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Image mosaicking is often a necessary process to cover a 
large and full region of interest (ROI) for many remote 

sensing applications (e.g., geographical mapping, resource 
and environmental monitoring, and disaster monitoring). 

In the past decades, remote sensing image 
mosaicking has attracted considerable atten-
tion in the community, and a large number of 
algorithms for remote sensing image mosaick-
ing have been proposed. In the meantime, 
there are still several issues to be resolved. In 
this article, we review state-of-the-art remote 
sensing image mosaicking methods focused 
mainly on aspects of radiometric normaliza-
tion, seamline detection, and image blending. 
We also analyze the achievements and chal-
lenges of remote sensing image mosaicking.

BACKGROUND
Due to the limitations of the imaging width 
or mechanism, it is common that the ROI 
cannot be contained in only one remote sens-
ing image scene. For a sensor on a remote 
sensing platform to obtain higher resolution, 
the captured scene must become narrower. 
Accordingly, it is often necessary to mosaic 
multiple images to capture the full ROI or a 
wide field-of-view (FOV) scene [1]. In fact, im-
age mosaicking is the process of merging two 
or more images with overlapping areas into a 
single view having an indistinguishable seam-
line [2]. Among the main purposes of image 
mosaicking are illustrative use, information 
extraction, and geographical mapping. There-
fore, prior to many practical applications, 
image mosaicking is often an essential task 
in remote sensing image processing [3], [4], 
resource and environmental monitoring [5], 
[6], and so on.

For example, NASA sponsored the cre-
ation of the Tri-Decadal Global Landsat Orthorectified data 
collection by mosaicking Landsat Multispectral Scanner 
(MSS), Thematic Mapper (TM), and Enhanced Thematic 
Mapper Plus (ETM+) images. The data set was generated 
from approximately 7,550 MSS (Landsat 1–3) images, 7,413 
TM (Landsat 4–5) images, and 8,500 ETM+ (Landsat 7) imag-
es [7]. There are also many other large-scale remote sensing 
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image mosaics, such as the Advanced Very High Resolution 
Radiometer mosaic of the Antarctic continent produced by 
the National Oceanic and Atmospheric Administration, the 
United States Geological Survey, and the British National 
Remote Sensing Center in 1985 [8]; the Global Rain Forest 
Mapping (GRFM) project over the tropical belt led by the 
National Space Development Agency of Japan [9], [10]; and 
the Central Africa Mosaic Project carried out by the Euro-
pean Space Agency and the German Aerospace Center [5].

Image mosaicking has gone through a long period of de-
velopment, and a large number of algorithms has been pro-
posed. Generally speaking, image mosaicking consists of 
five aspects: image registration [11], extraction of overlap-
ping areas, radiometric normalization [12], [13], seamline 
detection [14], [15], and image blending [16] (see Figure 1). 
A successful mosaic usually has an underlying requirement 
that the multiple images to be mosaicked have a consistent 
geometry [7], which is ensured by image matching or im-
age registration. After the images are aligned, the extrac-
tion of overlapping areas provides the foundation for the 
subsequent radiometric normalization, seamline detec-
tion, and image blending. Relatively speaking, it is very 
simple to extract the overlapping areas. On the one hand, 
for remote sensing images without geographic reference in-
formation, the overlapping areas can be extracted by phase 
correlation [17] or scale-invariant feature transform (SIFT) 
[18]. On the other hand, for remote sensing images with 
geographic reference information, georeferencing informa-
tion can be used for the extraction of the overlapping areas. 
Georeferencing information can be either the geographical 
coordinates of the images (e.g., GPS data) or onboard posi-
tion and attitude data (e.g., inertial navigation system data) 
[19], [20]. To ensure a satisfactory mosaic result, intensity 
balancing should be undertaken to make the intensities of 
the images as consistent as possible. Seamline detection in-
volves finding the optimal seamline locations among the 
images. Based on the detected seamline, image blending 
reduces the differences along the seamline and merges the 
images to an integral individual.

Previous efforts in remote sensing image mosaicking 
have focused mainly on these five aspects. As far as we 
know, the state of the art of this field has not been sum-
marized. Our intention in this review is to allow a better 
understanding of the achievements in image mosaicking 
and to overcome the challenges for future research. Im-
age registration has been outlined by Zitová and Flusser 
[21], Dawn et al. [22], Bisht et al. [23], and Dalmiya and 
Dharun. Furthermore, the extraction of overlapping ar-
eas can usually be completed by simple methods. There-
fore, we do not go into details on image registration and 
the extraction of overlapping areas. Instead, our atten-
tion is focused on radiometric normalization, seamline 
detection, and image blending. In this review, a number 
of methods of digital image mosaicking are also consid-
ered with regard to the universality of remote sensing 
image mosaicking.

RADIOMETRIC NORMALIZATION
To make the mosaicked image a single natural scene, ra-
diometric normalization plays an important role. When 
the images taken from the same sensor at the same time 
are visually similar, their mosaic image looks like a very 
normal integral object. When the mosaic image is used 
as the geographical map, radiometric normalization, in 
particular, is not required. However, in most cases, radio-
metric normalization is necessary because the images to 
be mosaicked differ significantly in terms of radiation. 
In the literature, radiometric normalization is also called 
radiometric balancing, tonal adjustment, or tonal correction. 
Radiometric normalization is based on the premise that 
the reflection conditions in the overlapping areas remain 
constant [25]. Therefore, the corresponding pixel pairs in 
the same location from two different scenes are used to 
calculate the mapping relationship. In other words, the 
mapping relationship of radiometric normalization is de-
rived from the overlapping areas and is then applied to the 
whole image (see Figure 2). For radiometric normalization, 
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FIGURE 1. The procedure of remote sensing image mosaicking.
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FIGURE 2. Radiometric normalization.
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Cresson and Saint-Geours [26] proposed a global harmo-
nization method by solving a quadratic programming op-
timization problem. This method can implement multiple 
remote sensing images simultaneously without any given 
reference image. However, the methods introduced in the 
following are usually based on a reference image. The main 
methods of radiometric normalization can be classified 
into global models, local models, and combined models.

GLOBAL MODELS
Global-model-based methods assume that the radiomet-
ric mapping relationship between the source and target 
images can be represented by a global linear or nonlin-
ear transform, as shown in (1) [27]. The source image is 
the image selected as a reference, and the target image is 
the image whose intensity is to be corrected. The over-
all radiometric consistency is ensured by the following 
global model:

	 ( ),I f I*
1 1= � (1)

where I1  is the target image, I*
1  is the corrected target im-

age, and ( )f $  is a linear or nonlinear function denoting the 
mapping relationships of all of the bands. Global-model-
based methods can be further grouped into pixel-to-pixel 
and region-to-region methods.

PIXEL-TO-PIXEL METHODS
Pixel-to-pixel methods directly model the radiometric 
mapping relationship using the intensity values of the cor-
responding pixel pairs. When the objects in the overlapping 
areas are not changed or the images are captured very close-
ly in time, the relationship of the pixel pairs can be regard-
ed as linear. In this situation, linear regression [25], [28] 
and least-mean-square (LMS)-based transformation [29], 
[30] for all of the pixel pairs are two effective approaches. 
In addition, Chen et al. [31] proposed a method based on it-
eratively reweighted, multivariate alteration detection trans-
formation and orthogonal regression [32] to reduce the er-
ror of radiometric normalization: they achieved radiometric 
consistency by considering the effect of the normalization 
path on the normalization coefficients.

Usually, all pixels in the overlapping areas are used to 
build the relationship. However, not all pixels always sat-
isfy the linear assumption. Thus, the characteristic pixels 
that meet the linear assumption in the overlapping areas 
need to be carefully selected. For example, Yong et al. [33] 
applied band-specific principal component analysis to se-
lect the characteristic pixels. Zhang and Georganas [34] 
selected the principal regions using an intensity histogram 
to construct the transform matrix based on the average in-
tensity values. This method is very fast, but it is not known 
how the accuracy of the registration affects the radiomet-
ric normalization. Radiometric inconsistency can also be 
corrected according to the imaging mechanism. Litvinov 
and Schechner [35] corrected radiometric mismatch by 

estimating the radiometric response and camera nonuni-
formity simultaneously, based on a computer-vision tool 
and the physical process of the imaging system. The results 
they obtained were very satisfactory, indicating that mo-
saicking can be successfully achieved without resorting to 
any type of feathering method.

Pixel-to-pixel methods utilize the mapping relationship 
directly derived from the pixel pairs to correct the radio-
metric differences. These are the basic methods of radio-
metric normalization, and they usually obtain satisfactory 
results for consistent radiometric differences. However, in 
most cases, they are very sensitive to the accuracy of the 
image registration. These methods can thus achieve a good 
effect when registration accuracy is high and radiometric 
difference is consistent.

REGION-TO-REGION METHODS
The region-to-region methods utilize the statistical infor-
mation (e.g., mean, standard deviation, and variance) of 
the intensity in the overlapping areas to construct the ra-
diometric mapping function [36]. Compared with pixel-to-
pixel methods, region-to-region methods indirectly model 
the mapping relationship from pixel pairs. An advantage 
of this method is that the pixel pairs are not required to be 
strictly aligned. When the objects in the overlapping areas 
are changed, especially for multitemporal remote sensing 
images, region-to-region methods are more effective than 
pixel-to-pixel methods. The representative methods in-
clude diagonal-matrix transformation models [37], [38], 
histogram matching [39]–[42], moment matching [43], 
[44], Wallis transformation [45], and quadratic program-
ming color balancing [26].

Among region-to-region methods, the diagonal-ma-
trix transformation models are very basic and simple, 
and they use the mean intensity of the neighboring im-
ages to calculate the relationship. For example, Tian et al. 
[37] proposed a six-parameter diagonal model to com-
pensate for the radiometric differences by spectral trans-
formation between images. In their view, the basis of this 
approach is that the reflected light depends on the spec-
tral properties and the illumination angle on the surface. 
Generally speaking, the diagonal models are suitable for 
remote sensing images with ordinary scenarios or a low 
spatial resolution.

The histogram-matching-based methods make the his-
togram in the overlapping areas of the target image similar 
to that of the source image. These methods assume that 
the radiometric mapping function has no particular pa-
rameters, and most of them apply a lookup table to di-
rectly record the mapping relationship of the source and 
target images [27]. Generally, the lookup table is con-
structed from the joint histogram of the image features 
or pixel pairs in the overlapping areas. Interestingly, Xie et 
al. [46] proposed global optimization to realize intensity 
consistency, guided by an initial solution of the histogram 
extreme-point matching strategy. Based on the histogram, 
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Jia et al. [47] generated an optimal radiometric mapping 
function between a poorly exposed image and a motion-
blurred image by considering radiometric statistics and 
spatial constraints simultaneously. Kim and Pollefeys [48] 
estimated the brightness transfer function by dynamic 
programming (DP) with the intensity histogram in the 
overlapping areas. Yamamoto and Oi [49] used a joint 
histogram of the SIFT feature between two neighboring 
images to estimate the radiometric mapping function. 
In summary, histogram-matching-based methods can 
acquire excellent global radiometric balancing using the 
intensity distribution information.

Moment matching, as depicted in (2), utilizes the mean 
and standard deviation of the overlapping areas to calculate 
the relation function. In the following, the mean value rep-
resents the average of the image intensity, and the standard 
deviation represents the variability of the image intensity, 
both of which are considered to be the basic indicators for 
image color:

	 ,I I*
1 1

1

2
2

1

2
1v

v
n v

v
n= + -` `j j � (2)

where I1  is the target image; I*
1  is the corrected result of ;I1  

1v  and 2v  are the standard deviations of the overlapping 
areas in I1  and the source image I2 , respectively; and 1n  
and 2n  are the means of the overlapping areas in I1  and ,I2  
respectively. The strategy of matching the mean and stan-
dard deviation also works well in a color space with decor-
related axes [50]. Moment matching can obtain a similar 
effect to the LMS-based methods when the images have a 
high registration accuracy. However, moment matching is 
much less sensitive than LMS-based methods to registra-
tion accuracy.

Wallis transformation is a similar approach to moment 
matching; it uses the mean and variance [51] in the over-
lapping areas to adjust the radiometric differences. This ap-
proach considers that the intensity variances describe the 
variability of the image radiometric intensity. In fact, when 
the standard deviation values in (2) are replaced by the cor-
responding variances, moment matching is converted into 
Wallis transformation. In most cases, Wallis transforma-
tion obtains a similar result to moment matching.

The previous four method types use the statistical prop-
erties from different angles and patterns to fulfill radiomet-
ric normalization. In summary, because the region-to-re-
gion methods model the radiometric mapping relationship 
according to the statistical information of the overlapping 
areas, they are not sensitive to registration accuracy. For 
radiometric differences with an overall consistency, the 
region-to-region methods can achieve a satisfactory effect.

LOCAL MODELS
As stated previously, global models are very effective for 
the correction of consistent global radiometric difference. 
However, they ignore, to some extent, local radiometric 
differences. When the image contents are complex or the 

images have a high spatial resolution, the transferred inten-
sity from the overlapping areas to the full image will create 
local inconsistency with a global model. In other words, lo-
cal differences will still exist in the images. As a result, local 
models have been put forward to consider local radiometric 
differences. Compared with global models, there has been 
less research into local models. The basic principle of the 
local model is to correct the local radiometric differences 
according to the regional features.

For example, Tai et al. [52] addressed the problem of 
local color transfer by probabilistic segmentation and re-
gional mapping using the expectation-maximization algo-
rithm and a Gaussian mixture model. However, this meth-
od can achieve a natural transition only across regions 
without complex scenes. To solve this problem, Xiang et 
al. [53] further improved this method when a set of source 
images is available. The probabilistic color-correction algo-
rithm [54] computes a series of local color palette mapping 
functions by fitting a set of univariate truncated Gaussians 
to the observed color mappings. The local mapping func-
tions are then used to correct the intensity differences of 
the different regions. Local moment matching [3] adjusts 
the intensity of the target image using different moment 
matching models in different regions. The effect of this 
approach is satisfactory, but the size of the local regions 
needs to be determined empirically. Li et al. [55] proposed 
a pairwise gamma correction model to coarsely align the 
intensity between the source and target images. The radio-
metric differences are then further reduced by the least-
squares adjustment method.

At the core of the local models is designing suitable re-
gional normalization functions according to the character-
istics of local radiometric differences. Local models can ef-
fectively solve the local inconsistency of the intensity, and 
they are a valuable complement to the global models. How-
ever, local models can also bring about new radiometric in-
consistency if the processing mode and level do not match 
with the local features. Therefore, it will be very valuable 
and interesting to design an adaptive local model.

THE COMBINED MODELS
Global models consider the overall consistency of the inten-
sity, while local models take the local differences into con-
sideration. In principle and effect, global and local models 
have complementary advantages. To integrate the respec-
tive advantages of the two types of models, a number of re-
searchers have proposed combined global and local models. 
Usually, this is achieved by the global model’s being first ap-
plied to reduce the global radiometric difference, and then 
the remaining local difference being corrected by the local 
model. To date, there has not been much research on com-
bined models, and the main works are as follows.

Jia and Tang proposed an optimal mapping function for 
global and local intensity replacement by a modeless re-
placement function [56] and tensor voting [57], respectively. 
The radiometric alignment is achieved by the replacement 
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function propagating the curve smoothness constraint in a 
dense tensor field. Based on a global-to-local strategy, Pan 
et al. [58] developed a network-based radiometric equal-
ization approach to eliminate the radiometric differences 
between images. The linear model is globally enforced on 
the images, and the nonlinear model is enforced in the 
overlaps to optimize the local performance. Similarly, Yu et 
al. [59] proposed a global-to-local radiometric normaliza-
tion method that combines global and local optimization 
strategies to eliminate the radiometric differences between 
images adaptively without assigning the reference image. 
The global optimization strategy constraint is that the ra-
diometric differences between the images before and after 
processing should be minimal and the local optimization 
strategy should eliminate the radiometric differences in the 
overlapping areas.

In summary, global models use one function to cor-
rect the radiometric difference, and local models adopt 
different local functions to balance the differences. Com-
bined, the models provide an overall consideration of the 
global consistency and local difference of the radiometric 
normalization. Technically speaking, whichever model is 
selected for radiometric normalization, the radiometric 
mapping function is usually estimated from the overlap-
ping areas of the target and source images and then ex-
tended to the nonoverlapping areas of the target image. 
By the use of this process, the visual artifacts should not 
be imported. With the improvement of the spatial reso-
lution of remote sensing imagery, the combined models 
will provide a more promising direction in the future for 
radiometric normalization.

SEAMLINE DETECTION
Determining the optimal seamline location is a prerequisite 
for achieving a seamless mosaic. The optimal seamline is 
the location where the images share the most intensity and 

texture similarity. Duplaquet [60] listed the following re-
quirements for an optimal seamline: 1) on the seamline, the 
intensity difference of pixels in the two images is minimal, 
and 2) the geometric difference along the seamline is mini-
mal. However, it is not necessary to find the optimal seamline 
for all types of remote sensing images.

For low- or medium-resolution remote sensing imag-
es, the image information content and structure are sim-
ple: the initial seamline can be directly determined by 
the geometrically straight lines of the overlapping area 
(e.g., the diagonal and middle lines in Figure 3), which 
will be optimized subsequently. For high-resolution re-
mote sensing images, because of the differences in projec-
tion, illumination, and moving objects, the optimal seamline 
should be identified [61]. It is preferable that the seamlines are 
curves [see Figure 3(c)] because straight lines are more easily 
detectable by the human eye [62]. According to the difference 
in the data sources, seamline detection methods include two 
categories: image-internal-information-based and external-
data-based methods.

IMAGE-INTERNAL-INFORMATION-BASED METHODS
As the name implies, image internal information methods 
use only the information in the images to detect the opti-
mal seamline. The intensity, texture, and structure of the 
images usually determine the path of the optimal seamline. 
This method type can be further categorized into frame-to-
frame and multiframe joint methods.

FRAME-TO-FRAME METHODS
Frame-to-frame methods use mainly geometric, intensity, 
and texture features of the images themselves to detect the 
seamlines for the overlapping areas in every pair of neigh-
boring images. As shown in Figure 4, multiple seamlines 
are detected one after another by frame-to-frame methods. 
The main methods are the bottleneck model [62], the snake 
model [63], Dijkstra’s algorithm [64], the DP algorithm 
[65], and graph-cut based methods [66].

The simplest and most-direct method of seamline de-
tection is the bottleneck model. For this model [62], the 
cost function is defined by the intensity differences. The 
optimal seamline traverses as little as possible the area 
with the maximum differences. To cope with the large in-
tensity differences in the overlapping areas, the bottleneck 
model has been refined by the greedy, randomized, adap-
tive search procedure [67]. However, the bottleneck model 
struggles to obtain an adequate effect in regions with com-
plicated textures.

Another classical seamline detection method is the 
snake model. This model [63] aims at a spline, with mini-
mal energy, constrained by external and image forces. A 
snake is an active contour that moves through an image 
and changes its shape until a minimum of its energy func-
tion is obtained, which can be an edge, a line, or a subjec-
tive contour. The energy function of a mismatching value 
is composed of the internal energy, photometric terms, and 

(a) (b) (c)

FIGURE 3. The seamlines (denoted in red): the (a) diagonal line, 
(b) middle line, and (c) curve.

FIGURE 4. An example of frame-to-frame methods for seamline 
(denoted by the red lines) detection.
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external constraint forces. The line with minimal energy 
is the optimal seamline. However, a local minimum is of-
ten obtained by the snake algorithm. The improved snake 
model [68] was proposed to solve—although not com-
pletely—the local optimum of the photometric terms 
with the Bresenham algorithm by multiple circulation. The 
twin-snake model [69], [70] is an extension of the snake 
model; here, two snakes approach the line in the overlap-
ping areas from the opposite borders and are forced to ap-
proach one another. The optimal seamline is the result of 
merging the two snakes. This approach comes with a high 
computational cost, and the twin-snake model also can-
not overcome the local minima problem [71]. Because the 
snake model and twin-snake model add constraints other 
than the intensity difference, they can achieve a better re-
sult than the bottleneck model.

A large amount of effort has focused on the popular 
Dijkstra’s algorithm [64], which is widely used to find the 
shortest path. Based on this method, many seamline de-
tection methods have been proposed. The seamline is the 
path that has the lowest cost from one edge of the overlap-
ping areas to the other. For example, Davis [72] used this 
method to detect the optimal seamline of an image with 
moving objects. The relative difference between the two 
neighboring images measures the similarity of the overlap-
ping areas. In addition, Dijkstra’s algorithm was optimized 
in a weighted graph by the authors of [73] and based on 
image segmentation [74]. To avoid the complete obstacle 
area, the semiglobal-matching-based method [75] has been 
used to guide Dijkstra’s algorithm to find the seamline. Pan 
et al. [76] proposed the two-level (pixel-level and object-
level) seamline optimization approach based on the region 
change rate, in which the pixel level is based on Dijkstra’s 
algorithm. Similarly, Wang et al. [77] extracted the seam-
line with marker-based watershed segmentation [78] at the 
pixel and the object levels. Dijkstra’s algorithm is very ro-
bust for seamline detection. Therefore, with a predesigned 
path, researchers commonly resort to it for selecting the 
least-cost seamline.

In fact, Dijkstra’s algorithm is also a type of DP algo-
rithm [65] that is extensively used in seamline detection. 
Firstly, Duplaquet [60] developed a DP algorithm to search 
for an invisible seamline with a higher efficiency than Di-
jkstra’s algorithm. Wen and Zhou [79] then combined DP 
and gray relational analysis to detect the best seamline. 
Chon et al. [80] found a longer seamline with fewer highly 
mismatched pairs by a cost conversion. In addition, the DP 
algorithm was refined by improved criteria and improved 
templates with an eight-direction Sobel operator by [81]. To 
avoid the seamline’s going through buildings, Li et al. [3] 
proposed an automatic piecewise DP (APDP) method with 
five search directions (see Figure 5). The piecewise detec-
tion controls the deviation of the optimal seamline so that 
it can avoid ghosting. The DP algorithm provides a flexible 
framework for seamline detection by weighting different 
constraints. With an appropriate modification according to 

the image features, it is very robust and effective for remote 
sensing images.

Graph-cut-based methods are another practical way 
to detect the optimal seamline [66]. The basic idea is to 
construct a specialized graph representing the energy 
function such that the minimum cut on the graph also 
minimizes the energy [82], [83]. Kwatra et al. [84] uti-
lized the graph-cut technique to determine the optimal 
patch region for any given offset from the input image 
and output image. Agarwala et al. [85] combined a set of 
photographs into a single composite image by graph cuts 
to optimize the seamline, and then they used gradient 
fusion to reduce the visible artifacts. Gracias et al. [82] 
further used watershed segmentation and graph cuts to 
find the best seamline. To avoid moving objects, Qu et al. 
[86] applied the min-cut/max-flow algorithm to search 
for the optimal stitching line. Graph-cut-based methods 
can be computed very efficiently by penalizing the radio-
metric difference.

Additionally, other methods have been proposed based 
on geometric, intensity, and texture features. For example, 
Levin et al. [87] and Zomet et al. [88] detected the seamline 
in the gradient domain to reduce seam artifacts and edge 
duplication. A bisector seamline algorithm proposed by 
Yang et al. [89] is based on the geometric characteristics in 
the valid overlapping areas of the remote sensing images. A 
seam planning algorithm [90] has also been applied to uti-
lize the cost function of the path planning and so detect the 
seamline. To constrain the seamline along a road, a meth-
od based on edge detection was put forward recently by 
Nguyen et al. [91]. Laaroussi et al. [92] used the histogram-
equalization-based method to find the optimal seamline to 
avoid dynamic objects in the images. All the used features 
aim at restraining the seamline along radiometrically equal 
regions so that the optimal seamline can be invisible.

MULTIFRAME JOINT METHODS
Frame-to-frame methods are usually effective for a small 
number of images. Once the seamline of a pair of images 
is detected, the same method can be applied to the other 
pairs of images, as in [93]. However, for a large data set, 
this approach has low efficiency as it is dependent on the 

0 1

2 3 4

FIGURE 5. The five search directions for a seamline in an APDP [3].
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composite sequence and the requirement for intermediate 
treatment. In contrast, multiframe joint methods are more 
efficient, as shown in Figure 6. These methods can simul-
taneously compute a seamline network for multiple im-
ages. In other words, the seamlines for all of the images are 
detected at the same time. The multiframe joint methods 
were developed on the basis of frame-to-frame methods in 
recent years, so they have on advantages in quantity. 

Several methods have been developed for generating 
the seamline network based on a Voronoi diagram, as 
shown in Figure 7. Hsu et al. [94] first proposed a local-to-
global method using ordinary Voronoi diagrams to gener-
ate a network of seamlines. However, it cannot be ensured 
that the seamline always lies in the overlapping areas. 
More effectively, based on area Voronoi diagrams with 
overlap (AVDO), a seamline network was formed auto-
matically and effectively by Pan et al. [95]. This network is 
globally generated and can be further refined by the radio-
metric difference in the overlapping areas. Pan et al. [96] 
further improved the AVDO algorithm by including the 
detection of valid regions, providing a more general algo-
rithm for generating bisectors, and refining the seamline 
network by combining the bottleneck model and Dijks-
tra’s algorithm. Owing to the watershed segmentation al-
gorithm, the bounded Voronoi diagrams [97] for a global 
seamline network generation are improved. The Voronoi 
diagram provides an excellent way for multiframe joint 
seamline detection. To obtain an outstanding seamline 
network that bypasses the integrated objects, preliminary 
results of the Voronoi-diagram-based methods should be 
further optimized.

The framework of graph cuts has also been introduced 
into the multiframe joint optimization strategy for seam-
line detection [98]. This method allows a simple human–
computer interaction to constrain the image regions the 
seamlines will or will not pass through. Based on the op-
timal network vertices, the seamlines with the shortest 
paths between vertices can be detected by a graph-based 
approach [99]. Pan et al. [100] proposed an initial seamline 
network generation method based on improved seeded re-
gion growing, where the boundary of the overlapping ar-
eas is selected as the seed of the algorithm. This method is 
raster based and can address concave polygonal overlap-
ping regions.

Compared with frame-to-frame methods, multiframe 
joint methods significantly increase the efficiency of 
seamline detection by omitting intermediate treatments. 
At the same time, the result is improved by the replace-
ment of serial detection with global optimization. Based 
on only the information in the images themselves, multi-
frame joint methods can achieve a great effect. However, 
their efficiency can be further improved by introducing 
external data.

EXTERNAL-DATA-BASED METHODS
Traditional methods of seamline detection are based on 
only the images themselves. In recent years, methods 
based on external data have attracted increasing atten-
tion. These external data can guide the seamline to by-
pass ground objects (e.g., buildings), which brings a new 
concept to seamline detection. The main works are listed 
as follows.

First, lidar point clouds were used for seamline detec-
tion in [101]. Wang et al. [102] adopted a vector road map to 
generate seamlines; here, the vector road data are applied to 
construct a weighted graph, and Dijkstra’s algorithm finds 
the lowest-cost path as the seamline. Similarly, Wan et al. 
[103] used vector road data to search for the seamline, but 
they instead applied the Floyd–Warshall algorithm [104] 
to find the lowest-cost path. A region-based saliency map 
[105] generated by a human attention model [106] has also 
been used to guide the seamline, which is also guided by 
pixel-based image similarity and location constraints. 
To avoid discontinuity in the mosaic, the information of 
ground object classification has been imported for seam-
line detection [107], where the object classes are obtained 
by the normalized difference vegetation index and the 
morphological building index.

A digital surface model (DSM) is commonly applied to 
detect seamlines. For example, Chen et al. [108] used the 
elevation information from a DSM to guide a seamline 
toward a low area by stereo matching. Based on the ini-
tial seamline network of the Voronoi diagram algorithm, 
Zheng et al. [109] and Zheng et al. [110] used the DSM 
to detect the edge diagram, which is finally refined by 
the weighted A* algorithm. To avoid buildings, on the 
one hand, a DSM can be applied using a gradient opera-
tor [111]; on the other, object heights can be derived from 

FIGURE 6. A multiframe joint method for seamline (denoted by the 
red lines) detection.
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FIGURE 7. Seamlines based on a Voronoi diagram.
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the DSM, and seamline detection can then be cast as a 
graph-cut problem [112]. With the help of external data, 
the optimal seamline can be detected with a weakened 
dependence on the image information itself. In brief, 
external data can provide favorable ancillary information 
for seamline detection.

Owing to the differences in radiation, illumination, pro-
jection, and so on, a reasonable way to obtain a seamless 
mosaic is to find an optimal seamline for a smooth transi-
tion from one image to another neighboring image. For the 
image internal information methods of seamline detection, 
frame-to-frame methods are less efficient than multiframe 
joint methods. Moreover, frame-to-frame methods usually 
bypass the obvious ground objects, while multiframe joint 
methods cannot. Thus, multiframe joint methods are often 
accompanied by certain optimization strategies.

IMAGE BLENDING
Minor radiometric inconsistency can still exist around the 
detected optimal seamline. To obtain a natural and smooth 
transition from one image to another neighboring image, 
image blending (also known as seamline elimination, feather-
ing, or alpha blending) is usually required [87]. A large num-
ber of image-blending methods have been proposed. 

Only a few methods have been suggested to get rid of 
differences directly. Peleg [113] removed the seamline by 
subtracting a smooth seam-eliminating function. Similarly, 
a hard correction method [114] can be used to compute the 
average gray difference between the pixels along the seam-
line and then adjust the gray difference to the pixels [89]. To 
some degree, hard correction is similar to the linear transi-
tion method [115], [116] and Poisson image editing [117], 
[118]. Whitaker [16] proposed a level-set blending method 
by minimizing the difference metric on the level set rather 
than the differences in pixel intensity values. The differ-
ences along the seamlines can also be reduced by a low-
frequency smoothing approach [8] or the use of a median 
filter operation [45]. Generally speaking, direct elimination 
along the seamline can reduce the ra-
diometric differences effectively but 
not completely.

To reduce the artifacts along a 
seamline, a weighted combination of 
the two neighboring images within 
a transition zone is commonly used. 
This combination can be achieved by 
the use of a bilinear weighting func-
tion [17], weighted averaging [12], 
[71], [87], [119]–[121], or mean value 
seamless cloning [18]. In other words, 
each image is multiplied by a weight-
ing function in the transition zone 
and then summed to form the final 
mosaic. The core of this method is the 
weighting function, which should 
decrease monotonically with the 

distance from the seamline. Typical weighting functions 
are inverse distance weighting (IDW) and inverse cosine 
distance weighting (ICDW) [3]. As shown in Figure 8, the 
yellow rectangular region is the overlapped area of images a 
and b. In a given buffer, di  denotes the distance from point 
Pi  of image b to the seamline. For a smooth transition be-
tween the buffer of the two images, this is often

	 ,P P Pi
f

i
a

i
a

i
b

i
b~ ~= + � (3)

where Pi
a  and Pi

b  are the pixels in Pi  from image a and im-
age b, respectively; i

a~  and i
b~  ( 1i

a
i
b~ ~+ = ) are their cor-

responding weights; and Pi
f  is the final mosaic result. The 

weights are usually a function of the distance. As shown 
in Figure 9, ICDW has a smoother effect in the edges (for 
0 and 1) than IDW.

There are many types of weighting strategies. For multi-
resolution blending, the weighting strategy can be realized 
with a pyramid [1], [2], [122], [123]. In addition to the image 
domain, weighted blending is also suitable for the gradient 

FIGURE 8. The buffer for image blending [3].
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and the Fourier domains. For example, the gradient blend-
ing method [124] merges the images with a weighted combi-
nation according to a normalized lookup table. In the Fou-
rier domain, the pixel averaging method [125] and weighted 

fusion [126] can be applied. 
Zhao [127] proposed a flex-
ible image-blending method 
using a weighting function of 
the geometry, temporal or-
der, and user control inputs, 
where the weighting func-
tions are individually com-
puted per frame.

The energy minimization 
strategy can also be applied in 
image blending. Su et al [128] 
proposed an energy minimi-
zation blending model in the 
wavelet space that balances 
the smoothness in the over-

lapping area and the fidelity of the original image. Wang 
and Ng [129] developed a variational blending method that 
uses the smoothness assumptions of the mask functions 
and boundary conditions in the overlapping areas. For 
temporally sequential images, an analytic minimization 
criterion [130] has been designed to optimize the blending 
coefficient by considering the temporal variations of the 
background, the temporal delay, and the image resolution. 
Relatively speaking, energy minimization methods are ef-
fective in eliminating the radiometric differences along the 
seamline. However, they usually have a higher computa-
tional cost than the weighting strategies.

As we know, image blending is affected by the result of 
the radiometric normalization and seamline detection. If 
the previously obtained radiometric normalization and 
seamline detection results are not satisfactory, it is difficult 
to obtain a natural transition effect with image blending. 
As a result, a great deal of effort is paid to radiometric nor-
malization and seamline detection. Generally speaking, 

a weighted combination of images in the overlapping ar-
eas performs well. Nevertheless, the neighboring images 
should be precisely aligned; otherwise, the final result will 
contain ghosting.

FUTURE DIRECTIONS
In the past several decades, remote sensing image mosaick-
ing has undergone rapid development, especially in terms  of 
radiometric normalization, seamline detection, and image 
blending. The efficiency and effectiveness of image mosaick-
ing have been improved greatly. However, with the develop-
ment of sensor technology and application requirements, re-
mote sensing image mosaicking faces new opportunities and 
challenges. To the best of our knowledge, future directions 
for remote sensing image mosaicking include, but are not 
limited to, generalized, accelerated, integrated, and smart 
(GAINS) remote sensing image mosaicking.

GENERALIZED REMOTE SENSING IMAGE MOSAICKING
Usually, the goal of remote sensing image mosaicking is to 
obtain a full ROI or a wide FOV scene. In the future, the 
application and concepts of remote sensing image mosaick-
ing should be generalized and extended. For example, im-
age mosaicking will contribute to generating spatially con-
tinuous and high-quality remote sensing images. Optical 
remote sensing images are often subjected to cloud covers, 
so the images themselves include missing information 
[131]. As shown in Figure 10(a), the image cropped from 
Google Earth is contaminated by clouds. Assuming that 
the cloud-free image from another sensor or another time 
is available, the cloud in the current, cloud-contaminated 
image can be removed by the mosaic of the cloud-free and 
cloud-contaminated images [132]–[134]. In this sense, the 
cloud removal of remote sensing images is one type of 
generalized mosaicking. In other words, the goal of image 
mosaicking is not only to enlarge the scene range but also 
to improve the spatial continuity of the image. To obtain 
a spatially continuous image, multisource, heterogeneous 
images from different sensors may be involved in a general-
ized mosaic. The radiometric normalization of multisource 
heterogeneous images is very challenging, as shown in Fig-
ure 10(b). The concepts and applications of remote sens-
ing image mosaicking will be not limited to expanding the 
scene: they will be generalized in the future.

ACCELERATED REMOTE SENSING IMAGE MOSAICKING
With the ongoing development of sensor technology, the 
spatial resolution of remote sensing image mosaicking be-
comes increasingly higher, and the data grow larger and 
larger. For remote sensing image mosaicking of a large-
scale project, the data amount can be staggering. As we 
know, image mosaicking is both data and computation 
intensive. In the context of big data, traditional sequen-
tial computation techniques cannot meet the require-
ments of large-scale image mosaicking applications [135]. 
To achieve the requirements of real-time mosaicking, 

(a) (b)

FIGURE 10. Two example images of Shari Yingaole, Abag Banner, 
Xilin Gol, China, cropped from Google Earth on 4 December 2018: 
(a) 43.328101° north, 115.54889° east and (b) 43.333141° north, 
115.520999° east.
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high-performance computing such as parallel comput-
ing [31], [136], cloud computing [137], and distributed 
computing is considered a very promising direction. In 
addition, hardware systems (such as field-programmable 
gate arrays and graphics processing units) and hardware 
implementation methods (e.g., memory space conversion 
[138]) may also be effective ways to speed up the calcula-
tion process.

INTEGRATED REMOTE SENSING IMAGE MOSAICKING
As stated previously, image mosaicking usually consists 
of image registration, the extraction of overlapping areas, 
radiometric normalization, seamline detection, and im-
age blending. Generally, the five steps are conducted se-
quentially and independently. To some degree, the inde-
pendent processing strategy of image mosaicking restricts 
the automation of remote sensing image mosaicking. For a 
remote sensing image with high spatial resolution, the ac-
curacy of image registration can hardly meet the demands 
of mosaicking. Therefore, high-spatial-resolution remote 
sensing images should be converted into orthorectified 
products before mosaicking. The operational production 
system of orthorectification usually needs high-accuracy 
auxiliary data (e.g., a DSM), which cannot be obtained 
freely and openly in most cases. This also reduces the ef-
ficiency and convenience of mosaicking. In the future, the 
procedure of image mosaicking should be integrated au-
tomatically, especially for high-spatial-resolution remote 
sensing images.

SMART REMOTE SENSING IMAGE MOSAICKING
In terms of mosaicking multiple remote sensing images, 
the traditional idea is to mosaic them frame by frame, 
including image registration, radiometric normalization, 
and seamline detection. Within the last 10 years, multi-
frame joint methods have been proposed for seamline 
detection. Compared with frame-to-frame methods, mul-
tiframe joint methods show superiority by being indepen-
dent of the processing sequence and not requiring interme-
diate treatment. The multiframe joint strategy should also 
be introduced into image registration and radiometric nor-
malization. The accumulated errors from frame-to-frame 
methods will be alleviated and optimized. In other words, 
the multiframe joint strategy is smarter in terms of global 
restriction and adjustment.

As noted previously, the overlapping areas are the basis 
of mosaicking (radiometric normalization, seamline de-
tection, and image blending). When the overlapping areas 
occupy a small part of the image, a satisfactory mosaick-
ing result is very difficult to achieve. For better results, it 
is preferable to mosaic images with a low ratio of overlap-
ping regions. Usually, remote sensing image mosaicking is 
preformed by variegating the images with geographical co-
ordinates. Regarding remote sensing images without geo-
graphical information, a wise solution should be provided 
in the future.

Additionally, image-internal-information-based meth-
ods of seamline detection are often inefficient in compli-
cated regions. Multiframe joint methods provide an avail-
able and smart approach with the aid of external data. In 
practical application software (e.g., Inpho OrthoVista), to 
obtain an ideal optimal seamline, human editing is usual-
ly needed. The fully automated optimal seamline should 
be detected by a smart strategy. In summary, smart remote 
sensing image mosaicking should pursue this direction.

CONCLUSIONS
In this article, we provided a comprehensive and quan-
titative summary of remote sensing image mosaicking 
in relation to the aspects of radiometric normalization, 
seamline detection, and image blending. Over the past 
few decades, many attempts have been made to improve 
the quality of image mosaicking. However, the process 
of achieving a perfect mosaic image still faces several 
challenges. Future research on remote sensing image mo-
saicking will use GAINS techniques. In other words, the 
application and concept of remote sensing image mo-
saicking should be generalized, the computation speed 
accelerated, the processing procedure integrated, and the 
processing strategy smart. 
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