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The presence of shadows in urban aerial images degrades the image quality and reduces the application 

accuracy. Removing shadows and recovering the ground information is therefore a crucial issue. The ex- 

isting shadow removal methods can correct the shadow information, but the inconsistency between the 

corrected shadow and non-shadow areas is still obvious. A novel shadow removal method based on sep- 

arated illumination correction is proposed in this paper, in which the shadow removal is only performed 

on the shadow-related illumination. A spatially adaptive weighted total variation model is constructed 

to obtain the shadow-related illumination and the shadow-free reflectance. The objects in the shadows 

are detected based on the reflectance, and object-oriented illumination correction is then implemented 

to compensate the shadow regions. The shadow removal results can be obtained by combining the cor- 

rected illumination and the reflectance. Three aerial remote sensing images were selected for the exper- 

iments, and two quantitative evaluation methods are introduced: the shadow standard deviation index 

and classification analysis. The results are shown and compared with four existing methods by visual 

and quantitative assessments, which indicate that the proposed method can yield more visually natural 

shadow-free images and show a better performance in the quantitative indices. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Shadows are a natural phenomenon, occurring when direct

ight is totally or partially occluded by objects, and they exist in

ost aerial remote sensing images. According to the shadow lo-

ation, shadows can be divided into cast shadow (the part that is

ast on the ground by high objects) and self-shadow (the part of

he object that is not illuminated). Cast shadow is the concern of

his paper. With the improvement of the spatial resolution of re-

ote sensing images, the shadow effect in remote sensing images

s becoming more and more obvious [1–4] . Shadows can be used to

econstruct three-dimensional information, but shadows also cause

adiometric information reduction, which makes the image inter-

retation more difficult [5–10] . In high spatial resolution imagery

f urban environments, the shadow effect is more serious because

he surface features are quite complex, with a great variety of ob-

ects such as high buildings, trees, and so on [11–14] . It is therefore

ssential to remove the shadow effect to improve the amount and

he quality of the image radiometric information. 
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A variety of shadow removal methods have been proposed in

he past decades, especially for close-shot images. These methods

an be divided into two main categories: local color transfer

ethods and global optimization methods. The local color transfer

ethods take advantage of the spatial similarity to construct a

elationship between the intensity of the paired shadows and non-

hadows by a color transfer technique, to restore the shadow re-

ions, where the existing relationship is mainly composed of linear

orrelation, statistical correlation, gamma function, and machine

earning. Considering the linear relationship between shadows and

on-shadows, the linear-correlation correction method has been

roposed and widely used in recent years [ 2 , 13 , 15–21 ]. As a com-

on image enhancement method, the histogram matching method

as been adopted to remove shadows, where shadow pixels are

ecovered by matching the histogram of the shadow regions to

hat of the non-shadow areas [ 11 , 15 , 22 , 23 ]. The gamma correction

ethod has also been used to correct shadow regions by using a

ower function to construct the relationship between shadow and

on-shadow pixels [ 15 , 24–26 ]. In recent years, machine learning

as been introduced to build the relationship between shadow

nd non-shadow pixels by the use of a Markov random field

MRF) model [27] . Above all, the local color transfer methods can

orrect the shadow information, to some extent, but the corrected

https://doi.org/10.1016/j.sigpro.2019.06.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.06.039&domain=pdf
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results are usually inconsistent with the non-shadow areas and

show serious shadow boundary effects, because mismatching

often occurs between the shadow and non-shadow regions due

to the low brightness of shadows. On the other hand, as the

land-cover types are more complex in remote sensing images

than close-shot images, the paired samples are usually selected by

visual judgment, in order to ensure the matching accuracy. 

The global optimization methods take the whole image into

consideration directly, and compensate the information of shadow

regions through global optimization. These methods include the

Poisson correction method, variational models, and deep learn-

ing based methods. The Poisson correction method reconstructs a

shadow-free image based on the corrected gradient information by

nullifying the gradients on shadow boundaries through the Pois-

son equation [28 , 29] , but the textural information in the bound-

aries is lost due to the totally zero gradients. Owing to the exten-

sibility and precision, a number of variational models have been

proposed to remove shadows by eliminating the shadow intensity

component in the observed images [30–33] . However, the results

are highly dependent on the estimation of the shadow intensity,

and eliminating the shadow intensity totally always results in the

loss of color information. As deep learning has shown obvious ad-

vantages in image processing in recent years, it has also been in-

troduced to learn the relationship between the shadow image and

shadow-free image by constructing an end-to-end deep convolu-

tional neural network [34–36] . However, the deep learning based

methods need a large number of shadow and real corresponding

shadow-free image pairs for training, which is difficult to realize

for remote sensing images due to the limitation of the data acqui-

sition approaches. In conclusion, the global optimization methods

can remove the shadows in whole directly, but they are not good

at restoring the details of the image. For high-resolution remote

sensing images, different land surfaces are covered by shadow, the

spatial details are more complex than for close-shot images, and

the penumbras can be significant, which are issues that are often

ignored by the global optimization methods. 

From the above analysis, the main problems encountered when

removing shadows from aerial remote sensing images can be sum-

marized as follows: (1) the accurate matching between shadow

and non-shadow pairs is difficult, due to information attenua-

tion in the shadow regions; (2) the complex spatial details in

the shadow areas of high-resolution remote sensing images make

shadow removal difficult; and (3) serious boundary effects usually

exist in the shadow removal results, owing to the improper han-

dling of the penumbra regions. 

In order to solve the existing problems, we propose a novel

shadow removal algorithm based on separated illumination cor-

rection, which combines the advantages of local color transfer and

global optimization. Global optimization is utilized to separate the

structured illumination, and local color transfer is only performed

on the shadow-related illumination, to avoid the problems caused

by the complexity of the reflectance. On the other hand, in consid-

eration of the global smoothness of the illumination, local Gaus-

sian smoothing is performed on the illumination to eliminate the

shadow boundary effects in the shadow removal results effectively.

The shadow mask is detected in advance by the shadow matting

method [33 , 37] . It should be stressed that we focus on the shad-

ows cast on the ground, while self-shadows located on buildings

are not considered. Moreover, few of the existing shadow removal

methods have evaluated their results quantitatively, as no shadow-

free ground truth is available. Two different quantitative analysis

methods are introduced in this paper to further evaluate the pro-

posed shadow removal method: the shadow standard deviation in-

dex (SSDI) and classification analysis. 

The main contributions and advantages of our work can be

summarized as follows: 
s  
1) A novel separated illumination correction algorithm is proposed

to remove shadows for urban aerial remote sensing images,

which can yield visually natural shadow-free images without

obvious shadow boundaries. 

2) A spatially adaptive weighted total variation model is con-

structed to separate the structured illumination and shadow-

free reflectance, and the object-oriented local color transfer is

used to correct the shadow information in the illumination. 

3) SSDI and classification analysis are introduced to evaluate the

shadow removal results quantitatively. 

The rest of this paper is organized as follows. Section 2 ex-

lains in detail the innovative method developed for shadow re-

oval. Section 3 presents the experimental analysis, including the

esults obtained by the proposed method and four existing meth-

ds on three urban remote sensing images. Finally, we conclude

he paper in Section 4 . 

. Methods 

According to retinex theory [38] , an observed image S can be

epresented as the product of two different com ponents, i.e., the

eflectance R and the illumination L , which can be expressed as: 

(x, y ) = R (x, y ) · L (x, y ) (1)

here ( x, y ) denotes the pixel position, R ( x, y ) ∈ [0, 1], and L ( x,

 ) ∈ (0, ∞ ). The reflectance R is a shadow-free variable, describing

he objective properties of the observed ground. The illumination

 contributes to the global brightness variation, which is related to

he light illuminating the objects with smooth spatial variation. 

For shadow images, the shadow spatial and spectral informa-

ion are both included in the illumination which is shadow-related,

nd the texture and edge details of the ground are included in

he reflectance which is shadow-free. Shadow removal aims to

ompensate the illuminating light and enhance the information in

hadow regions. The separation of the shadow-related illumination

nd the shadow-free reflectance provides us a good opportunity to

emove the shadow influence independently while maintaining the

round information. Therefore, a separated illumination correction

ased shadow removal method is proposed in this paper. Since the

llumination is shadow-related, it is piecewise smooth, with ob-

ious shadow structure, called structured illumination. The varia-

ional model is constructed to estimate the structured illumination,

nd land cover adaptive local color transfer is used to compensate

he illumination in the shadows by an object-oriented strategy. The

pecific process flow of the proposed method is shown in Fig. 1 . 

.1. Structured illumination estimation 

Based on the above retinex theory, estimating the illumination

r reflectance from the degraded image is a crucial task, but it

s an ill-posed inverse problem. It is standard to use a regular-

zation technique to make an inverse problem well posed, which

an be formulated as a variational problem, and a globally opti-

ized solution can be obtained by minimizing the energy function

39–41] . On the other hand, the flexibility and expandability of the

ariational model provide convenience for the structured variables

42–46] . Therefore, in consideration to the illumination spatial fea-

ure, we propose the spatially adaptive weighted total variation

SAWTV) model to estimate the structured illumination. 

Based on the above analysis, a number of basic assumptions are

ut forward: (1) the illumination is close to the observed image

rom the global radiance view; (2) the reflectance is noise free;

nd (3) the illumination is structured and noise free. In order to

implify the computation, Eq. (1) is converted into the log domain
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Fig. 1. Flowchart of shadow removal based on separated illumination correction for urban aerial remote sensing images. 
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s s (x, y ) = r(x, y ) + l(x, y ) . Therefore, the SAWTV model is con-

tructed as: 

ˆ 
 = argmin 

l 

‖ 

l − s ‖ 

2 
2 + α‖ 

∇(l − s ) ‖ 

2 
2 + βW ‖ 

∇ l ‖ T V (2) 

here the first fidelity term enforces the proximity between l

nd s ; the second term enforces the spatial smoothness of the

eflectance; and the third term is the weighted total variation

TV) regularization, which enforces the piecewise smoothness and

he significant structure of the illumination. α and β are posi-

ive parameters, which control the contribution of each term in

he model. The piecewise smoothness of the illumination is sep-

rated by the spatial distribution of the shadow, i.e., the shadow

nd non-shadow regions are both smooth, while the spatial struc-

ure of the shadow is preserved clearly. Therefore, we construct

 weighted TV regularization term to constrain the illumination,

hich has a weak constraint on the shadow boundary, and other-

ise has a strong constraint. The shadow boundary is decided by

he gradient of the previous detected shadow mask, and thus the

eight parameter W is defined as: 

 (x, y ) = 

1 

δ(x, y ) + ε 
(3)

here δ( x, y ) is the gradient magnitude of shadow boundary pixel

 x, y ) in the shadow image, and ɛ is a small number, which is used

o avoid the denominator being zero. 

Split Bregman iteration [47] is employed to solve the optimiza-

ion problem of Eq. (2) , to ensure the calculation efficiency and

tability. Hence, the structured illumination containing the shadow

nformation and the shadow-free reflectance are both obtained. 

.2. Object-oriented illumination correction 

Since the illumination contains the spatial and spectral infor-

ation of the shadow, locally compensating the shadow regions in

he illumination can effectively remove the shadows. As the illumi-

ation is piecewise smooth, the correction of the illumination can

void the error caused by complex land cover, when compared to

irect correction on the observed image. However, the illumination

aries with different land-cover types, even under the same illumi-

ation conditions, which cannot be ignored. Therefore, we utilize
n object-oriented strategy, i.e., the different objects in the shadow

egions are corrected by taking the corresponding non-shadow ob-

ects as references, to obtain the land-cover related and shadow-

ree illumination. 

How to identify the objects in shadow regions is the key. Ra-

iation is usually weak in the shadow regions of an observed im-

ge, which makes Digital Number (DN)- or radiation-based clas-

ification difficult, but the land-cover boundaries in the shadow

egions are usually obvious, and are well preserved in the re-

ectance. Therefore, we can effectively obtain the objects in the

hadow regions and non-shadow regions through extracting the

and-cover boundaries in the reflectance, and we construct the

onnected relationship between shadow objects and non-shadow

bjects to achieve the matching of shadow and non-shadow pairs. 

In the same remote sensing image, if objects in a shadow region

nd a non-shadow region belong roughly to the same land-cover

ype, a linear relationship should exist between them [7 , 15 , 17 , 48] .

s the shadow-related information is included in the illumina-

ion, the linear relationship between a shadow region and a non-

hadow region is also suitable for the illumination. Based on the

bove assumption, we compensate the shadow information using

he non-shadow information of the same land-cover type with the

ocal color transfer method. Since the illumination is smooth, it has

o strict requirement for the matching accuracy, and the object-

riented strategy proposed in this paper can satisfy the require-

ent of the illumination correction. The moment matching [49] is

onducted in the illumination, which can be expressed as follows:

 corr = 

σns 

σs 
(l − μs ) + μns (4) 

here l corr is the gray value of the corrected result, and l is the

ray value of the shadow objects. μs and μns are the mean values

f the shadow regions and non-shadow regions, respectively. σ s 

nd σ ns are the standard deviation of the shadow regions and non-

hadow regions, respectively. After the local color transfer process,

he shadows in the illumination can be removed. 

However, the corrected illumination will exhibit artifacts

round the shadow boundaries because of the penumbra. In con-

ideration of the smoothness of the illumination, local Gaussian

moothing is adopted, which can effectively eliminate the artifacts

nd does not lead to the loss of texture information for the final
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Fig. 2. Flowchart with computation details of the proposed method. 
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shadow-free image, because the texture and edge details of the

ground are included in the reflectance. The final shadow removal

result can be obtained by adding the corrected illumination to the

reflectance, and then transforming to the spatial domain. 

In order to make the proposed method more clearly, a flowchart

with computational details is shown in Fig. 2 . 

2.3. Quantitative assessment methods 

Although a few publicly available shadow removal datasets have

been constructed for close-shot images [34 , 35 , 50 , 51] , there are still

no ground-truth shadow-free images available for remote sensing

images, due to the limitation of the data acquisition approaches

and the significant cost. Therefore, it is difficult to assess the

shadow removal results of remote sensing images quantitatively.

To solve this problem and make a quantitative analysis possible,

we introduce the shadow standard deviation index (SSDI) and su-

pervised classification. 

In this paper, the SSDI σs −ns is based on the assumption that

the same land-cover type in the same image should have similar

gray values, which is defined as follows: 

σs −ns = 

1 

B 

B ∑ 

b=1 

√ 

1 

N 

N ∑ 

i =1 

(
F s 

b,i 
− F̄ ns 

b 

)2 
(5)

where b is the current band of the image, and B is the total band

number of the image. i is the current sample pixel in the shadow

regions, and N is the total number of samples in the shadow re-

gions. F s is the corrected shadow sample set, and F̄ ns is the mean

value of the corresponding non-shadow sample set of the same

land-cover type. 

The SSDI can reflect the variation of the corrected shadow re-

gions with regard to homogeneous non-shadow regions. A low

SSDI value indicates that the corrected shadow regions are con-

sistent with the non-shadow regions, while a high SSDI value in-

dicates that the corrected shadow regions show obvious differ-

ences with the non-shadow regions. For the SSDI, the shadow/non-

shadow samples must satisfy the three following conditions: (1)

the shadow/non-shadow samples should contain all the land-cover

types in the shadow regions; (2) the non-shadow samples should

be close to the corresponding shadow samples of the same land-

cover type; and (3) the pixel numbers of the non-shadow samples

should be approximately equal to the shadow samples. 

To better analyze and compare the different shadow removal

methods, the support vector machine (SVM) classification method

[52] is also adopted as the other quantitative assessment method.

The shadow removal results of the different methods are classified

with the same non-shadow training samples, which are selected
y visual interpretation. Four evaluation indices are used to evalu-

te the classification results: producer’s accuracy (PA), user’s accu-

acy (UA), overall accuracy (OA), and kappa coefficient (KC) [53 , 54] .

A is calculated through dividing the number of correctly classi-

ed samples of a certain category by the total number of ground

ruth samples of this category. UA is calculated through dividing

he number of correctly classified samples of a certain category

y the total number of samples classified in this category. OA is

alculated through dividing the total number of correct classified

amples of all categories by the total number of samples taken. KC

s a robust measurement of how well the classification performs

s compared to just randomly assigning values. For all these four

ndexes, a higher value indicates better performance. 

. Experiments 

Three aerial remote sensing images with a ground resolution

f around 0.20 m were selected to test the proposed shadow

emoval method. These images are all of urban residential ar-

as, where the shadows are obvious. The dense high-rise build-

ngs cast large shadows on the different land-cover types, such

s roads, vegetation, lakes, and so on. The results of the pro-

osed method are shown and compared with the results of four

ther shadow removal methods, which are linear-correlation cor-

ection (LCC) [15 , 48] , histogram matching correction (HMC) [22] ,

ubregion matching illumination transfer (SMIT) [18] , and spa-

ially adaptive nonlocal regularization (SANL) [33] . LCC constructs

 linear function to correct the shadow regions based on the

on-shadow regions, while HMC employs the lookup table (LUT)

echnique in a two-step histogram matching approach to correct

he shadow regions. These two methods do not consider differ-

nt land-cover types in shadow regions and artifacts around the

hadow boundaries in the shadow removal results. SMIT performs

llumination transfer on the matched subregion pairs between the

hadow regions and non-shadow regions, mainly focusing on the

lose-shot images which has smaller shadow regions and simpler

and-cover types than remote sensing images. SANL removes shad-

ws by regularizing the shadow scale and the updated shadow-

ree image, based on an initial shadow-free image estimated by the

olor transfer [49 , 55 , 56] . All these four comparison methods cor-

ect shadows directly, while the proposed method separates the

llumination and reflectance from the original images, and makes

he correction in the illumination. 

To ensure that the comparison is reliable, we use the same

hadow mask for all the shadow removal methods. In addition, two

ifferent quantitative measurements, i.e., the SSDI and supervised

lassification, are adopted to assess the results objectively. 
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Fig. 3. Results of the proposed method for image #1. (a) Image #1. (b) The structure illumination. (c) The shadow-free reflectance. (d) The boundary detection result. (e) The 

illumination-corrected result. 
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Moreover, three parameters are involved in the proposed

AWTV model: α, β and ɛ . ɛ is empirically set to be 1 × 10 -3 to

void the denominator being zero. α and β are positive and bal-

nce the contributions of the three terms in the SAWTV model. α
ainly controls the contributions of the first and second terms, i.e.

pproaching of the illumination to the original image and spatial

moothness of the reflectance, while β controls the contribution

f the third term, i.e. piecewise smoothness of the illumination.

hrough a trial-and-error test, we set α = 10 , β = 0 . 002 to obtain

tructured illumination and shadow-free reflectance. 

.1. Visual comparison 

Image #1 contains five main types of land cover, i.e., road, soil,

uilding, vegetation, and shadow, as shown in Fig. 3 (a). The illu-

ination is piecewise smooth, with obvious shadow structure and

pectral information, as shown in Fig. 3 (b), while the reflectance is

hadow-free, containing the texture and edge details of the ground,

s shown in Fig. 3 (c). We can see that the land-cover bound-

ries have been extracted accurately based on the reflectance, as

hown in Fig. 3 (d). The land-cover boundaries are then used to

onstruct the connected relationship between shadow objects and

on-shadow objects, to achieve the matching pairs. The shadow-

elated illumination is compensated well by the object-oriented lo-

al color transfer, as shown in Fig. 3 (e). The final shadow removal

esult is shown in Fig. 4 (e), where it can be seen that all the shad-

ws have been removed. To make the result clearer, a detailed re-

ion is cropped from the shadow removal result in Fig. 5 (e). It

s clear that the spectral information and texture details in the

orrected shadow regions are consistent with the non-shadow re-

ions, while the shadow boundaries have been eliminated well,

ithout obvious artifacts. 

To compare the proposed method with the four other shadow

emoval methods, the shadow removal results and corresponding

etailed regions are shown in Figs. 4 and 5 , respectively. As shown

n Figs. 4 (a) and 5 (a), the LCC method improves the brightness

f the shadow regions, but the shadow boundaries are obvious

nd the noise is heavy. The road and vegetation in the recov-
red shadow regions are also inconsistent with the non-shadow

egions. The results of the HMC method are shown in Figs. 4 (b)

nd 5 (b), where the shadow regions have been improved, but sim-

lar problems exist as with the LCC method. LCC and HMC methods

oth correct the shadow regions without consideration of the re-

ectivity difference between the different land-cover types, lead-

ng to the problem of the road being overcompensated and the

egetation undercompensated. Furthermore, the boundary artifacts

re obvious because these two methods make no specific pro-

essing around the shadow boundaries. The results of the SMIT

ethod are shown in Figs. 4 (c) and 5 (c), where the land-cover

atching between the shadow region and non-shadow region

s inaccurate, leading to a poor result because of the complex-

ty of the remote sensing data and the distribution of the pixel

alues. However, the results could be improved in other ways,

uch as stretching the image before the matching operation. In

his study, the shadow removal result of the SMIT method was

irectly generated on the original unstretched image to ensure

hat the comparison was reasonable. In the results of the SANL

ethod shown in Figs. 4 (d) and 5 (d), the road and vegetation

ave been recovered well, but the boundaries of the shadow region

re smoothed. The nonlocal regularization optimization is used to

educe the influence of noise and fake edges, but this also in-

roduces texture detail blurring for the shadow-free result. Com-

ared with the above methods, the proposed method can not only

reserve the texture information well, such as road and vegeta-

ion, but it can also recover the illumination around the shadow

oundaries. 

The shadow removal results for the other two images are

hown in Figs. 6 and 8 , while Figs. 7 and 9 are detailed regions

ropped from the two images. The shadow regions cast by the

igh-rise buildings are dense, containing complex land-cover types,

.e., road, soil, vegetation, and lake, as shown in Figs. 6 (a) and 8 (a).

he LCC method corrects the shadow information, on the whole, in

igs. 6 (b) and 8 (b), but the shadow boundaries and brightness dif-

erence between shadow regions and non-shadow regions are ob-

ious in Figs. 7 (b) and 9 (b). For the results of the HMC method, the

rightness of the shadow regions is improved, but the roads in the
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Fig. 4. Shadow removal results for image #1. (a) Result of the LCC method. (b) Result of the HMC method. (c) Result of the SMIT method. (d) Result of the SANL method. 

(e) Result of the proposed method. 

Fig. 5. Detailed regions cropped from Fig. 4 . (a) Result of the LCC method. (b) Result of the HMC method. (c) Result of the SMIT method. (d) Result of the SANL method. (e) 

Result of the proposed method. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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shadow regions are undercompensated in Fig. 6 (c) and overcom-

pensated in Fig. 8 (c). Moreover, the noise is enhanced, as shown in

Figs. 7 (c) and 9 (c). The results of the SMIT method are overcom-

pensated, and the color contrast between the different land-cover

types in the shadow regions are not obvious in Figs. 6 (d) and 8 (d).

For the results of the SANL method, the shadow regions are cor-

rected well, with clear land-cover boundaries in Figs. 6 (e) and 8 (e);

however, the texture detail is blurry and the shadow boundaries

are smooth, as shown in Figs. 7 (e) and 9 (e). For the results of the
roposed method, as shown in Figs. 6 (f) and 8 (f), the detailed in-

ormation of the image is well recovered, without obvious shadow

oundaries. 

To investigate the shadow removal results in detail, we selected

ome typically homogeneous land-cover types around shadow

oundaries to perform the profile analysis. The positions of the

rofile lines are labeled in red in Figs. 5 (a), 7 (a), and 9 (a).

ig. 10 (a)–(c) show the mean gray values of the three channels of

he original image and the five shadow removal results. 
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Fig. 6. Image #2 and its shadow removal results. (a) Original image with shadows. (b) Result of the LCC method. (c) Result of the HMC method. (d) Result of the SMIT 

method. (e) Result of the SANL method. (f) Result of the proposed method. 

Fig. 7. Detailed regions cropped from Fig. 6 . (a) Original image with shadows. (b) Result of the LCC method. (c) Result of the HMC method. (d) Result of the SMIT method. 

(e) Result of the SANL method. (f) Result of the proposed method. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 
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area. 
In the non-shadow parts of the profiles, the proposed method

red solid line) preserves the consistency with the original im-

ge (green solid line), without significant difference, while the

ANL method (blue solid line) results in obvious fluctuations

n Fig. 10 (a), because of the nonlocal smoothing around the

hadow boundaries. In the transitional parts of the profiles, the

roposed method shows a smooth transition from non-shadow

egion to corrected shadow region, while the LCC method (ma-

enta solid line), the HMC method (cyan solid line), and the
MIT method (black solid line) show drastic fluctuations in

ig. 10 (a)–(c). In the shadow parts of the profiles, the proposed

ethod shows a similar tendency to the non-shadow parts in

ig. 10 (a)–(c), which means that the shadow removal results are

ore consistent with the surrounding non-shadow regions than

hose of the other methods. The proposed method also shows

 good performance in the profile analysis of the corrected ob-

ects between the corrected shadow area and the non-shadow
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Fig. 8. Image #3 and its shadow removal results. (a) Original image with shadows. (b) Result of the LCC method. (c) Result of the HMC method. (d) Result of the SMIT 

method. (e) Result of the SANL method. (f) Result of the proposed method. 

Fig. 9. Detailed regions cropped from Fig. 8 . (a) Original image with shadows. (b) Result of the LCC method. (c) Result of the HMC method. (d) Result of the SMIT method. 

(e) Result of the SANL method. (f) Result of the proposed method. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 
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3.2. Quantitative assessment 

In addition to the visual comparison of the shadow removal

results, quantitative assessments were also carried out, including

the SSDI and supervised classification. As the road and soil classes

have similar spectral radiances for the three experimental images,

these two land-cover types were classified as the same type. On

the other hand, the assessments mainly focused on the land-cover

types in the shadow regions, i.e., road, soil, vegetation, and lake. 
According to the selection conditions for the shadow/non-

hadow samples in Section 2.3 , the SSDI values for the three re-

onstructed shadow images are calculated and listed in Table 1 . It

an be clearly seen that the SSDI of the proposed method is lower

han those of the other methods for the different land-cover types,

hich means that the corrected shadow regions of the proposed

ethod are more consistent with the non-shadow regions. 

For the supervised classification of the shadow removal results,

he first image is taken as an example to show the classification
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Fig. 10. Profile analysis of the three detailed regions in Figs. 5, 7 and 9 . (a) Gray value profile of the corrected results for the detailed region in Fig. 5 . (b) Gray value profile 

of the corrected results for the detailed region in Fig. 7 . (c) Gray value profile of the corrected results for the detailed region in Fig. 9 . (For interpretation of the references 

to color in this figure, the reader is referred to the web version of this article.) 
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Table 1 

SSDI for selected samples from the three corrected shadow images. 

Image Class Number of pixels LCC HMC SMIT SANL Proposed 

Shadow Non-shadow 

#1 Road and soil 2916 2910 11.3215 11.5619 25.7235 7.1971 6.1307 

Vegetation 4878 4882 7.4423 11.3972 28.5434 6.1534 4.0823 

#2 Road and soil 4040 4049 12.7532 21.0429 13.7016 9.1964 6.1452 

Vegetation 2214 2128 7.0317 9.4139 31.7487 10.1001 3.5922 

#3 Road and soil 2164 2148 9.7991 12.6977 26.2411 9.2691 9.1817 

Vegetation 3378 3395 7.4886 10.5659 33.4774 6.9627 4.7923 

Lake 1777 1765 11.4873 10.9168 14.1387 4.7043 3.8091 

Fig. 11. Supervised classification of the shadow removal results in Fig. 5 . (a) Result of the LCC method. (b) Result of the HMC method. (c) Result of the SMIT method. (d) 

Result of the SANL method. (e) Result of the proposed method. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

Table 2 

Classification accuracy evaluation for selected samples from the shadow regions. 

Method Class PA (%) UA (%) OA (%) KC 

LCC Road and soil 47.32 65.07 65.13 0.5248 

Vegetation 61.09 97.69 

HMC Road and soil 44.58 52.99 59.04 0.4507 

Vegetation 49.07 97.62 

SMIT Road and soil 11.36 15.76 31.91 0.1044 

Vegetation 9.07 55.82 

SANL Road and soil 96.47 92.37 94.16 0.9139 

Vegetation 95.10 98.24 

Proposed Road and soil 97.67 92.15 96.29 0.9448 

Vegetation 99.16 98.30 
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results in Fig. 11 . The classification accuracies for the three images

are listed in Table 2 . Fig. 11 contains five land-cover types, i.e., road

and soil (in yellow), vegetation (in green), building (in cyan), and

self-shadow (in red). In Fig. 11 (a) and (b), we can see that most

of the land cover in the shadow regions has been correctly clas-

sified, but part of the road in the shadow regions is misclassified

as building, and some scattered shadow regions exist in the re-

sults of the LCC method and HMC method. In Fig. 11 (c), some road

and vegetation regions in the shadow regions are misclassified as

building because of the mismatching correction in the result of
he SMIT method. In Fig. 11 (d), the SANL method obtains a good

lassification result, but some small shadow pieces still exist. In

ig. 11 (e), the land-cover types in the shadow regions are well clas-

ified into the correct categories, i.e., the vegetation and the road

n the shadow regions have been properly identified, without obvi-

us scattered shadow regions. Although some self-shadow regions

till exist in the result of the proposed method, we mainly focus

n cast shadow removal in this paper. 

Classification accuracy evaluation was undertaken in selected

amples by visual inspection, where all five methods used the

ame verification samples. From Table 2 , in the results of the LCC,

MC, and SMIT methods, although the UA values of vegetation for

he LCC and HMC methods are 97.69% and 97.62%, respectively, the

A and OA values are less than 66%, and the KC is less than 0.53,

hile in the results of SANL and the proposed method, the values

f these three accuracy indices are all above 90%, and the KC is be-

ween 0.91 and 0.95. Compared to the SANL method, it is clear that

he proposed method can achieve higher values in all the indices,

xcept for the UA of road and soil, where there is a minor differ-

nce of 0.22%. From the above quantitative analysis, the proposed

ethod obtains the best shadow removal result. 

The classification accuracy evaluation for the selected samples

rom the three shadow images is shown in Table 3 . The OA and

C are adopted as the evaluation indices. The accuracy of the pro-
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Table 3 

Classification accuracy evaluation for selected samples from the three shadow im- 

ages. 

Image Index LCC HMC SMIT SANL Proposed 

#1 OA (%) 65.13 59.04 31.91 94.16 96.29 

KC 0.5248 0.4507 0.1044 0.9139 0.9448 

#2 OA (%) 81.10 58.92 66.20 91.21 94.27 

KC 0.7063 0.4031 0.4305 0.8576 0.9068 

#3 OA (%) 80.36 72.37 50.52 80.58 97.75 

KC 0.7332 0.6257 0.2592 0.7342 0.9678 

Table 4 

Computation time comparisons for shadow removal (in seconds) with three differ- 

ent shadow images. 

Image size LCC HMC SMIT SNAL Proposed 

#1: 594 × 594 0.995 1.293 153.152 163.722 138.307 

#2: 503 × 503 0.882 0.962 107.206 114.175 79.266 

#3: 584 × 584 0.962 1.102 157.342 156.253 105.710 
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[  
osed method is higher than that of the other four methods. The

A of the proposed method is between 94% and 97%, and the KC

f the proposed method is between 0.90 and 0.97, which demon-

trates its superiority. 

Considering the efficiency of the different methods, the run-

ing time is also counted and listed in Table 4 . Specifically, the

MIT method is realized with C ++ programming language by the

uthors, while the other methods are all realized with Matlab.

n general, C ++ code shows superior performance better in time

omplexity than an equivalent Matlab implementation. As we can

ee, in most case, the computational time is proportional to the

mage size, except for image #3 with the SMIT method. It takes

bout 157.342 s longer than 153.152 s for image #1, because image

3 contains more complex land-cover types than image #1, and

he subregion pairs matching spends more time. The LCC and HMC

ethods take about one second to remove the shadows for all

hese three images, significantly faster than the other three meth-

ds. These two methods are based on the simple statistical infor-

ation without consideration of the different land-cover types in

hadow regions and artifacts around the shadow boundaries in the

hadow removal results. On the other hand, comparing with the

MIT and SNAL methods, the proposed method is the fastest for

hese three images. There is still a large space to accelerate the

ptimization and we will consider some speedup strategies, such

s the multi-resolution scheme in the future [57] . 

. Conclusion 

In this paper, we have presented a novel shadow removal

ethod based on separated illumination correction for urban aerial

emote sensing images. The spatially adaptive weighted total varia-

ion (SAWTV) model is constructed to separate the structured illu-

ination containing the shadow information and the shadow-free

eflectance. The structured illumination is corrected by taking the

and cover into consideration with object identification to preserve

he clear edges of the land-cover types in the corrected shadow re-

ions. As the structured illumination is piecewise smooth, the cor-

ection of the structured illumination can avoid the error caused by

omplex land cover more effectively, compared to undertaking cor-

ection on the observed image directly. From the visual comparison

f the experimental results, the shadow regions corrected by the

roposed method are more natural in visual appearance and are

ore consistent with their surroundings, compared to the results

f the other four shadow removal methods. Two different quan-

itative assessment techniques also verified the superiority of the

roposed method: the SSDI of the proposed method is distinctly
ower than that of the other existing methods, and the classifica-

ion OA and the KC of the proposed method are between 94% and

7% and 0.90 and 0.97, respectively, based on the SVM classifica-

ion method. 
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