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Abstract: To assess the health risk of PM2.5, it is necessary to accurately estimate the actual exposure 
level of the population to PM2.5. However, the spatial distribution of PM2.5 may be inconsistent with 
that of the population, making it necessary for a high-spatial-resolution and refined assessment of 
the population exposure to air pollution. This study takes the Yangtze River Delta (YRD) Region as 
an example since it has a high-density population and a high pollution level. The brightness 
reflectance of night-time light, and MODIS-based (Moderate Resolution Imaging 
Spectroradiometer) vegetation index, elevation, and slope information are used as independent 
variables to construct a random-forest (RF) model for the estimation of the population spatial 
distribution, before any combination with the PM2.5 data retrieved from MODIS. This enables 
assessment of the population exposure to PM2.5 (i.e., intensity of population exposure to PM2.5 and 
population-weighted PM2.5 concentration) at a 3-km resolution, using the year 2013 as an example. 
Results show that the variance explained for the RF-model-estimated population density reaches 
over 80%, while the estimated errors in half of counties are < 20%, indicating the high accuracy of 
the estimated population. The spatial distribution of population exposure to PM2.5 exhibits an 
obvious urban–suburban–rural difference consistent with the population distribution but 
inconsistent with the PM2.5 concentration. High and low PM2.5 concentrations are mainly distributed 
in the northern and southern YRD Region, respectively, with the mean proportions of the 
population exposed to PM2.5 concentrations > 35μg/m3 close to 100% in all four seasons. A high-level 
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population exposure to PM2.5 is mainly found in Shanghai, most of the Jiangsu Province, the central 
Anhui Province, and some coastal cities of the Zhejiang Province. The highest risk of population 
exposure to PM2.5 occurs in winter, followed by spring and autumn, and the lowest in summer, 
consistent with the PM2.5 seasonal variation. Seasonal-averaged population-weighted PM2.5 
concentrations are different from PM2.5 concentrations in the region, which are closely related to the 
urban-exposed population density and pollution levels. This work provides a novel assessment of 
the proposed population-density exposure to PM2.5 by using multi-satellite retrievals to determine 
the high-spatial-resolution risk of air pollution and detailed regional differences in the population 
exposure to PM2.5. 

Keywords: population exposure; PM2.5; satellite remote sensing; random forest model; population 
estimation; Yangtze River Delta; China 

1. Introduction 

Particulate matter of aerodynamic diameter ≤ 2.5 μm (PM2.5) is extremely harmful to public 
health due to the small particle size, and its physical properties and complex chemical composition 
[1–4]. Population exposure to PM2.5 can result in an increased risk of various diseases, such as those 
affecting the respiratory, cardiovascular, and reproductive systems, leading to premature deaths or 
reduced cognitive performance [4–8]. For instance, the Global Burden of Disease study reported that 
ambient PM2.5 caused around 4.1 million premature deaths globally in 2016 [9]. The annual average 
ambient PM2.5 concentration in China is substantially higher than that in the U.S. or Europe [10–12], 
and long-term exposure to air pollution can cause high levels of attributable deaths, including 11.1% 
[95% confidence interval: 9.7–12.7] of all deaths in China [13]. In particular, in China's densely-
populated regions, the PM2.5 levels may even exceed 100 μg/m3 during severe haze events [14]. For 
instance, in January and December 2013, extensive and frequent haze events occurred in eastern 
China, where the daily-averaged PM2.5 exceeded 150 μg/m3 and reached > 500 μg/m3, resulting in 
significant economic losses and serious impacts on public health [15,16]. Therefore, the assessment of 
the spatial characteristics of the actual population exposure to PM2.5 is of great significance. The health 
risk of PM2.5 is closely related to the PM2.5 concentration, but the level of public exposure to PM2.5 is 
the determinant of the public health risk [17]. However, the correspondence between the relatively 
sparse spatial distribution of PM2.5 and the denser spatial distribution of the population is usually 
inconsistent. This leads to errors in the direct use of site-based PM2.5 concentrations for the 
representation of the actual large-scale population-exposure levels, making it necessary to develop a 
high-spatial-resolution PM2.5 database together with population data to obtain consistent population-
exposure levels to pollution [18]. 

Recently, researchers in various countries have investigated standards applicable for either a 
local or global evaluation of the public-exposure risks of PM2.5 [19,20]. In terms of obtaining the spatial 
distribution of PM2.5 concentration, high-spatial-resolution values of the aerosol optical depth (AOD) 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) have been widely used to 
retrieve relatively reliable PM2.5 values at a large scale when combined with site-based PM2.5 

observations, meteorological variables, and traditional statistical or machine-learning methods [21–
28]. Therefore, satellite-retrieved PM2.5 alone with census-population data were traditionally used to 
estimate the average PM2.5 pollution exposure level for the quantification of the spatial distribution 
of the intensity of population exposure to past air pollution [29–31]. In addition, an air-pollution-
exposure risk-assessment method based on the population-weighted PM2.5 concentration can also 
reflect the real exposure of the population to the level of air pollution [32]. In contrast to the 
acquisition of high-spatial-resolution PM2.5, methods for obtaining a high-spatial-resolution 
population distribution are not yet mature. Previously, administrative census-population data have 
been uniformly allocated to each spatial grid [33], which is inconsistent with the actual spatial 
distribution of the population [34]. 
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In recent years, high-precision night-time-light (NTL) data from satellites [DMSP/OLS (Defense 
Meteorological Satellite Program/Operational Line scan System) and NPP-VIIRS (National Polar-
orbiting Partnership, NPP; Visible Infrared imaging Radiometer Suite, VIIRS)] have been used to 
estimate the spatial distribution of the population [35–39], because the information from such satellite 
imagery is closely related to human activities. Random-forest (RF) model is a non-parametric method 
that can model complex nonlinear relationships between predictions and heterogeneous predictor 
variables. One of the strengths of the Random Forest algorithm is the ability to incorporate many 
covariates with a minimum of tuning and supervision. The RF-based methodology was successfully 
used in many studies for population mapping with NTL data [38,40–42]. For instance, by using a RF 
model, Ye et al. [38] introduced point-of-interest information, Day/Night Band (DNB) radiance of 
NTL DMSP/OLS, road networks, the Normalized Difference Vegetation Index (NDVI), digital 
elevation model (DEM) data, street-level census-population data and other independent variables to 
establish a suitable population-estimation framework for China, enabling the realization of a high-
precision and high-resolution population map for 2010. In summary, the combination of high-spatial-
resolution population and PM2.5 data from multi-satellite retrievals has made possible the refinement 
of the spatial-distribution differences in the risk of population exposure to PM2.5 in China. 

The Yangtze River Delta (YRD) region in eastern China (Figure 1) is a high-population-density 
region consisting of Shanghai, Jiangsu, Zhejiang and Anhui, is one of the three largest economic and 
high-emission zones in China, and frequently suffers from serious pollution in unfavorable 
meteorological conditions, e.g., calm/weak wind, low planetary boundary layer, strong temperature 
inversion, high relative humidity, northerly wind related to transport, and weakened monsoon 
circulations [43–46]. Since the urban areas of the YRD region are densely distributed, NTL satellite 
data are more reliable for the estimation of the spatial distribution of population [47]. Previous studies 
on PM2.5 exposure in the YRD region have mainly used the total-census-population data sourced from 
administrative divisions or the total population of public health data around sampling sites with 
PM2.5 observations [2,48–51], leaving large spatial gaps in the seasonal differences in population-
exposure risks to PM2.5 pollution.  

To address these gaps, while providing a basis for the reduction, in control of and adaptation to 
PM2.5 pollution [51,52], we deploy a combination of machine-learning and geographic-information-
system (GIS) technology to build an RF model of population estimation, taking the year 2013 as an 
example, based on NTL, DEM, county-level population-census data, and the MODIS-based 
vegetation index to derive the spatial distribution of population. Then, combined with seasonal-scale 
PM2.5 from MODIS retrievals [23], we investigate the spatial difference and seasonal variation in 
population-exposure risk to PM2.5 pollution at a 3-km resolution in the YRD region. Below, Sections 
2 and 3 introduce the employed data and methodology, respectively, the results are presented and 
discussed in Section 4, and the conclusions are given in Section 5. 

 
Figure 1. Spatial distribution in the Yangtze River Delta (YRD) region of the parameters (a) digital 
elevation model (DEM), (b) Day/Night Band (DNB) radiance of night-time-light (NTL), and (c) 
Normalized Difference Vegetation Index (NDVI) at 1-km resolution. 
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2. Data 

The data and their sources are summarized in Table 1. Census population in 2013 from all 318 
counties or districts across the YRD Region were collected from governmental annual reports of each 
province. Then, population density was obtained based on dividing total population by the area of 
each county or district. Note that Li et al. [23] developed a national-scale generalized-regression 
neural-network (GRNN) model to estimate PM2.5 concentration distributions retrieved from 3-km 
MODIS-AOD products, with the estimated PM2.5 concentrations agreeing quite well with the station 
measurements. Here, seasonal-scale PM2.5 at a 3-km resolution, as estimated by the GRNN model is 
determined for the YRD region. 

According to MODIS-retrieved PM2.5, the average PM2.5 mass concentration in the YRD region 
in 2013 exceeded the Interim Target-1 (IT-1, 35 μg/m3) for developing countries proposed by the 
World Health Organization. The ambient air-quality index (AQI) according to technical regulations 
in China are accordingly divided into six health-impact categories: 1) daily-averaged PM2.5 
concentration (DAMC) ≤ 35 μg/m3, excellent; 2) 35 μg/m3 < DAMC ≤ 75 μg/m3, good; 3) 75 μg/m3 < 
DAMC ≤ 115 μg/m3, slight pollution, uncomfortable for sensitive groups; 4) 115μg/m3 < DAMC ≤ 
150μg/m3, moderate pollution, uncomfortable for some healthy groups; 5) 150 μg/m3 < DAMC ≤ 250 
μg/m3, severe pollution, uncomfortable for most healthy groups; 6) DAMC > 250μg/m3, very severe 
pollution, hazardous for healthy groups. In addition, for consistency with the PM2.5 resolution, all 
data are resampled and interpolated to the 3-km resolution with ArcGIS software. 

Table 1. Summary of data used in this study. 

DATA Periods Spatial Resolution Data Source 
PM2.5 2013 3 km  3 km Estimation from the method of Li et al. [23] 

Population 2013 county level 
Annual reports published by the Department of Civil 

Affairs, National Bureau of Statistics of China 
NDVI 2013 1 km  1 km https://modis.gsfc.nasa.gov/data/dataprod/mod13.php 

DEM (Slope) 2013 1 km  1 km http://www.dsac.cn/ 
NTL 

(DMSP/OLS) 2013 1 km  1 km 
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.h

tml 

3. Method 

3.1. Dasymetric Population Estimation 

The RF model, which is a popular and highly-flexible machine-learning algorithm, is capable of 
analyzing the characteristics of complex interactions, while being sufficiently robust for the handling 
of data with noise or missing values [53]. The RF model has been widely used as a feature-selection 
tool for high-dimensional data to identify variable importance, and has certain advantages in 
analyzing variable relationships compared with other methods, such as contrast neural networks and 
support-vector machines [54,55]. Following Ye et al. [38], this study applies a three-stage model with 
the use of RF to conduct a dasymetric population mapping across the study area. 

For the first stage, we estimate the prediction density of population with the RF data. The input 
variables for RF model of prediction density are DNB radiance of NTL, DEM, NDVI and slope (Table 
1) as they are all related to population pattern and urban characteristics [38]. Population density in 
county-level is used as dependent variable of density and natural logarithm is applied to this 
dependent variable to consider curve-linearity. In order to apply a RF model with the best 
performance, this study also tunes the two parameters of the RF model: the number of trees to grow 
Ntree and the number of variables randomly sampled as candidates at each split Mtry. In details, the 
default value of Mtry is the square root of p in classification and p/3 in regression, where p is the 
number of all characteristic variables [38,53]. 

Figure 2 shows the relationships of the parameters Ntree and Mtry with the coefficient of 
determination R2, which is a measure of how well out-of-bag prediction errors explain the target 
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variance of the training set. Based on the results, since the change of R2 is very small (~0.01), it implies 
the model performance is very stable and default model can be used for modelling without tuning. 
However, as the values of R2 are maximized and become stable for Mtry = 2 and Ntree = 500, 
respectively, these values have been selected for the final RF model. In addition, we validate the RF 
model using the 10-fold cross-validation (CV) method [42], in order to repeatedly estimate the 
expected model performance based on each subset of training data in general during prediction. 
Specifically, the coefficient of determination (R2), the root-mean-square error (RMSE), and the relative 
error (RE) are used to assess the predictive performance of this 10-fold cross validation. 

𝑅ଶ =
(∑ (𝑦 − 𝑦ത)


ୀଵ (𝑥 − �̅�))𝟐
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× 100% (3) 

where n denotes the County number, 𝑥 represents the census population for County i, 𝑦  represents 
the estimated population for the County i, �̅� and 𝑦ത represent the average of 𝑥 and 𝑦  for the County 
n, respectively. 

 
Figure 2. Dependence of the variance-explained coefficient R2 on the parameters Mtry (a) and Ntree 
(b). 

Furthermore, a variance importance analysis is conducted to determine the contribution of each 
variable. Specifically, mean Decrease Accuracy (%IncMSE) and Mean Decrease Gini (IncNodePurity) 
(sorted decreasingly from top to bottom) of attributes are used. The %IncMSE is the most robust and 
informative measure that determines the increase in the mean-square error of predictions (estimated 
with the out-of-bag CV) as a result of a variable being permuted (values randomly shuffled), when 
this variable is removed from the RF model. IncNodePurity relates to the loss function to which the 
best splits are chosen. A higher value of %IncMSE or IncNodePurity indicates a more important input 
variable. Based on the variable importance analysis, it reveals that the NTL data with the maximum 
%IncMSE and IncNodePurity values contribute the most to the RF model of population estimation 
(Table 2), followed by NDVI, which is consistent with the results of Ye et al. [38]. 

Table 2. The importance of input variables for random-forest (RF) model of population estimation. 

Input variable %IncMSE IncNodePurity 
NTL 33.61 200.51 

NDVI 25.45 160.74 
DEM 12.32 90.47 
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Slope 19.09 80.16 
For the second stage, DEM, NTL and NDVI at 1-km resolution presented in Figure 1 are applied 

to the RF model in the first stage for the creation of prediction density surface. This approach can 
estimate the spatial variations of population density [38] that cannot be simply generated by 
interpolation of census data. In addition, the prediction density surface can include fine-spatial-scale 
urban elements related to population variability. 

For the final stage, we redistribute the dasymetric population as follow: 

𝑃𝑜𝑝ௗ௦௬௧ =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛௨௧௬ × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦ௗ

𝐷𝑒𝑛𝑠𝑖𝑡𝑦௦௨
 (4) 

where Popdasymetric is the dasymetric population (1km) within each county, Populationcounty is the total 
population of each county, Densitygrid is the value of prediction density surface (1 km) of each county, 
and Densitysum is the sum of all values of prediction density surface of each county. This result can 
provide population across the study area in a finer spatial scale which is more related to the reality. 

3.2. Intensity of Population Exposure to PM2.5 

According to the assessment of population-exposure level to air pollution proposed by Kousa et 
al. [56], the population density and specific pollutant concentration are employed to evaluate the 
population-exposure level to PM2.5 at the grid level in the YRD region during the four seasons of 2013. 
The intensity of population exposure to PM2.5 (μg people/m3km2) is defined as 

𝐸 = 𝑃𝐶 (5) 

where Ei is the population-exposure intensity of grid point i, Ci is the concentration of PM2.5 at grid 
point i, and Pi is the population density within the grid point i based on the final RF-model output. 

3.3. Population-weighted PM2.5 Pollution 

The population-weighted PM2.5 pollution, which mainly considers population as weights at 
different exposure to PM2.5 concentrations [32], is used to reflect the actual total impact of PM2.5 on 
the population under normalized population conditions for different regions. The population-
weighted PM2.5 pollution is defined as 

𝐸 =
∑ (𝑃 × 𝐶)


ୀଵ

𝑃
 (6) 

where EP is the population-weighted PM2.5 concentration of the YRD Region/Province/city, Ci is the 
PM2.5 concentration in the grid point i, Pi is the population in the grid point i, n is the total number of 
grids in the YRD Region/Province/city, and P is the total population in the entire YRD 
Region/Province/city. 

4. Results and Discussion 

4.1. Spatial Population Intensity 

Figure 3a presents the observed and estimated population density from the results of the 10-fold 
CV of the RF model at the County level in 2013. The population intensities estimated from the RF 
model are in good agreement with the actual averaged-population intensity (logarithmic scale); and 
the R2 and RMSE values of the CV results are 0.83 and 0.5people/km2, respectively. Furthermore, half 
of the total Counties exhibit predictions with RE < 20% (Figure 3b). Compared with the spatial NTL 
and NDVI in Figure 1, larger RE (> 20%) are noticeable for farms, sparsely-populated villages, and 
towns of high-vegetation coverage (figure not shown). Therefore, a reasonable population spatial 
distribution is obtained by using the RF method and multi-source data. In addition, note that the 
spectral coverage of NTL DNB is wide, DNB is shown to be sensitive to the change of aerosol loadings 
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[57]. Therefore, DNB radiance will be weakened by high-concertation PM2.5 through the 
scattering/absorption of light, resulting in underestimate population in heavy pollution conditions. 

Figure 3c shows the spatial distribution of the population at a 1-km resolution in the YRD Region 
in 2013, showing an in homogenous spatial distribution with obvious urban–suburban–rural 
differences in population density. The high-density population is mainly found in cities and towns, 
with population densities of the centers of all four major cities >15,000 people/km2, and a decreasing 
density with increasing distance from the urban center. A large number of mountainous and high-
vegetation-coverage areas have a population density < 200 people/km2. In contrast, the maximum 
population densities at the grids of Shanghai, Nanjing, Hangzhou and Hefei exceed 190,000, 90,000, 
50,000 and 20,000 people/km2, respectively (Figure 3c), implying that frequent pollution incidents can 
affect as many as tens of thousands or even hundreds of thousands of people/km2 in the central area 
of these provincial capitals. 

 
Figure 3. (a) 10-fold cross-validation (CV) for the random-forest (RF) model of population density 
estimation in 2013; (b) RE analysis of estimated population and census population in 2013; (c) spatial 
distribution of population at 1-km resolution estimated from the RF model in the Yangtze River Delta 
in 2013. 

4.2. Spatial and Seasonal Variations in PM2.5 Concentration 

Figure 4 shows the spatial and seasonal variations in PM2.5 concentration from MODIS retrievals. 
In the spring, autumn, and winter, PM2.5 in the central and northern parts of the YRD Region 
(including the Jiangsu Province, Shanghai and the most of the Anhui Province) exceeded 35 μg/m3 
(the IT-1 threshold), while for the southern part of the YRD Region, including most of the Zhejiang 
Province and the southeastern part of it, the pollution levels reached or approached the IT-1 
threshold. For the Provinces and Municipalities in the YRD Region, the provincial capitals are usually 
the economic centers, and suffer from more serious pollution. For example, in Nanjing, the average 
and lowest PM2.5 concentrations of the four seasons of 2013 were 112.1 μg/m3 and 44.3 μg/m3, 

respectively, and in Hefei, the corresponding values are 109.4 μg/m3 and 45.1 μg/m3. Compared with 
Figure 3c, areas of high PM2.5 concentration usually coincide with areas of high-density population, 
indicating that high concentrations of PM2.5 are mostly related to human activities in the YRD Region 
(Figures 3c and 4), which is consistent with the Pearl River Delta region investigated by Lin et al. [58]. 

In all seasons, the PM2.5 concentrations in the north part of the region are clearly higher than 
those in the southern one, with the negative trend from north to south particularly evident in spring, 
autumn and winter. The heavy industrial cities in the northern part of the YRD Region, which may 
be contributing to the spatial variation, emit large volumes of pollutants and are covered by less 
vegetation, so that when meteorological conditions are not conducive to the timely diffusion of 
pollutants, their accumulation causes significant spatial differences [59,60]. Overall, for the seasonal 
characteristics, the PM2.5 concentration in winter is significantly higher than that in the other seasons, 
because of the increase of coal combustion caused by heating activities in winter and the resultant 
large emission of PM2.5 together with the unfavorable meteorological conditions [15,16,43,61]—the 
seasonal-averaged PM2.5 concentration in the YRD Region can reach 98.0 μg/m3. In summer, due to 
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the strong convection with large amounts of precipitation [62,63], pollutants are diffused or 
deposited, so that the PM2.5 concentration shows no significant spatial difference, resulting in the 
lowest PM2.5 pollution level in summer with an average of 40.4 μg/m3. The pollution levels in spring 
and autumn are between those of winter and summer. In spring, because of the north-west flow and 
topographic influence, high PM2.5 values are mainly distributed in the northern urban areas. In 
autumn, the average concentration is slightly lower than that in spring, with the high PM2.5 values 
mainly distributed in the north-west of the northern urban areas [62]. 

Figure 4. Seasonal spatial distribution of MODIS-based PM2.5 concentration at 3-km resolution in 
the YRD Region in 2013. 

4.3. Spatial and Seasonal Variations in PM2.5 Exposure Intensity 

Figure 5 shows that the population-exposure intensity of PM2.5 for the four seasons in the YRD 
Region in 2013 is well correlated with the spatial distribution of population. The population-exposure 
intensities of PM2.5 are high in Shanghai, in most of the Jiangsu province, in the middle and southern 
half of Anhui province, and in the individual coastal cities in the Zhejiang Province, but low in the 
southeastern inland areas of the YRD Region. The areas with high population-exposure intensities 
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are basically the densely-populated areas. The population in the city-center areas of Shanghai, 
Suzhou, Wuxi, Nanjing, Hangzhou and Hefei are at higher risk of exposure to PM2.5. Among the four 
main cities, the intensity and area of population exposure to PM2.5 in Shanghai is the largest, and the 
gridded maximum value is also the highest in Shanghai, followed by Nanjing, Hefei, and Hangzhou, 
indicating that the intensities of population exposure in these major cities are larger than the mean 
intensity in the whole YRD Region (Figure 6). 

Figure 5. Spatial distribution of population-exposure intensity to PM2.5 in the YRD region at 3-km 
resolution for the four seasons of 2013. 
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Figure 6. Intensity of population exposure to PM2.5 in the major cities during the four seasons of 2013 
in the YRD Region. 

The population-exposure intensity of PM2.5 is the highest in winter, followed by spring and 
autumn, and the lowest in summer, which is consistent with the seasonal variation of PM2.5. The grids 
with higher intensities of population exposure to PM2.5 pollutions are mainly located in the city 
centers. Although the pollution is more serious in other parts of the central and northern regions of 
the YRD Region, the population density in these areas is lower, meaning the population-exposure 
intensities are smaller than those in some coastal areas (Figures 3a and 5). The PM2.5 population-
exposure intensity decreases significantly in summer, with an average of 2.59 μg·104 people/(m3·km2). 
In spring and autumn, the high population-exposure-intensity areas expand, with an average of more 
than 3.60 μg·104 people/(m3·km2). In winter, the PM2.5 population-exposure intensity is the highest at 
an average of 6.34 μg·104 people/(m3·km2). 

Figure 7 shows the proportional distribution of population exposure to certain PM2.5 
concentrations for major cities and the YRD Region. The curves show that, except in summer, 100% 
of people are exposed to PM2.5 concentrations >35 μg/m3, which indicates that there is a high health 
risk of PM2.5 exposure in the YRD Region. In 2013, the proportion of population exposed to PM2.5 > 75 
μg/m3 in Nanjing was 6.3%, 13.3% and 99.8% in spring, autumn and winter, respectively, 17.6%, 0% 
and 98.84% in Shanghai, 4.3%, 0% and 85.2% in Hangzhou, and 17.2%, 32.19% and 99.69% in Hefei, 
respectively, which means the pollution and its exposure in Hefei is more serious. 

In general, due to the difference in spatial distribution between PM2.5 concentration and 
population density, the actual health impacts of PM2.5 pollution on the overall population exhibit 
predominant differences in terms of the spatial distribution of the YRD Region. A greater proportion 
of the population are exposed to long-term high PM2.5 concentrations, with averages exceeding 115 
μg/m3 in urban centers for these four cities, leading to significant economic losses, serious impacts on 
public health, and higher levels of mortality, particularly in winter [13,15,16]. Note that we assumed 
population density over the YRD region is a constant throughout the year of 2013 in the present work, 
due to a lack of dynamical variation of census data for validation. This may induce some bias in 
calculating the seasonal variation of population-exposure intensity to PM2.5 across the study area. In 
brief, we suggest that the development of dynamic assessment of PM2.5 exposure and health risk at 
different time-resolution using multi-satellite retrievals and geo-spatial big data may solve this 
problem, and this suggestion is recommended based on the finding of a recent study [64]. 
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Figure 7. The percentage cumulative distribution (%) of the population exposed to PM2.5 in the four 
major cities and the YRD Region. 

4.4. Population-weighted PM2.5 Pollution 

Figure 8 shows the PM2.5 concentrations averaged in the YRD Region for the four seasons are 
60.8 μg/m3, 40.1 μg/m3, 55.6 μg/m3 and 96.5 μg/m3 in spring, summer, autumn and winter, 
respectively, but the population-weighted PM2.5 concentrations are 61.8 μg/m3, 41.3 μg/m3, 58.2 μg/m3 
and 102.1 μg/m3, increasing by 0.62%, 2.93%, 4.76% and 5.79%, respectively, indicating that the actual 
health impacts in this region are higher than that estimated by the PM2.5 concentration, especially in 
winter and autumn. 

Given a certain region, the higher the relative difference is, the larger the spatial variations in 
PM2.5 pollutions are. The population-weighted PM2.5 concentration and the unweighted PM2.5 
concentration for the four major cities listed in Table 3 illustrate smaller differences in spring than for 
the other seasons, with the exception of Hefei, whose difference is only 0.12% and can almost be 
ignored. However, the difference is more significant in winter in general, with the biggest difference 
found for Hangzhou where the population-weighted PM2.5 concentration (97.2 μg/m3) is 26.5% higher 
than the unweighted PM2.5 concentration (76.8 μg/m3), suggesting that the population in Hangzhou 
is concentrated in heavily polluted areas in winter. Moreover, the difference between the population-
weighted and unweighted PM2.5 concentrations in spring and summer was small, indicating that the 
spatial variation of PM2.5 was also small in this period. 

With the exception of Shanghai, differences in the population-weighted and unweighted PM2.5 
concentrations are found for the other three Provinces, with the biggest difference for Anhui, 
suggesting that a greater fraction of the population in Anhui is distributed in heavily polluted areas 
due to the closer proximity with the more polluted north (see Figures 4 and 5). This highlights the 
potential role for city planning in implementing exposure-reduction measures (e.g., the restriction of 
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high-population-density areas) for mitigating negative impacts on public health [52]. Therefore, to 
assess the risk level of population exposure to PM2.5 pollution, especially in different administrative 
Regions, the deployment of the population-weighted PM2.5 concentration may be considered, 
especially at a fine-resolution grid or for smaller administrative units (e.g., at town, street or village 
level). 

 
Figure 8. PM2.5 concentration vs population-weighted PM2.5 (Pop-PM2.5) concentration and their 
relative difference in the YRD Region for the four seasons of 2013. 

Table 3. PM2.5 concentration (μg/m3) and Pop-PM2.5 concentration (μg/m3), and their difference 
degrees (D-value, %) in key cities and Province of four seasons in 2013. 

Region 
Spring Summer Autumn Winter 

PM2.5 Pop-
PM2.5 D-value PM2.5 Pop-

PM2.5 D-value PM2.5 Pop-
PM2.5 D-value PM2.5 Pop-

PM2.5 D-value 

Anhui 
(Hefei) 

64.3 
(69.9) 

65.5 
(70.0) 

1.9 
(0.1) 

42.1 
(45.0) 

44.5 
(46.1) 

5.7 
(2.5) 

63.7 
(67.1) 

67.4 
(71.3) 

5.8 
(6.2) 

100.1 
(109.5) 

108.8 
(115.7) 

8.7 
(5.6) 

Jiangsu 
(Nanjing) 

65.7 
(68.0) 

65.2 
(68.9) 

−0.7 
(1.3) 

45.9 
(44.4) 

45.4 
(45.4) 

−1.2 
(2.2) 

61.2 
(62.6) 

60.9 
(66.7) 

−0.5 
(6.6) 

116.2 
(111.8) 

114.6 
(118.1) 

−1.4 
(5.6) 

Zhejiang 
(Hangzhou) 

54.5 
(55.2) 

54.3 
(59.9) 

−0.4 
(8.4) 

32.2 
(35.3) 

32.6 
(38.8) 

1.2 
(9.8) 

50.5 
(53.4) 

49.0 
(58.5) 

−3.1 
(9.5) 

75.3 
(76.8) 

80.3 
(97.2) 

6.6 
(26.5) 

Shanghai 58.9 58.7 −0.2 40.2 39.8 −1.1 46.9 47.5 1.4 94.5 95.5 1.0 

5. Conclusions 

By using multi-satellite data with machine-learning methods, we derived high-spatial-
resolution population density and PM2.5 concentration, using the YRD Region as an example of the 
expected spatial and seasonal variations in PM2.5 exposure level. The 3-km-resolution results are 
suitable for accurately estimating the public-health risks caused by PM2.5 pollution over large scales 
in China. 

Overall, relatively high and low PM2.5 concentrations were mainly found in the north and south, 
respectively, while the average fraction of the population exposed to PM2.5 > 35 μg/m3 is close to 100% 
during all four seasons. The spatial distribution of population exposure to PM2.5 is discontinuous and 
exhibits obvious urban–suburban–rural difference across the YRD Region. In other words, a 
relatively high PM2.5 concentration is not necessarily connected to a high population exposure to PM2.5 
pollution, but high-density populations are usually associated with high PM2.5 population-exposure 
risks in the YRD Region. The high-level exposure of PM2.5 was mainly found in Shanghai, most of the 
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Jiangsu Province, central and southern Anhui, and individual coastal cities in Zhejiang. For the four 
major cities, the highest exposure intensity to PM2.5 appeared in Shanghai, followed by Nanjing and 
Hefei, and the lowest in Hangzhou. 

There is a significant difference in PM2.5 pollution between the four seasons due to the emissions 
combined with the unfavorable meteorological conditions. As a result, the highest risk of population 
exposure to PM2.5 occurs in winter, followed by spring and autumn, with the lowest risk in summer, 
which is consistent with the seasonal variation of PM2.5 in the YRD Region. Seasonal-averaged values 
of population-weighted PM2.5 concentrations are different from the unweighted PM2.5 concentration 
in the YRD Region, with the largest difference found in winter, followed by autumn and summer, 
and marginal differences found in spring. These differences are closely related to the urban-exposed 
population density and pollution levels. Therefore, due to the difference in spatial distributions of 
the PM2.5 concentration and the population density, the actual health impacts of PM2.5 pollution on 
the overall population exhibited spatial differences in the YRD Region. Therefore, assessment of the 
risk level of population exposure to PM2.5 pollution, especially depending on the particular 
administrative Region, needs to be considered, with the population-weighted PM2.5 concentration on 
a fine-resolution grid or at a smaller administrative scale (e.g., towns, streets, villages), one parameter 
that may serve as a more detailed assessment of the PM2.5 pollution-exposure risk. 

This study provided more detailed information on the spatial and seasonal differences at the 3-
km scale across a broad PM2.5 exposure in the YRD Region. Our high-spatial-resolution estimates of 
PM2.5 exposure using multi-satellite retrievals may further serve analogous investigations for other 
Regions of China or in other developing countries having high concentrations of PM2.5 and high-
density populations. 
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