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A B S T R A C T

Aerosol optical depth (AOD) is a pivotal parameter to reflect aerosol properties, such as aerosol radiative forcing
and atmospheric corrections of the aerosol effect. Unfortunately, the valid pixels of moderate resolution imaging
spectroradiometer (MODIS) AOD products are scarce, which has attracted great attention from scholars. In
recent years, numerous AOD recovering algorithms have been proposed and the algorithms merely employing a
single temporal AOD image are regarded as the most convenient and flexible for large-scale practical applica-
tions. However, current algorithms face the challenge of insufficiently considering the impacts of aerosol var-
iation resulted from the temporal difference. Meanwhile, the improvement of AOD valid pixels is also poor due
to the scarce excavation of complementary information. In order to address these issues, a novel algorithm of
spatial-temporal hybrid fusion considering aerosol variation mitigation (ST-AVM) is developed to fill the missing
pixels in Aqua AOD products with a single Terra AOD image in large scale. The results show that the total
recovered AOD products nearly maintain the original accuracy of MODIS. Meanwhile, the AOD coverage is
significantly improved in the study areas and the degrees of improvements regionally vary. Overall, the AOD
coverage over land is increased by 123.9% (from 20.5% to 45.9%) after the recovery. Besides, the spatial dis-
tribution of recovered monthly AOD products remains fairly consistent as the original Aqua. Also, the recovered
annual AOD spatial distribution shows more coherent, which indicates the reliability of ST-AVM algorithm.

1. Introduction

Atmospheric aerosols are liquid and solid particles suspending in
the air (Li et al., 2014), which can affect the climate directly and in-
directly (Che et al., 2018). The aerosols pollution that originates from
natural and anthropogenic sources has attracted great attention from
researchers (Emetere et al., 2019; Hou et al., 2019; Ma et al., 2019;
Volkamer et al., 2006). Generally, one of the key parameters, i.e.,
aerosol optical depth (AOD), which is defined as the vertical integral of
light extinction by aerosol in the atmospheric column (Van Donkelaar
et al., 2010) is employed to depict aerosol optical properties (Della Ceca
et al., 2018). Considering that ground-based measurements are incap-
able of providing a global perspective, different sensors on onboard

remote satellites have been used to retrieve AOD products, such as
MODIS (Kaufman et al., 2005), MISR (Kahn et al., 2010), OMI (Ahn
et al., 2014), and so on (Sayer et al., 2012; Zhang et al., 2019). With 36
spectral channels, a temporal resolution of 1–2 days, and spatial re-
solutions of 250m, 500m, and 1000m (Bisht et al., 2005; Justice et al.,
1998; King et al., 1992), moderate resolution imaging spectro-
radiometer (MODIS) can generate daily AOD products based on the
dark target (DT) algorithm (Gupta et al., 2016; Levy et al., 2013) and
the deep blue (DB) algorithm (Hsu et al., 2013; Wang et al., 2019). AOD
products from MODIS are the most widely used among scholars and
performs well at both local and global scales. While intrinsic drawbacks
still exist in the MODIS AOD algorithms and cause the data missing of
AOD products. For example, the DT algorithm fails to retrieve AOD
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values over bright areas where the surface reflectance is high (Gupta
et al., 2016; Levy et al., 2013); The DB algorithm is unable to acquire
AOD values in the regions contaminated with cloud, snow, and ice (Hsu
et al., 2004, 2013; Wang et al., 2019). Meanwhile, the width of MODIS
swath (~2330 km) is not enough to completely cover the areas with
low latitude (Sayer et al., 2015), which results in the scanning gaps of
AOD products between two adjacent satellite orbits. It has been mani-
fested that the annual completeness of AOD coverage in DT and DB
algorithm is poor (Jinnagara Puttaswamy et al., 2014; Tang et al., 2016;
Xu et al., 2015; Yang and Hu, 2018; Zhang et al., 2017), indicating that
the MODIS AOD products are not available for most days of the year.
Therefore, it is necessary and meaningful to recover the missing pixels
of MODIS AOD products to enhance the availability of data and obtain
spatially continuous AOD products.

To date, the algorithms of AOD recovery have been greatly devel-
oped. For instance, Zhang et al. (2018b), Zhao et al. (2019) utilized
statistic and machine learning algorithms to train the models estimating
AOD values, which seek the relationships among AOD retrievals from
satellites and other factors (e.g., meteorological parameters). Never-
theless, the quality of statistical based algorithms is usually un-
satisfactory due to the scarce accuracy of under-fitting or over-fitting
models. Meanwhile, the universality of such end-to-end models is also
poor. Except for the above algorithms, various merging algorithms have
been proposed and most of them depend on the auxiliary AOD products
from datasets of other satellites (e.g., SeaWiFS and MISR) (Jinnagara
Puttaswamy et al., 2014; Tang et al., 2016; Xu et al., 2015) for a decade.
However, these merging algorithms usually need multiple auxiliary
data and the uncertainties of different AOD products are difficult to be
unified. As a result, a few new algorithms, which consider the con-
tiguous temporal knowledge of the original AOD products themselves,
have been developed, including weighted linear regression with nor-
malized difference vegetation index (NDVI) (Zhang et al., 2017) and
spatiotemporal kriging (Yang and Hu, 2018). Generally, the recovering
algorithms only based on a single temporal AOD image are regarded as
the most convenient and flexible for practical applications (e.g., parti-
culate matter estimation and air quality monitoring). For MODIS, the
interval of overpass time between Terra (~10:30) and Aqua (~13:30) is
approximately 3 h (Sayer et al., 2015), suggesting a good correlation.
Filling the missing pixels in AOD products from Aqua with the help of
AOD from Terra on the same day is reasonable. However, the variation
of aerosol particles is non-ignorable even in a short time (see red marks
in Fig. 1), especially for large areas in which the diverse aerosol models
distribute. Although the algorithms based on temporal information of a
single auxiliary AOD image possess great potential, yet they face the

challenge of insufficiently considering the impacts of aerosol variation.
Meanwhile, the improvement of AOD coverage is poor due to the scarce
excavation of complementary information in a single temporal AOD
image. Besides, the amount of these algorithms is still small and linear
function is commonly used in large-scale applications at present (He
et al., 2019; Li et al., 2017a, 2017b). Hence, it is required to propose a
brand new algorithm to address the issues of how to accurately and
maximally fill the missing pixels with scarce complementary informa-
tion on a large scale.

The purpose of this paper aims at developing a novel algorithm of
spatial-temporal hybrid fusion considering aerosol variation mitigation
(ST-AVM) to fill the missing pixels in Aqua AOD products with a single
Terra AOD image in large scale. To be specific, the proposed algorithm
is pixel-based on the active windows of Terra and Aqua in the iterative
framework. A total of three approaches, i.e., spatial, temporal, and
spatiotemporal, are jointly employed to fill the missing AOD data as
much as possible under the most suitable circumstances. Besides,
aerosol variation mitigation is designed to reduce the effects of aerosol
variation resulted from the temporal difference. NDVI is also considered
in our algorithm to provide land cover information due to the asso-
ciation with AOD values (Guo et al., 2012).

The rest of this paper is structured as follows. Section 2 introduces
the study areas (53–137°E, 3–57°N) and datasets (from satellites and
ground-based sites) in our study. Section 3 presents the methodology.
Spatial, temporal, and spatiotemporal approaches are organically
merged in the iterative framework. The experiment results and dis-
cussion are given in Section 4, which are divided into three parts: as-
sessment of AOD accuracy, coverage, and spatial distribution. Finally,
Section 5 provides the conclusion.

2. Study areas and datasets

2.1. Study areas

In our study, an area with total coverage of ~453600 sq·km. located
in Asia (53–137°E, 3–57°N) is selected, including China, India,
Kazakhstan, Mongolia and so on. The study areas contain some typi-
cally populated regions (e.g., China, India, and Pakistan) and numerous
related researches in the past worked on them (Guo et al., 2012; He
et al., 2019; Wang et al., 2019). Hence, spatiotemporally continuous
and accurate AOD products are required in these areas. Meanwhile, the
land cover types of the study areas are complex and diverse (see the
legends in Fig. 2), which may help examine the universality of ST-AVM
algorithm.

Fig. 1. Maps of daily AOD distribution for (a) original Terra AOD and (b) original Aqua AOD on 29th February 2016. The color bar represents the AOD values. The
red marks highlight some regions with different AOD values. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Y. Wang, et al. ISPRS Journal of Photogrammetry and Remote Sensing 157 (2019) 1–12

2



2.2. Datasets

In this paper, DB products with a 10-km spatial resolution in col-
lection 6.1 from Terra and Aqua are utilized. In addition, the NDVI
auxiliary products (MOD13A1) are also employed in our algorithm. The
recovered AOD products are validated using Version 3.0 Level 2.0
AEROsol Robotic NETwork (AERONET) AOD products from 51 ground
sites in Asia.

2.2.1. AERONET AOD products
The AERONET is a global ground-based network of sun photo-

meters, which provides spectral AOD measurements with a high tem-
poral resolution (~15min) in the bands of 0.34–1.06 µm (https://
aeronet.gsfc.nasa.gov). Datasets with three quality levels: Level 1.0
(unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened
and quality-assured) are available at the AERONET website. The
Version 3.0 AERONET AOD datasets of Level 1.5 and Level 2.0 with low
uncertainty (Giles et al., 2019) are seen as the ground truth to validate

the recovered AOD products in our study. A total of 51 AERONET sites
in Asia with multiple land cover types are listed in Table 1.

2.2.2. MODIS DB AOD products
At first, the DB algorithm was devised to retrieve aerosol properties

over bright areas, where the surface reflectance is usually high in the red
and near-infrared bands. On the contrary, surface reflectance in these
places is much darker in the band at 0.5 µm (Hsu et al., 2004). Specifi-
cally, DB retrieves AOD values with 1-km spatial resolution employing the
surface reflectance databases at three bands (0.412, 0.47, and 0.65 µm),
and then aggregates pixels to 10 km. After ten years, an enhanced algo-
rithm which integrates the precalculated databases and NDVI to obtain
the surface reflectance has been developed (Hsu et al., 2013). In con-
clusion, the AOD coverage from the collection 6 DB algorithm has been
expanded to more land areas except for the regions of snow and ice. In the
latest collection 6.1, a total of three new improvements have been in-
troduced in the DB algorithm (Wang et al., 2019). In our study, the record
named “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate” from

Fig. 2. Distribution of the AERONET sites considered in this paper. The detailed information of each site can be found in Table 1.

Table 1
Detailed information about the AERONET sites considered in this paper. Lat: latitude; Lon: longitude.

AEROENT Lat/Lon (°) AEROENT Lat/Lon (°) AEROENT Lat/Lon (°)

Anmyon 36.54/126.33 Jaipur 26.91/75.81 Taipei_CWB 25.01/121.54
Bac_Lieu 9.28/105.73 Kanpur 26.51/80.23 Ubon_Ratchathani 15.25/104.87
Beijing 39.98/116.38 KORUS_Kyungpook_NU 35.89/128.61 Ussuriysk 43.70/132.16
Bhola 22.23/90.76 KORUS_Mokpo_NU 34.91/126.44 XiangHe 39.75/116.96
Chen-Kung_Univ 22.99/120.20 KORUS_UNIST_Ulsan 35.58/129.19 ND_Marbel_Univ 6.50/124.84
Chiang_Mai_Met_Sta 18.77/98.97 Luang_Namtha 20.93/101.42 Lulin 23.47/120.87
Chiayi 23.50/120.50 NGHIA_DO 21.05/105.80 Manila_Observatory 14.64/121.08
Dalanzadgad 43.58/104.42 Nong_Khai 17.88/102.72 Hong_Kong_PolyU 22.30/114.18
Dushanbe 38.55/68.86 Omkoi 17.80/98.43 Hong_Kong_Sheung 22.48/114.12
EPA-NCU 24.97/121.19 Osaka 34.65/135.59 AOE_Baotou 40.85/109.63
Fukuoka 33.52/130.48 Pokhara 28.19/83.98 SONET_Shanghai 31.28/121.48
Gandhi_College 25.87/84.13 Pusan_NU 35.24/129.08 SONET_Nanjing 32.12/118.96
Gangneung_WNU 37.77/128.87 Seoul_SNU 37.46/126.95 SONET_Hefei 31.91/117.16
Gwangju_GIST 35.23/126.84 Shirahama 33.69/135.36 SONET_Harbin 45.71/126.61
Hankuk_UFS 37.34/127.27 Silpakorn_Univ 13.82/100.04 XuZhou-CUMT 34.22/117.14
IAOCA-KRSU 42.46/78.53 Son_La 21.33/103.91 SONET_Xingtai 37.18/114.36
Irkutsk 51.80/103.09 Taihu 31.42/120.22 NAM_CO 30.77/90.96
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daily AOD products (MOD04_L2 and MYD04_L2) during
2016.01.01–2016.12.31 is considered as the appropriate data (Hsu et al.,
2013).

2.2.3. MODIS NDVI products
MOD13A1 products can provide every 16 days at a 500-m spatial

resolution as a gridded global NDVI in the Sinusoidal projection. They
are computed from atmospherically corrected bidirectional surface re-
flectance, which has been masked for cloud, cloud shadow, heavy
aerosol, and water. The NDVI products are usually used for monitoring of
vegetation conditions, displaying the surface properties and land cover
changes. In our study, we select the record: “500m_16_days_NDVI”
during 2016.01.01–2016.12.31 as the auxiliary data. Meanwhile, the
auxiliary data is aggregated to the 10-km spatial resolution by averaging
the NDVI in the windows of 20 * 20 pixels.

3. Methodology

Some concepts employed in ST-AVM algorithm are listed in Table 2.
The proposed algorithm is pixel-based on the active windows (AWA,
MW, and AWT), which are centered on each missing pixel of Aqua and
on the proper pixel of Terra. The dates of the input AOD products from
Terra and Aqua are in the one-to-one correspondence. As depicted in
the flowchart (Fig. 3), the iterative framework is introduced in our al-
gorithm. Firstly, the data processing, i.e., AWA selection, is performed
to acquire the active window on PA, characterizing the robust spatial
information of AOD round missing pixel. Next, temporal approaches,
which depend on the temporal information from Terra, are utilized on
the condition that AWA doesn’t exist. Otherwise, aerosol variation mi-
tigation is adopted to search the proper MW (AWT) on PT compared
with AWA, reducing the effects of aerosol variation resulted from the
temporal difference. If the temporal information from AWT of Terra is
still unreliable, only spatial approaches leaning on spatial information
from Aqua could be used for recovery. On the contrary, spatiotemporal
approaches (simultaneously merging the spatial information from Aqua
and temporal information from Terra) is implemented to attain more
dependable recovered result provided that the similarity between AWA

and AWT is strong. A total of three approaches are jointly included in
our algorithm in order to ensure the missing AOD data is filled as much
as possible. In the end, the increment of AOD coverage is regarded as
the criteria (less than 5%) during each iteration. The specific proce-
dures of ST-AVM algorithm are described as follows.

3.1. Data processing (AWA selection)

The spatial adjacent knowledge around PA is the basis for recovering
processing. The strategy of active windows to represent spatial prop-
erties was widely considered in the reconstruction task for remote
sensing image processing (Xu et al., 2019; Zeng et al., 2018; Zhang
et al., 2018a). Therefore, the selection of active window centered on PA,
i.e., AWA, is adopted and includes two steps: “self-adaptive window
selection” and “edge window removal” in our study.

3.1.1. Self-adaptive window selection
The valid AOD pixels in the active windows used to reflect the

surrounding AOD spatial structure of the missing pixel is important.

Usually, the windows with the predetermined length were widely
considered, which include the valid AOD pixels of a fixed number.
However, this way appears insufficient flexibility and ignores the spa-
tial characteristics of AOD distribution. For each PA, less AOD differ-
ence among the surrounding valid pixels is desired, which contains
robust spatial information. Generally, the standard deviation is a
measurement of the degree for statistical distribution, as shown in
Eq. (1).

=
=

D
N D

D D( ) 1
( ) 1

( ( ) ( )¯ )
i

N D

Aqua i Aqua
1

( ) 1
2

(1)

where represents the AOD standard deviation of the active window;
N represents the number of valid AOD pixels of the active window in
Aqua; D represents the radius of the active window in Aqua; Aqua re-
presents the valid AOD values of the active window in Aqua; The
overbar represents the averaged valid AOD values of the active window
in Aqua. Therefore, the windows based on the local minimum AOD
standard deviation are adopted as the most proper active windows of
Aqua. In our algorithm, the input radiuses of active windows vary from
2 to 7 with the increment of 1, which is seen as a process of the self-
adaptive selection.

3.1.2. Edge window removal
If the AOD pixels of the spatial reference are illustrated as edge

windows (see Fig. 4(a)), where the PA distributes at the edge of valid
pixels, the recovered result tends to be unreliable due to the significant
lack of AOD spatial continuous information. On the contrary, when the
AOD pixels distribution is similar to Fig. 4(b), where the valid pixels
mostly surround the PA, the reliability of the recovered result would be
much more increased. In conclusion, the edge windows ought to be
removed and the PA of them would not be filled. Considering the fact
that the process of edge window removal is complicated, we have ap-
pended the detailed flowchart and several examples in the supple-
mentary materials to make it easier for understanding.

3.2. Temporal approaches (NDVI-based local regression)

AWA is able to reflect the adjacent AOD spatial structure around PA.
When the spatial information of AWA is unstable (i.e., The number of
valid AOD pixels around PA is very small or zero in AWA; AWA is seen as
an edge window), spatial approaches are inadvisable. Meanwhile, we
also fail to trace the variation of aerosol particles due to lack of the
valid spatial properties around PA, suggesting that only the temporal
information around PT could be acquired. In other words, if none of
AWA could be discovered on PA, NDVI-based local regression is utilized
as temporal approaches for recovery in our study.

The linear function is suitable for practical applications due to the
short time consumption compared to complex models. Generally, the
accuracy of linear function may not meet the requirements of large-
scale AOD recovery, only considering the holistic AOD information
instead of local distinctions. On the contrary, the linear function per-
formed on a local scale would improve the reliability of recovered AOD
results. Besides, the NDVI values, which could display the surface
properties, are associated with AOD values (He et al., 2019; Li et al.,
2014). The direct introducing of NDVI in the regression model would

Table 2
Detailed information about some concepts used in the proposed ST-AVM algorithm.

Name Description

PA The missing pixel in Aqua
PT The pixel in Terra, which owns the same grid coordinates of the missing pixel in Aqua
active window in Aqua (AWA) The pixel-based active window centered on PA of Aqua, which represents the surrounding AOD spatial structure around PA
matching window in Terra (MW) The pixel-based active window in the matching range of Terra, which is utilized to calculate the similarity with AWA

active window in Terra (AWT) The pixel-based active window centered on the proper pixel of Terra, which owns the best similarity with AWA
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enhance the robustness for diverse land cover types. Specifically, as
depicted in Fig. 5, the input window (centered on PA) and the output
window (centered on PT) are primarily fixed, which include enough
valid AOD pixels. Next, the active window in NDVI with the same co-
ordinates of the output window is selected. Eventually, the values of the
jointly valid pixels in the three windows are employed to fit the re-
lationship with the binary linear regression, as shown in Eq. (2).

= + +NDVI a·  b·  cAqua Terra Aqua (2)

where Aqua, Terra, and NDVIAqua denote the jointly valid values in the
active windows of Aqua, Terra, and NDVI, respectively; a, b, and c are
coefficients. Therefore, the fitted functions are different everywhere

with the grid coordinate varying, sufficiently including the local in-
formation of AOD distribution and surface properties. It’s worth noting
that the AOD value of the center pixel in the input window will be filled
with spatial interpolation provided that the AOD value on PT is invalid.

3.3. Aerosol variation mitigation

As mentioned above, the variation of aerosol particles is non-ig-
norable and consequently it’s required to reduce the effects of aerosol
variation resulted from the temporal difference. In other words, the
AOD value of PA may be derived from surrounding pixels in the tem-
poral data, instead of the same grid coordinate. Hence, aerosol

Fig. 3. Flowchart of the proposed ST-AVM algorithm. The red squares represent the active windows in Aqua and Terra. dMAC represents the percentage of AOD
coverage increment after each iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) (b) 

Fig. 4. Examples of (a) edge windows and (b) desired windows.
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variation mitigation is performed to determine the most similar MW
(AWT) on the condition that AWA exists on PA. In our algorithm, similar
blocks matching is regarded as the approach for variation mitigation.
To be specific, as illustrated in Fig. 6, the matching range centered on
PT in Terra with a diameter of D is fixed. Pearson correlation coefficient
is a statistical parameter used to reflect the degree of the relationship
between two variables, as shown in Eq. (3).

= =

= =

r ( , )
( ¯ )( ¯ )

( ¯ ) ( ¯ )
Aqua Terra

j
n

Aqua j Aqua Terra j Terra

j
n

Aqua j Aqua j
n

Terra j Terra

1

1
2

1
2

(3)

where r represents the Pearson correlation coefficient; n represents the
number of jointly valid AOD pixels in the active windows of Terra and
Aqua; Aqua and Terra represent the jointly valid AOD values in the active
windows of Aqua and Terra, respectively; The overbar represents the
averaged valid AOD values in the active windows of Terra and Aqua.
For each pixel in the matching range, we select the block of the same
size as AWA and calculate the Pearson correlation coefficient between
the two windows. Eventually, the block with the highest correlation
coefficient is considered as AWT of Terra.

3.4. Spatial approaches (NDVI-based spatial interpolation)

After mitigation of the effect from aerosol variation, AWA and AWT

are supposed to show the best similarity. Nevertheless, the temporal
information could be invalid in case of significant aerosol variation in
the matching range. Under the circumstances, spatial approaches will

be used for recovery on the condition that the similarity between AWA

and AWT is poor (Pearson correlation coefficient less than 0.8).
Inverse distance weighted (IDW) is a simple spatial interpolation

approach, which takes the square distance between target points and
sample points as the weight. However, the distribution of aerosol par-
ticles is complicated and consequently the square distance may be not
enough to reflect the local AOD variation. Similarly, the knowledge of
land surface from NDVI products could be employed to enhance the
reliability of spatial interpolation. As a result, the NDVI-based IDW is
adopted for spatial interpolation in our algorithm. The weight is de-
fined as Eq. (4).

= + + +

=

=

= =

=
+

=
+

a i j c k x x y y NDVI NDVI

b i j

W c k

( , , , ) (( ) ( ) )· | |
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c i r
i r

k j r
j r
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b i j

2 2
1 ,

2
,

2
2

1
( , , , )

( , )

1
5

2
3

a i j c k
1

( , , , )

(4)

where x y( , )i i and NDVIi j, represent the grid coordinate and NDVI of the
missing pixel, respectively; x y( , )c k and NDVIc k, represent the grid co-
ordinate and NDVI of valid pixels in the interpolation window, re-
spectively; W represents the weight of valid pixels in the interpolation
window; r represents the radius of the interpolation window. 1 and 2
are small values that prevent a i j c k( , , , ) from equaling zero, which are
empirically determined. As a result, + +x x y y(( ) ( ) )i c i c

2 2
1 de-

scribes the spatial distinction and +NDVI NDVI| |i j c k,
2

,
2

2 reflects the

Fig. 5. Schematic diagram of NDVI-based local regression. The red squares represent the input window, NDVI window, and output window. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Schematic diagram of aerosol variation mitigation.
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difference of land cover types.

3.5. Spatiotemporal approaches (spatiotemporal weighting)

Although the qualities of spatially and temporally recovered results
have been stringently controlled, yet some unexpected situation may
still exist, which could lead to unstable biases in final results. Generally,
spatial (or temporal) information is able to provide complementary
knowledge for temporal (or spatial) information (Li et al., 2019; Yuan
et al., 2018). In order to acquire more robust recovered results, spa-
tiotemporal approaches are introduced in our algorithm provided that
the reliability of spatially recovered result and temporally recovered
result meet the requirement. To be specific, the spatially recovered
result is obtained with NDVI-based spatial interpolation. Meanwhile,
the temporally recovered result is attained with NDVI-based local re-
gression (AWT as input window and AWA as output window).

In our algorithm, the spatiotemporal weighting is employed to take
spatial and temporal properties into account at the same time. The
weight is defined as Eq. (5) after the spatially and temporally recovered
results are acquired.

= =
= +
= +

w w
w w w

,N
l

N r
l

st
w w

w

1 2

1 2

s

s

t

t

s t

2 2

1 2
(5)

where Ns and Nt represent the number of valid pixels in AWA and AWT,
respectively; r represents the correlation coefficient between AWA and
AWT; ls and lt represent the minimal distance between missing pixel and
valid pixels in AWA and AWT, respectively (if the center pixel in AWT

exists, ls and lt are set to 1); s and t represent the spatially and tem-
porally recovered results, respectively; st represent the spatiotempo-
rally recovered result. As a consequence, Ns and Nt reflect the abun-
dance of valid information in AWA and AWT, respectively. ls describes
the reliability of spatially recovered results. lt and r show the reliability
of temporally recovered results.

4. Experiment results and assessment

In our study, three indicators, i.e., accuracy, coverage and spatial
distributions, are considered to evaluate the quality of DB AOD re-
covery.

4.1. Assessment of AOD accuracy

4.1.1. Validation methodology
The total recovered AOD products (including the original and filled)

are compared to the original AOD from Aqua and Terra. Meanwhile, the
recovered missing AOD products (only including the filled) are com-
pared with two common methods: (1) Replacement. The missing data in

Aqua AOD is directly replaced with Terra AOD on the same day; (2)
Linear function. For each day, AOD products of Terra and Aqua are
integrally used to fit a linear regression, which could predict the
missing data in Aqua. Since ground-based sites offer reduplicative
measurements of a point, while satellites provide AOD retrievals of a
certain region at a single moment. Hence, AERONET measurements and
satellites AOD retrievals must be matched in space and time. In our
study, matchups with the average of the AERONET AOD measurements
at the MODIS overpass time (± 30min) and pixels within a radius of
0.25° centered on the AERONET site are adopted (Tang et al., 2016).
AERONET network collects AOD data in multiple wavelengths, many of
which are slightly different from the MODIS (550 nm). Therefore, the
ground-based AOD at 550 nm is interpolated using the Ångström ex-
ponent ( ), which is defined as shown in Eq. (6).

=
ln( )
ln( )

1
2

1
2 (6)

where 1, 2 represent the AOD at wavelengths 1, 2. The results are
validated using the expected error (EE), as shown in Eq. (7) (Sayer
et al., 2014); the root-mean-square error (RMSE), as shown in Eq. (8).

= ± + ×EE (0.03 0.2 )AERO (7)

=
=

RMSE
n
1 ( )

i

n

MOD i AERO i
1

( ) ( )
2

(8)

where AERO and MOD represent the AOD products from satellites and
ground-based sites, respectively.

4.1.2. Validation results
As shown in Fig. 7(a)–(c), the total recovered AOD performs well for

a count of 3385 matched points with the correlation coefficient (R)
reaching 0.873. Other metrics slightly decrease compared to Aqua,
which likely results from the quality of Terra. Therefore, the total re-
covered AOD products nearly maintain the original accuracy of MODIS.
As for missing data depicted in Fig. 8(a)–(c), great overestimation and
high RMSE (0.25) could be observed in the replaced AOD, suggesting
the variation of AOD values in Terra and Aqua. In addition, the R of the
linear function (0.826) is even less than that of the replaced AOD
(0.839), which indicates that the holistic relationship is unsuitable for
large areas recovery. In contrast, our algorithm achieves the best per-
formance, especially for the fraction within EE (57.25%) and R (0.866).
Besides, the number of matched points is much more than other
methods. However, the larger number of samples occasionally results in
a higher correlation. In order to acquire a more reasonable comparison,
the matched points for the three methods are adjusted to the same in
Table 3. As can be seen, the quality of the recovered AOD still prevails
over others regardless of the matched points counts, suggesting that our
algorithm is reliable and robust.

(a) (b) (c)

Fig. 7. Validation results of total products for (a) original Aqua AOD, (b) Terra AOD, and (c) recovered AOD. The color bars represent the counts of points. The red
solid line represents the regression line, the dashed lines are the EE lines, and the black solid line is the 1:1 line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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4.2. Assessment of AOD coverage

Primarily, we quantitatively evaluate the daily coverage of original
Aqua AOD products, linear function/replaced AOD products, and re-
covered AOD products. The completeness was presented using the
percentage, which is calculated with the number of valid AOD pixels
over land in the study areas. The time series plot of daily AOD coverage
in 2016 is shown in Fig. 9. As can be seen, the averaged original AOD
coverage of Aqua is only 20.5%. Meanwhile, the improvement of linear
function (or replaced) AOD shows slight as 7.8%, suggesting that the
complementary information of a single temporal AOD image is in-
sufficient. In contrast, the averaged AOD coverage of proposed algo-
rithm reaches 45.9%, which is increased by 123.9% compared to the
original Aqua AOD.

Next, the annual coverage of the original Aqua AOD and the re-
covered AOD is mapped for comparison. As demonstrated in Fig. 10, the
AOD coverage is significantly improved in the study areas, especially
for India, Pakistan, Afghanistan, South of Mongolia, and North of
China. Meanwhile, the degrees of improvements regionally vary, de-
pending on the local spatial and temporal properties. It can be observed
that the recovered AOD emerges in the snow contaminated areas of
Tibet, where the original Aqua AOD is absent all through the year.
Unfortunately, the recovered AOD is still void in a small region con-
taminated with snow (see the black mark in Fig. 10(b)), requiring
further researches. At last, the study areas are stratified with annual
AOD coverage to clearly show the coverage variation in different re-
gions. As depicted in Fig. 11, the valid regions where annual AOD
coverage excels 20% mainly distribute in some areas with the bright
surface for the original Aqua. However, the regions almost expand to
the whole study areas after the recovery. As the stratifying threshold
rises, the percentage of valid regions for original Aqua AOD products
rapidly declines. Similarly, areas in these regions of the recovered AOD
products still greatly exceed the original Aqua, particularly for the
stratifying threshold of 80%.

(a) (b) (c)

Fig. 8. Validation results of missing data for (a) replaced AOD, (b) linear function, and (c) recovered AOD. The color bars represent the counts of points. The red solid
line represents the regression line, the dashed lines are the EE lines, and the black solid line is the 1:1 line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Validation results of missing data with the same matched points.

Name N R RMSE Above EE Within EE Below EE

Replaced AOD 1737 0.840 0.25 23.2% 50.83% 25.96%
Linear function 1737 0.829 0.24 30.86% 47.67% 21.47%
Recovered AOD 1737 0.870 0.21 21.01% 57.86% 21.13%

Fig. 9. Time series plot of daily AOD coverage over land in 2016 for original Aqua AOD, linear function/replaced AOD, and recovered AOD. The numbers in
parentheses represent the averaged AOD coverage.
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4.3. Assessment of AOD spatial distribution

At first, the monthly recovered AOD products are selected in order
to evaluate the spatial distributions of our algorithm in diverse aerosol
modes and land cover types. As can be seen from Fig. 12, the AOD
coverage has been expanded after the recovery for each month, which is
conducive to temporally continuous analysis. Meanwhile, the distribu-
tion of recovered AOD products remains fairly consistent as the original
Aqua with the changes of aerosol particles and surface types in different
months. It’s worth noting that the details are more abundant for the
recovered AOD, which could tell the visible difference of spatial
structure. Next, the annual spatial distinctions in 2016 of the original
Aqua AOD and the recovered AOD are presented. As illustrated in
Fig. 13, the annual AOD shows more coherent in spatial distribution
after the recovery. It’s observed that the boundaries among areas with
various AOD values are more significant. Besides, some “extreme cases”
in the red mark, which are resulted from the scarce number of valid
pixels throughout the year, are well mitigated.

5. Conclusion and future work

MODIS AOD products are scarce for most days of the year and
consequently it is meaningful to recover the missing pixels. In our
study, a novel algorithm considering the effects of aerosol variation,

i.e., ST-AVM, is developed to recovery the missing pixels in Aqua AOD
products with a single Terra AOD image in large scale. The proposed
algorithm is pixel-based on the active windows of Terra and Aqua in the
iterative framework. A total of three approaches, i.e., spatial, temporal,
and spatiotemporal, are jointly employed to fill the missing AOD data as
much as possible under the most suitable circumstances. The results
show that the total recovered AOD performs well for a count of 3385
matched points. Other metrics slightly decrease compared to Aqua,
which likely results from the quality of Terra, suggesting that total re-
covered AOD products nearly maintain the original accuracy of MODIS.
Meanwhile, the AOD coverage is significantly improved in the study
areas and the degrees of improvements regionally vary, depending on
the local spatial and temporal properties. Overall, the AOD coverage
over land is increased from 20.5% to 45.9% (increment of 123.9%). For
recovered AOD products, the valid regions where annual AOD coverage
excels 20% almost expand to the whole study areas. Besides, the spatial
distribution of monthly recovered AOD products remains fairly con-
sistent as the original Aqua and the annual AOD spatial distribution also
shows more coherent after the recovery.

In our study, we only employ DB AOD products to demonstrate the
advantages of ST-AVM algorithm. Meanwhile, it is obvious that the
proposed algorithm is suitable for other AOD products, such as DT and
DT&DB merged. Besides, the recovered AOD products could offer more
spatially continuous information of aerosol for practical applications,

Fig. 10. Maps of annual AOD coverage in 2016 for (a) original Aqua AOD, (b) recovered AOD and (c) recovered AOD–original Aqua AOD. The color bars represent
the completeness for (a), (b) and completeness difference for (c). The black mark highlights the small region with the void recovered AOD value.

Aqua AOD (20%) Recovered AOD (20%) Aqua AOD (40%) Recovered AOD (40%) 

Aqua AOD (60%) Recovered AOD (60%) Aqua AOD (80%) Recovered AOD (80%) 

AOD coverage less 
than threshold

AOD coverage more 
than  threshold Invalid value

Fig. 11. Maps of valid regions stratified with annual AOD coverage in 2016 for original Aqua AOD and recovered AOD. The numbers in parentheses represent the
stratifying threshold.
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such as the estimation (Li et al., 2017a, 2017b; Yao et al., 2019) and the
analysis (Yang et al., 2017, 2019) of particulate matter. Although ST-
AVM algorithm achieves well performance, yet the improvement of
AOD coverage is still deficient due to the inherent defect. Multi-
temporal AOD images can provide more effective knowledge compared
to a single temporal AOD image. However, the distinction between
multitemporal AOD images also greatly rises, which enlarge the

difficulty to reasonably employ the valid information. There is no doubt
that the accuracy of such recovered AOD products will decline without
correctly considering the significant AOD variation. Furthermore, the
increment of auxiliary AOD products could lead to more time con-
sumption and less convenience. Hence, it requires more researches and
we will spare no effort working on it in the future.

Aqua AOD in Jan. Recovered AOD in Jan. Aqua AOD in Feb. Recovered AOD in Feb. 

Aqua AOD in Mar. Recovered AOD in Mar. Aqua AOD in Apr. Recovered AOD in Apr. 

Aqua AOD in May. Recovered AOD in May. Aqua AOD in Jun. Recovered AOD in Jun. 

Aqua AOD in Jul. Recovered AOD in Jul. Aqua AOD in Aug. Recovered AOD in Aug. 

Aqua AOD in Sep. Recovered AOD in Sep. Aqua AOD in Oct. Recovered AOD in Oct. 

Aqua AOD in Nov. Recovered AOD in Nov. Aqua AOD in Dec. Recovered AOD in Dec. 

Fig. 12. Maps of monthly AOD distribution in 2016 for original Aqua AOD and recovered AOD. The color bar represents the AOD value.
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