residual gradient CNN is trained to obtain the gradient
information of the HS-MS image. Variational model-based
optimization is then conducted using the LR-MS image, the
gradient priors, and the ideal fused image. Finally, an iterative
optimization algorithm is used to solve the fusion model. Fig. 1
is the flowchart of the proposed method. As displayed in Fig. 1,
a volume is first obtained by stacking the bicubic-upsampled
LR-MS image and the LR-PAN image in the spectral dimen-
sion. The horizontal and vertical gradients of the stacked
volume form the input volume of the deep residual gradient
CNN. The output of the deep residual gradient CNN is the
gradient residual image. By adding the input and output of
the network, the gradient priors of the HR-MS image can be
obtained. Next, the energy function of the fusion model is
constructed by using the original LR-MS image, the gradient
priors of the HR-MS image, and the ideal fused image. Finally,
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an iterative optimization is used to solve the energy function
and obtain the fused image.

The energy function constructed in the proposed method
can be written as

X̂ = arg min
X

1

2
||Y − H X ||2F + λ

2

2∑
j=1

||∇ j X − G j ||2F

+ μ

2
{|| QX||2F }. (3)

In the first term, H ∈ R
mn×MNis the downsampling and blur-

ring matrix. The spectral fidelity model is constructed based
on the assumption that the observed LR-MS image can be
obtained by blurring, downsampling, and the noise operators
performed on the HR-MS image. In the second term, ∇ j ∈
R

MN×MN with j = 1, 2 means the global first-order finite
difference matrix in the horizontal and vertical directions,
respectively. G denotes the gradient images of the HR-MS
image learned through the deep residual gradient network,
G1 ∈ R

M N×S and G2 ∈ R
M N×S represents the horizontal and

vertical directions. It is assumed that the gradient of the ideal
image is consistent with G. The third term is the common
Laplacian prior model, where Q ∈ R

MN×MN indicates the
Laplacian matrix. λ and μ are adjustable parameters used
to balance the relative contribution of the three terms. The
variational model is associated with a quadratic regularized
least-squares problem, which can be further written as

HT H + λ

2∑
j=1

∇T
j ∇ j + μ QT QX = HT Y+ λ

2∑
j=1

∇T
j G j .

(4)

This function is difficult to solve due to its large dimensions.
An iterative optimization algorithm is therefore selected to
solve the problem. In this paper, the preconditioned conjugate
gradient (PCG) method is selected due to its fast convergence
and high efficiency. The solution can be achieved by invoking
the PCG function in the MATLAB.

III. EXPERIMENTS AND DISCUSSION

To verify the effectiveness of the proposed method,
both simulated and real-data experiments are performed,
as described in the following. The proposed method
is compared with five mainstream algorithms from dif-
ferent branches: adaptive intensity–hue–saturation (AIHS)
fusion method [52], MTF-GLP with high-pass modulation
(HPM) injection model algorithm (MTF-GLP-HPM) [53],
the two-step sparse coding model (TSSC) [21], the
deep residual pansharpening network (DRPNN) [38], and
DNCNN [31]-based pansharpening. In order to eliminate the
effect of the different network structures, the experimen-
tally designed DNCNN-based pansharpening has a similar
network structure to the gradient network in the proposed
fusion method. Among the five comparison algorithms, AIHS
belongs to the CS-based family, MTF-GLP-HPM belongs
to the MRA-based branch, TSSC belongs to the variational
model-based methods, and the last two are DL-based methods.

To quantify the accuracy of the fusion results, four indices
are used in this paper: the relative dimensionless global error

in synthesis (ERGAS), the spectral angle mapper (SAM), the
Q metric, and the peak-signal-to-noise-ratio (PSNR).

1) Train Data Sets: Two deep residual gradient CNN mod-
els are trained for the QuickBird sensor and the WorldView-2
sensor, respectively. When training the QuickBird gradient
network model, three LR-MS images with a size of 5200 ×
4400 × 4, 1000 × 1000 × 4, and 3600 × 1000 × 4, and three
HR-PAN images with a size of 20 800 ×17 600, 4000 ×4000,
and 14 400×4000, obtained by the QuickBird sensor, are used
to obtain 102 400 patches for training and 8960 patches for
validation. The size of each patch is 40 × 40 × 10. When
training the WorldView-2 gradient CNN model, three LR-MS
images with a size of 3500 × 3500 × 8, 2800 × 3700 × 8, and
3200 × 2800 × 8, and three HR-PAN images with a size of
14 000×14 000, 11 200×14 800, and 12 800×11 200, obtained
by the WorldView-2 sensor, are used to obtain 51 200 patches
for training and 3840 patches for validation. The size of the
patches is 40×40×18, and the batchsize used in both network
models is 128.

2) Test Data Sets: Four data sets are employed in the
simulated and real-data experiments, as follows. The gray
values of each image are all normalized to [0, 1].

1) The first data set is made up of QuickBird images, which
are cropped to 250 × 250 × 4 to obtain the LR-MS
images and 1000 × 1000 to obtain the HR-PAN images,
respectively. The spatial resolutions of the HR-PAN
images and the LR-MS images are 0.61 and 2.44 m,
respectively. There are 12 pairs of images with different
textures, which are used in the simulated-data experi-
ments.

2) The second data set is made up of WorldView-2 images,
which are cropped to 250×250×8 to obtain the LR-MS
images and 1000 × 1000 to obtain the HR-PAN images,
respectively. The spatial resolutions of the HR-PAN
image and the LR-MS images are 0.5 and 2 m, respec-
tively. There are six pairs of images with different tex-
tures, which are used in the simulated-data experiments.

3) The third data set is a pair of IKONOS images with
a size of 200 × 200 × 4 and 800 × 800. The spatial
resolutions of the HR-PAN images and the LR-MS
images are 1 and 4 m, respectively. These images are
used in the real-data experiments.

4) The fourth data set is a pair of WorldView-2 images
with a size of 200 × 200 × 8 and 800 × 800. The spatial
resolutions of the HR-PAN image and the LR-MS image
are 0.5 and 2 m, respectively. These images are used in
the real-data experiments.

Note that, all the test data sets are spatially disjoint from the
training and validation patches used in the network training.
For example, three images used to train the QuickBird network
model are of Nanchang, Yichang, and Shenzhen, while the test
data set of QuickBird images is of Wuhan.

3) Parameter Setting: In (3), λ and μ are adjustable para-
meters used to balance the relative contribution of the three
terms. Fig. 4 analyzes the sensitivity of the two adjustable
parameters of the proposed method. Specifically, Fig. 4(a)–(d),
respectively, shows the sensitivity analysis of λ and μ on the
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Fig. 4. Analysis of the adjustable parameters λ and μ of the proposed method. (a) Analysis of λ on the simulated experiment of QuickBird images.
(b) Analysis of λ on the simulated experiment of WorldView-2 images. (c) Analysis of μ on the simulated experiment of QuickBird images. (d) Analysis of
μ on the simulated experiment of WorldView-2 images.

simulated experiment of QuickBird images and WorldView-2
images, where λ is plotted at 0.01 equidistance in [0.01–1]
and μ is plotted at 0.0001 equidistance in [0.0001–0.01].
As displayed in Fig. 4(a) and (b), when the parameter λ is in
the range of 0.1–0.3, we can obtain favorable indicators in both
the QuickBird experiment and the WorldView-2 experiment.
Combining with visual inspections, we set λ = 0.1 for
the QuickBird data set and λ = 0.3 for the WorldView-2
data set. As displayed in Fig. 4(c) and (d), in the range
of 0–0.01, the parameter μ is relatively stable, and only causes
the minor variation on all the evaluation indicators for both
the QuickBird experiment and the WorldView-2 experiment.
Accordingly, combining with visual inspections, we set λ =
0.1 and μ = 0.001 for the simulated QuickBird experiments
and the real-data IKONOS experiment, λ = 0.3 and μ = 0.001
for both the simulated and real-data WorldView-2 experiments.

A. Simulated Experiments

In the simulated experiments, we first downsample the
HR-PAN image to obtain the low-resolution PAN image
(LR-PAN) and downsample the LR-MS image to obtain the
lower resolution MS image. Then, we fuse the LR-PAN

image and the lower resolution MS image to obtain the
fused image. The original LR-MS image acts as a ref-
erence to evaluate the fused image both qualitatively and
quantitatively.

The first series of simulated experiments are performed on
the QuickBird images. Table I shows the simulated QuickBird
experimental results with the average of 12 groups, where the
best performance for each quality index is marked in bold and
the second-best performance for each quality index is under-
lined. In these experiments, the SAM value of the proposed
method is the second-best, and all the other indicators are
higher than those of the other methods, which demonstrate that
the proposed method can provide a better tradeoff between
spectral information fidelity and spatial detail enhancement.
In the last column of Table I, the running times of all fusion
methods are listed, which represent the total time of running
all groups of images in simulated experiments. Like the two
DL-based method in the comparison, the gradient network of
the proposed method runs fast, and the selected PCG iterative
optimization algorithm efficiently solve the constructed energy
function, which leads to the acceptable running time of the
proposed method.
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Fig. 5. Simulated fusion results for the QuickBird image. (a) Low-resolution
MS image simulated by downsampling. (b) Ground truth. (c) AIHS.
(d) MTF-GLP-HPM. (e) TSSC. (f) DNCNN. (g) DRPNN. (h) Proposed
method.

A group of simulated fusion results is selected to be
displayed as true-color images in Fig. 5. By comparing the
results, it can be observed that AIHS performs poorly in both
spatial detail enhancement and spectral fidelity, as shown in
Fig. 5(c). For the MTF-GLP-HPM and TSSC methods, sharp-
ened spatial features are achieved, but with severe spectral dis-
tortion, such as the vegetation area shown in Fig. 5(d) and (e).
For the two CNN-based methods, they both show a good
performance in spectral fidelity but are poor in spatial texture
information enhancement, as can be seen in the zoomed area

TABLE I

QUANTITATIVE RESULTS FOR THE SIMULATED
QUICKBIRD IMAGES (12 GROUPS)

Fig. 6. Point plot of the difference images between the various fusion results
and the ground truth in Fig. 5.

in Fig. 5(f) and (g). Overall, DRPNN performs better than
the DNCNN-based pansharpening. The proposed method com-
bines the respective advantages of the variational model-based
method and the DL-based method, and the fused results are
the closest to the ground truth, both in the fusion of the
spatial details and in the preservation of the spectral fidelity
[see Fig. 5(h)].

Fig. 6 shows the point plot of the difference images between
the various fusion results and the ground truth in Fig. 5.
Six points of different colors denote the mean values of six
difference images. The closer the mean value is to zero, the
better the fusion result is. The vertical lines at each point
represent the error line of each difference image, which show
the confidence interval of each difference image. As shown in
Fig. 6, the proposed method shows the best fusion result.

To further analyze the fusion results, Fig. 7 shows the
horizontal profiles of the digital values of the various fusion
results and the ground truth in Fig. 5. The vertical axis named
DN stands for the digital values, and the horizontal axis
represents the column number. The closer the profile of the
fusion result is to the profile of the ground truth, the better the
fusion result is. In Fig. 7, the proposed method outperforms the
five mainstream contrastive algorithms in bands and is closest
to the ground truth, which illustrates the superior fidelity
performance of the proposed method.

The second series of simulated experiments are performed
on the WorldView-2 images. Table II shows the simulated
WorldView-2 experimental results with the average of six
groups, where the best performance for each quality index
is marked in bold, and the second-best performance for each
quality index is underlined. In these experiments, the Q value
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Fig. 7. Horizontal profiles of the digital values of the 124th line of the
various fusion results and the ground truth in Fig. 5. (a)–(d) Bands 1, 2, 3,
and 4.

TABLE II

QUANTITATIVE RESULTS FOR THE SIMULATED

WORLDVIEW-2 IMAGES (SIX GROUPS)

of the proposed method is very close to the best result, but the
other indicators are all higher than those of the other methods.

A group of simulated fusion results is selected to be
displayed in Fig. 8. Fig. 8 shows the absolute difference
images, which is composed of the maximum values of the
absolute difference image between the various fusions and the
ground truth in the spectral dimension. The less the spatial
information can be seen in the difference image, the better

Fig. 8. Absolute difference images between the various fusion results and
the ground truth. (a) LR-MS image. (b) HR-PAN image. (c) Difference image
of AIHS. (d) Difference image of MTF-GLP-HPM. (e) Difference image of
TSSC. (f) Difference image of DNCNN. (g) Difference image of DRPNN.
(h) Difference image of the proposed method.

the fusion result is. For instance, the spatial structure of the
ground truth is clearly visible in the AIHS difference image
and MTF-GLP-HPM difference image, as seen in the zoomed
area in Fig. 8(c) and (d). This means that there is still some
high-resolution spatial information in the HR-PAN image that
is not integrated into the fused image, and the AIHS and
MTF-GLP-HPM methods are poor in spatial enhancement.
The clearly reduced spatial information in the zoomed area in
Fig. 8(e)–(h) shows the better spatial enhancement of TSSC,
DNCNN, DRPNN, and the proposed method. Moreover, the
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Fig. 9. Spectral error curves of four random pixels of difference images
between the fusion results and the ground truth in Fig. 8.

almost invisible spatial structure in the proposed difference
image in Fig. 8(h) indicates the superior spatial enhancement
of the proposed method.

Fig. 9 shows the comparison of the spectral error curves of
four random pixels of the difference images between the fusion
results and the ground truth. In Fig. 9, the vertical axis named
spectral error stands for the error values between the fusion
results and the ground truth in each band, and the horizontal
axis represents the band number. Similar to Fig. 6, the closer
the error value is to zero, the better the fusion result is. It can
be seen in Fig. 9 that the spectral error curve of the proposed
method is closest to zero, which means that the proposed
method has the best spectral fidelity. When combined with
Fig. 8, it confirms the favorable performance of the proposed
method in both spatial detail enhancement and spectral fidelity.

B. Real-Data Experiments

To further verify the effectiveness of the proposed method,
two real data sets are employed in the real-data experiments.
In the real-data experiments, we fuse the HR-PAN image and
the LR-MS image directly to obtain the fused image.

Fig. 10 shows the results for the IKONOS images fused
by the various mainstream methods. Note that, due to the
lack of IKONOS images for training a network model, the
three DL-based methods do not train a network model for the
IKONOS sensor, and the network model trained for the Quick-
Bird sensor is used to fuse the IKONOS images. Sharpened
spatial features with severe spectral distortion are achieved by
AIHS, MTF-GLP-HPM, and TSSC methods, as can be seen
in the zoomed area in Fig. 10(c)–(e). DNCNN and DRPNN
show a good performance in spectral fidelity but are poor in
spatial texture information enhancement, as can be seen in
the zoomed area in Fig. 10(f) and (g). Overall, the proposed
method shows a superior performance, in both the fusion of the

Fig. 10. Real-data fusion results of the IKONOS image. (a) LR-MS image.
(b) HR-PAN image. (c) AIHS. (d) MTF-GLP-HPM. (e) TSSC. (f) DNCNN.
(g) DRPNN. (h) Proposed method.

spatial details and in the preservation of the spectral fidelity,
as can be seen in Fig. 10(h). Fig. 11 displays the real-data
fusion results for the WorldView-2 images, which shows the
same tendency as the simulated WorldView-2 experiments.

C. Further Discussion

As described in Section II-B, the spatial enhancement
model in the variational model-based fusion methods is gen-
erally constructed based on two assumptions: the image prior
and the spatial structure prior. The proposed model combines
the deep residual gradient CNN with a variational model,
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Fig. 11. Real-data fusion results of the WorldView-2 images. (a) LR-MS
image. (b) HR-PAN image. (c) AIHS. (d) MTF-GLP-HPM. (e) TSSC.
(f) DNCNN. (g) DRPNN. (h) Proposed method.

which is based on the second assumption. To explore this more
comprehensively, a combination based on the first assumption

is constructed, as shown in (5). In (5),
�

X ∈ R
MN×S is the

image prior learned from the neural network. To compare the
effects of the two variational models, simulated experiments
are carried out on the QuickBird images and WorldView-2
images

X̂ = arg min
X

1

2
||Y − H X ||2F + λ

2

2∑
j=1

||X − �

X||2F

+μ

2
{|| QX||2F }. (5)

TABLE III

QUANTITATIVE RESULTS OF DIFFERENT MODELS

TABLE IV

QUANTITATIVE RESULTS OF DIFFERENT STRATEGIES

OF OBTAINING THE GRADIENT PRIOR

Table III shows the quantitative results of different vari-
ational models, where DNCNN_image represents that the

image prior
�

X in (5) is the fusion result of DNCNN, and

DRPNN_image represents that the
�

X in (5) is the fusion
result of DRPNN. The upper part of Table III shows the
simulated QuickBird experimental results with the average of
12 groups, and the lower part of Table III shows the simulated
WorldView-2 experimental results with the average of six
groups. In both parts, the best performance for each quality
index is marked in bold and the second-best performance for
each quality index is underlined. As shown in Table III, all
the indices for the proposed method are the best in both the
QuickBird and WorldView-2 experiments. This demonstrates
that in the spatial enhancement terms, the gradient prior, which
directly represents the spatial information, can obtain better
results than the image prior.

To further illustrate the superiority of the proposed method,
we design simulated experiments to compare the effect of the
gradient priors obtained by different networks. Table IV lists
the quantitative results of different strategies of obtaining the
gradient prior, where DNCNN_gra and DRPNN_gra denote
strategies that add the gradient of the fusion results obtained by
DNCNN and DRPNN to the proposed constructed variational
model, i.e., (3), respectively. Table IV has the same settings
as Table III. It can be seen that most of the indices for
the proposed method are the best, and the others are very
close to the best. The reason for this could be that in the
proposed gradient network, the purpose of the network is to
obtain accurate HR-MS image gradient information. A lot of
nongradient information existing in the image fusion network
restricts the training of the image gradient, while the gradient
network better preserves the gradient of the images.

IV. CONCLUSION

In this paper, we have proposed a PAN/MS fusion method
that incorporates a deep residual gradient CNN into a
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variational model-based framework. In the proposed method,
we first train a gradient network to obtain the gradient of the
HR-MS image and then utilize the learned gradient prior to
construct a fusion variational model. Experiments on Quick-
Bird, WorldView-2, and IKONOS data sets confirmed the
effectiveness of the proposed method.

In our future works, the proposed method will be extended
in two directions. On the one hand, as we just utilize a
simple CNN to learn the gradient information, it may be
possible to discover CNNs with different architectures, which
can improve the performance. On the other hand, it will be of
great significance to think about other ways to integrate DL
into the variational model-based methods, to fully utilize the
characteristics of the variational model-based methods and the
feature learning capability of DL.

REFERENCES

[1] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, “Synthesis of
multispectral images to high spatial resolution: A critical review of
fusion methods based on remote sensing physics,” IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 5, pp. 1301–1312, May 2008.

[2] Y. Zhang, “Understanding image fusion,” Photogram. Eng. Remote Sens,
vol. 70, no. 6, pp. 657–661, 2004.

[3] X. Meng, H. Shen, H. Li, L. Zhang, and R. Fu, “Review of the
pansharpening methods for remote sensing images based on the idea of
meta-analysis: Practical discussion and challenges,” Inf. Fusion, vol. 46,
pp. 102–113, Jun. 2018.

[4] W. Carper, T. Lillesand, and R. Kiefer, “The use of intensity-hue-
saturation transformations for merging SPOT panchromatic and mul-
tispectral image data,” Photogramm. Eng. Remote Sens., vol. 56, no. 4,
pp. 459–467, Apr. 2004.

[5] P. S. Chavez, Jr., and A. Y. Kwarteng, “Extracting spectral contrast in
landsat thematic mapper image data using selective principal component
analysis,” Photogramm. Eng. Remote Sens., vol. 55, no. 3, pp. 339–348,
1989.

[6] C. A. Laben and B. V. Brower, “Process for enhancing the
spatial resolution of multispectral imagery using pan-sharpening,”
U.S. Patent 6 011 875, Jan. 4, 2000.

[7] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution
pansharpening through multivariate regression of MS+Pan data,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, Oct. 2007.

[8] G. Vivone et al., “A critical comparison among pansharpening
algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5,
pp. 2565–2586, May 2015.

[9] L. Loncan et al., “Hyperspectral pansharpening: A review,” IEEE Trans.
Geosci. Remote Sens., vol. 3, no. 3, pp. 27–46, Sep. 2015.

[10] J. Choi, K. Yu, and Y. Kim, “A new adaptive component-substitution-
based satellite image fusion by using partial replacement,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 1, pp. 295–309, Jan. 2011.

[11] X. Meng, J. Li, and H. Shen, “Pansharpening with a guided filter based
on three-layer decomposition,” Sensors, vol. 16, no. 7, pp. 1068–1084,
Jul. 2016.

[12] Q. Xu, B. Li, Y. Zhang, and L. Ding, “High-fidelity component sub-
stitution pansharpening by the fitting of substitution data,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 11, pp. 7380–7392, Nov. 2014.

[13] P. S. Chavez, Jr., S. C. Sides, and J. A. Anderson, “Comparison of
three different methods to merge multiresolution and multispectral data:
Landsat TM and SPOT panchromatic,” Photogramm. Eng. Remote Sens.,
vol. 57, no. 3, pp. 295–303, 1991.

[14] H. R. Shahdoosti and N. Javaheri, “Pansharpening of clustered MS and
Pan images considering mixed pixels,” IEEE Trans. Geosci. Remote.
Lett., vol. 14, no. 6, pp. 826–830, Jun. 2017.

[15] L. Wald and T. Ranchin, “Liu’ Smoothing filter-based intensity modu-
lation: A spectral preserve image fusion technique for improving spatial
details,”’ Int. J. Remote Sens., vol. 23, no. 3, pp. 593–597, Jan. 2002.

[16] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-
tailored multiscale fusion of high-resolution MS and PAN imagery,”
Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, May 2006.

[17] M. Guo, H. Zhang, J. Li, L. Zhang, and H. Shen, “An online coupled dic-
tionary learning approach for remote sensing image fusion,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1284–1294,
Apr. 2014.

[18] L. Zhang, H. Shen, W. Gong, and H. Zhang, “Adjustable model-
based fusion method for multispectral and panchromatic images,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 6, pp. 1693–1704,
Dec. 2012.

[19] P. Liu, L. Xiao, J. Zhang, and B. Naz, “Spatial-Hessian-feature-guided
variational model for pan-sharpening,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 4, pp. 2235–2253, Apr. 2016.

[20] Z. Li, H. Shen, H. Li, G. Xia, and L. Zhang, “Multi-feature combined
cloud and cloud shadow detection in GaoFen-1 wide field of view
imagery,” Remote Sens. Environ., vol. 191, pp. 342–358, Mar. 2017.

[21] C. Jiang, H. Zhang, H. Shen, and L. Zhang, “Two-Step sparse coding for
the pan-sharpening of remote sensing images,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 5, pp. 1792–1805, May 2014.

[22] J. Li, Q. Yuan, H. Shen, and L. Zhang, “Noise removal from hyperspec-
tral image with joint spectral-spatial distributed sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5425–5439,
Jun. 2016.

[23] H. Shen, “Integrated fusion method for multiple temporal-spatial-
spectral images,” in Proc. 22nd Congr. Int. Soc. Photogramm. Remote
Sens. (ISPRS), Melbourne, VIC, Australia, 2012, pp. 407–410.

[24] H. Shen, X. Meng, and L. Zhang, “An integrated framework for the
spatio–temporal–spectral fusion of remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 12, pp. 7135–7148, Dec. 2016.

[25] F. Fang, F. Li, C. Shen, and G. Zhang, “A variational approach for pan-
sharpening,” IEEE Trans. Image Process., vol. 22, no. 7, pp. 2822–2834,
Jul. 2013.

[26] Q. Wei, “Bayesian fusion of multi-band images: A powerful tool for
super-resolution,” Inst. Nat. Polytechn. Toulouse, Labège, France, 2015.

[27] X. Liu, H. Shen, Q. Yuan, X. Lu, and C. Zhou, “A universal destriping
framework combining 1-D and 2-D variational optimization methods,”
IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 808–822,
Feb. 2018.

[28] X. Liu, X. Lu, H. Shen, Q. Yuan, Y. Jiao, and L. Zhang, “Stripe noise
separation and removal in remote sensing images by consideration of
the global sparsity and local variational properties,” IEEE Trans. Geosci.
Remote Sens., vol. 54, no. 5, pp. 3049–3060, May 2016.

[29] J. Li, Q. Yuan, H. Shen, X. Meng, and L. Zhang, “Hyperspectral
image super-resolution by spectral mixture analysis and spatial–spectral
group sparsity,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 9,
pp. 1250–1254, Jul. 2016.

[30] A. Garzelli, “A review of image fusion algorithms based on the super-
resolution paradigm,” Remote Sens., vol. 8, no. 10, pp. 797–816,
Sep. 2016.

[31] K. Zhang, W. Zuo, and S. Gu, “Learning deep CNN denoiser prior for
image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 3929–3938.

[32] Q. Zhang, Q. Yuan, J. Li, Z. Yang, and X. Ma, “Learning a dilated
residual network for SAR image despeckling,” Remote Sens., vol. 10,
no. 2, p. 196, Jan. 2018.

[33] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data
reconstruction in remote sensing image with a unified spatial-temporal-
spectral deep convolutional neural network,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 8, pp. 4274–4288, Mar. 2018.

[34] Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral
image denoising employing a spatial-spectral deep residual convolutional
neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2,
pp. 1205–1218, Sep. 2018.

[35] H. Shen, T. Li, Q. Yuan, and L. Zhang, “Estimating regional ground-
level PM2.5 directly from satellite top-of-atmosphere reflectance using
deep belief networks,” J. Geophys. Res., Atmos., vol. 123, no. 24,
pp. 13875–13886, 2018.

[36] T. Li, H. Shen, Q. Yuan, X. Zhang, and L. Zhang, “Estimating
ground-level PM2.5 by fusing satellite and station observations: A geo-
intelligent deep learning approach,” Geophys. Res. Lett., vol. 44, no. 23,
pp. 11985–11993, 2017.

[37] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by
convolutional neural networks,” Remote Sens., vol. 8, no. 7, pp. 594–615,
Jul. 2016.

[38] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, “Boosting the accuracy of
multispectral image pansharpening by learning a deep residual network,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1795–1799,
Oct. 2017.



6180 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 8, AUGUST 2019

[39] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and
multidepth convolutional neural network for remote sensing imagery
pan-sharpening,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 3, pp. 978–989, Mar. 2018.

[40] R. Molina, M. Vega, J. Mateos, and A. K. Katsaggelos, “Varia-
tional posterior distribution approximation in Bayesian super resolution
reconstruction of multispectral images,” Appl. Comput. Harmon. Anal.,
vol. 24, no. 2, pp. 251–267, 2008.

[41] F. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “A new pansharpening
algorithm based on total variation,” IEEE Geosci. Remote Sens. Lett.,
vol. 11, no. 1, pp. 318–322, Jan. 2014.

[42] J. Duran, A. Buades, B. Coll, and C. Sbert, “A nonlocal variational
model for pansharpening image fusion,” SIAM J. Imag. Sci., vol. 7,
no. 2, pp. 761–796, 2014.

[43] P. Liu, L. Xiao, and T. Li, “A variational pan-sharpening method based
on spatial fractional-order geometry and spectral–spatial low-rank pri-
ors,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1788–1802,
Mar. 2018.

[44] Z. Li and H. Leung, “Fusion of multispectral and panchromatic images
using a restoration-based method,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 5, pp. 1482–1491, May 2009.

[45] C. Chen, Y. Li, W. Liu, and J. Huang, “Image fusion with local
spectral consistency and dynamic gradient sparsity,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 2760–2765.

[46] X. Meng, H. Shen, Q. Yuan, H. Li, and L. Zhang, “An integrated
fusion framework for joint information reconstruction and resolution
enhancement,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.,
vol. 42, pp. 831–835, Sep. 2017.

[47] M. Moeller, T. Wittman, and A. L. Bertozzi, “Variational wavelet pan-
sharpening,” CAM Rep., 2008, pp. 8–81.

[48] J. Yang, Y. Q. Zhao, and J. C. Chan, “Hyperspectral and multispectral
image fusion via deep two-branches convolutional neural network,”
Remote Sens., vol. 10, no. 5, pp. 800–822, May 2018.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[50] R. Timofte, V. De Smet, and L. V. Gool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in Proc. Asian Conf.
Comput. Vis. Cham, Switzerland: Springer, 2014, pp. 111–126.

[51] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation
for color image demosaicking,” in Proc. Int. Conf. Image Process.,
Sep. 2013, pp. 2304–2308.

[52] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and T. Wittman,
“An adaptive IHS Pan-sharpening method,” IEEE Geosci. Remote Sens.
Lett., vol. 7, no. 4, pp. 746–750, Oct. 2010.

[53] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva,
“An MTF-based spectral distortion minimizing model for pan-
sharpening of very high resolution multispectral images of urban areas,”
in Proc. 2nd GRSS/ISPRS Joint Workshop Remote Sens. Data Fusion
URBAN Areas, May 2003, pp. 90–94.

Huanfeng Shen (M’10–SM’13) received the B.S.
degree in surveying and mapping engineering and
the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China,
in 2002 and 2007, respectively.

In 2007, he joined the School of Resource and
Environmental Sciences, Wuhan University, where
he is currently a Luojia Distinguished Professor.
He has been supported by several talent programs,
such as the Youth Talent Support Program of China
in 2015, the China National Science Fund for Excel-

lent Young Scholars in 2014, and the New Century Excellent Talents by the
Ministry of Education of China in 2011. He has authored over 100 research
papers. His research interests include image quality improvement, remote
sensing mapping and application, data fusion and assimilation, and regional
and global environmental changes.

Dr. Shen is currently a member of the Editorial Board of the Journal of
Applied Remote Sensing.

Menghui Jiang received the B.S. degree in geo-
graphical science from Wuhan University, Wuhan,
China, in 2017, where she is currently pursuing
the Ph.D. degree with the School of Resource and
Environmental Sciences.

Her research interests include image data fusion,
quality improvement, remote sensing image process-
ing, and deep learning.

Jie Li (M’16) received the B.S. degree in sciences
and techniques of remote sensing and the Ph.D.
degree in photogrammetry and remote sensing from
Wuhan University, Wuhan, China, in 2011 and 2016,
respectively.

He is currently a Lecturer with the School of Geo-
desy and Geomatics, Wuhan University. His research
interests include image quality improvement, image
super-resolution reconstruction, data fusion, remote
sensing image processing, sparse representation, and
deep learning.

Qiangqiang Yuan (M’13) received the B.S. degree
in surveying and mapping engineering and the Ph.D.
degree in photogrammetry and remote sensing from
Wuhan University, Wuhan, China, in 2006 and 2012,
respectively.

In 2012, he joined the School of Geodesy and
Geomatics, Wuhan University, where he is cur-
rently an Associate Professor. He has authored more
than 50 research papers, including more than 30
peer-reviewed articles in international journals such
as the IEEE TRANSACTIONS ON IMAGE PROCESS-

ING and the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENS-
ING. His research interests include image reconstruction, remote sensing
image processing and application, and data fusion.

Dr. Yuan was a recipient of the Top-Ten Academic Star of Wuhan University
in 2011. He received the Hong Kong Scholar Award from the Society of Hong
Kong Scholars and the China National Postdoctoral Council in 2014. He has
frequently served as a referee for more than 20 international journals for
remote sensing and image processing.

Yanchong Wei received the B.E. degree in geodesy
and geomatics engineering and the M.E. degree in
photogrammetry and remote sensing from Wuhan
University, Wuhan, China, in 2015 and 2018, respec-
tively.

He is currently a Remote Sensing Data Analyst
with MCFLY Technology, Beijing. His research
interests include degraded information reconstruc-
tion for remote sensed images, data fusion, deep
learning, and computer vision.



SHEN et al.: SPATIAL–SPECTRAL FUSION BY COMBINING DL AND VARIATIONAL MODEL 6181

Liangpei Zhang (M’06–SM’08–F’19) received the
B.S. degree in physics from Hunan Normal Uni-
versity, Changsha, China, in 1982, the M.S. degree
in optics from the Xi’an Institute of Optics and
Precision Mechanics, Chinese Academy of Sciences,
Xi’an, China, in 1988, and the Ph.D. degree in
photogrammetry and remote sensing from Wuhan
University, Wuhan, China, in 1998.

He is currently the Head of the Remote Sensing
Division, State Key Laboratory of Information
Engineering in Surveying, Mapping, and Remote

Sensing (LIESMARS), Wuhan University. He is also a “Chang-Jiang
Scholar” Chair Professor appointed by the Ministry of Education of China.
He is currently a Principal Scientist for the China State Key Basic
Research Project (2011–2016) appointed by the Ministry of National Sci-
ence and Technology of China to lead the Remote Sensing Program in
China. He has authored more than 500 research papers and five books.
He holds 15 patents. His research interests include hyperspectral remote
sensing, high-resolution remote sensing, image processing, and artificial
intelligence.

Dr. Zhang is a fellow of the Institution of Engineering and Technology
(IET) and an Executive Member (Board of Governor) of the China National
Committee of International Geosphere–Biosphere Program and the China
Society of Image and Graphics. He received the best reviewer awards from

the IEEE Geoscience and Remote Sensing Society (GRSS) for his service
to the IEEE JOURNAL OF SELECTED TOPICS IN EARTH OBSERVATIONS

AND APPLIED REMOTE SENSING (JSTARS) in 2012 and IEEE GEOSCIENCE
AND REMOTE SENSING LETTERS (GRSL) in 2014. His research teams won
the top three prizes of the IEEE GRSS 2014 Data Fusion Contest, and
his students have been selected as the winners or finalists of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS) Student
Paper Contest in recent years. He was a recipient of the 2010 Best Paper
Boeing Award and the 2013 Best Paper ERDAS Award from the American
Society of Photogrammetry and Remote Sensing (ASPRS). He was the
General Chair of the 4th IEEE GRSS Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS) and the
Guest Editor of JSTARS. He is the Founding Chair of the IEEE GRSS Wuhan
Chapter. He regularly serves as the Co-Chair of the series SPIE conferences
on multispectral image processing and pattern recognition, conference on Asia
remote sensing, and many other conferences. He edits several conference
proceedings, issues, and geoinformatics symposiums. He also serves as an
Associate Editor for the International Journal of Ambient Computing and
Intelligence, the International Journal of Image and Graphics, the Interna-
tional Journal of Digital Multimedia Broadcasting, the Journal of Geo-Spatial
Information Science, and the Journal of Remote Sensing, and the Guest Editor
of the Journal of Applied Remote Sensingand the Journal of Sensors. He is
currently serving as an Associate Editor for the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING.


