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A B S T R A C T

SMAP satellite has provided us the first 9-km global soil moisture (SM) product, which is retrieved from the
combined L-band radiometer and radar observations with a balance between accuracy and resolution. However,
SMAP's radar failed on July 7, 2015, making the continuous production of the 9-km SM impossible, which has
considerably affected the application of SMAP in hydrological monitoring. This study was aimed at extending the
SMAP 9-km SM by developing a non-local filter based spatio-temporal fusion model (STFM). With the auxiliary
of the historical 9-kmand 36-km products, the STFM was used to downscale the daily 36-km product to 9-km.
Two-year 9-km product was estimated using STFM in the study. It shows that the estimated product has the
detailed information retention of 9-km product and the comparable accuracy with 36-km product, which makes
it feasible to improve the application potential of the current SMAP SM products.

1. Introduction

The Soil Moisture Active Passive (SMAP) satellite mission developed
by the National Aeronautics and Space Administration (NASA) was
launched on January 31, 2015. Its aim is to globally measure soil
moisture every 2–3 days at a high spatial resolution using the L-band
passive radiometer and active radar sensors (Chan et al., 2016;
Entekhabi et al., 2010). The significant advantage of this system is the
simultaneous acquisition of the L-band radiometer and radar observa-
tions, so that the high-accuracy radiometer and fine-resolution radar
observations can be effectively combined to derive soil moisture (Das
et al., 2011). Three different spatial resolution soil moisture products
based on the Equal-Area Scalable Earth 2.0 (EASE2) grid have been
released by the SMAP team: 36-km soil moisture (P36) is retrieved only
from the SMAP passive radiometer observation; 3-km soil moisture is
retrieved only from the SMAP active radar observation; and 9-km soil
moisture (AP9) is retrieved from the combined SMAP active and passive
observations. In particular, AP9 is the first global satellite soil moisture
product with a balance between spatial resolution and accuracy. AP9
can greatly strengthen our understanding of the coupling processes of
the terrestrial water, energy, and carbon cycles, improve the capability
of flood prediction and drought monitoring, and enhance short-term
weather and long-term climate forecasting (Entekhabi et al., 2014b).
However, the SMAP radar failed on July 7, 2015, marking it impossible

to continue the generation of AP9, which has seriously affected the
application of SMAP in scientific research and hydrological monitoring.

To compensate for the missing AP9data, the Backus-Gilbert (BG)
interpolation method (Backus and Gilbert, 1970) was adopted by NASA
to post the microwave polarization brightness temperature (TB) onto
the 9-km EASE2 grid. The enhanced SMAP passive 9-km soil moisture
product (EP9) was then retrieved by the interpolated TB using the V-
polarized single-channel algorithm (SCA-V) (Jackson, 1993). Although
EP9 enhances the spatial resolution of P36, the richness of the detailed
spatial information is far less than that of AP9, especially in areas with
strong spatial heterogeneity. Another solution to extending the fine-
resolution soil moisture product was also developed by the SMAP team,
where they substituted the SMAP radar L-band observation with the
Sentinel-1 synthetic aperture radar (SAR) C-band observation. Thus, the
SMAP passive and Sentinel-1 active observations were combined to
generate a global soil moisture product with a fine spatial resolution
(Das et al., 2016; Lievens et al., 2017; Rudiger et al., 2016; Das et al.,
2018). Although the orbit parameters of Sentinel-1 are similar to those
of SMAP, and the time difference of the overlapping regions is small,
this approach is greatly limited by the narrow bandwidth and long
temporal resolution (Das et al., 2016).

The conventional soil moisture downscaling methods can also be
used to enhance the spatial resolution of P36 and to estimate the 9-km
soil moisture. The key idea of these methods is to establish the
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relationship between microwave soil moisture and other high spatial
resolution surface parameters, such as land surface temperature (LST)
or vegetation indices retrieved from optical/thermal infrared data
(Peng et al., 2017; Wang et al., 2016; Sabaghy et al., 2018). In recent
years, based on optical/thermal infrared data, a number of scholars
have proposed a variety of soil moisture downscaling methods, which
have been successfully applied to the Soil Moisture and Ocean Salinity
(SMOS) mission, the Advanced Microwave Scanning Radiometer - Earth
Observing System(AMSR-E), and so on (Djamai et al., 2016; Jiang et al.,
2017; Merlin et al., 2012; Piles et al., 2011; Piles et al., 2016; Sánchez-
Ruiz et al., 2014; Song et al., 2014). In terms of SMAP soil moisture,
Chen et al. (2017) used a downscaling method to improve the spatial
resolution of P36 to 250m, which significantly enriched the detailed
spatial information of P36. However, it is very difficult for the con-
ventional downscaling methods to capture the complex relationships
between soil moisture and other surface parameters (Peng et al., 2017).
Moreover, optical/thermal infrared data are seriously affected by
missing information caused by cloud contamination, which poses a
great challenge to global 9-km soil moisture estimation.

It should be noted that most of the above methods need other an-
cillary satellite data (such as SAR data or optical/thermal infrared
data). This is not beneficial for estimating soil moisture with a high
spatial resolution because of the inherent problems of the ancillary data
(e.g., long revisit periods or cloud contamination). Moreover, the his-
torical AP9 data are not taken into consideration by these methods. As a
result of the strong spatio-temporal correlation of soil moisture (Zhang
and Chen, 2016; Zeng et al., 2013), the historical AP9data may be very
helpful to estimate the missing 9-km soil moisture. The spatio-temporal
fusion model (STFM) can be utilized to fuse the complementary spatial
and temporal information of multi-source remote sensing data and to
simultaneously estimate remotely sensed data with high spatial and
temporal resolutions (Gao et al., 2006; Zhu et al., 2010; Shen et al.,
2015; Shen et al., 2016a, 2016b). The STFM has been widely used in the
estimation of surface biophysical parameters, such as LST (Shen et al.,
2016a, 2016b; Weng et al., 2014; Wu et al., 2015), the normalized
difference vegetation index (NDVI) (Meng et al., 2013; Tewes et al.,
2015), the leaf area index (Houborg et al., 2016; Zhang et al., 2014),
biomass (Dong et al., 2016), and evapotranspiration (Cammalleri et al.,
2014; Semmens et al., 2016). Therefore, the STFM provides a new
possibility for extending SMAP high-resolution soil moisture, i.e., the
use of the STFM for 9-km soil moisture estimation.

In this study, the STFM method is presented to extend the AP9
product. With the auxiliary of paired baseline data composed of the
historical AP9 and P36 data, 9-km soil moisture (STF9) is estimated
based on the corresponding daily P36.One notable advantage of this
kind of downscaling method is that it has no need for other ancillary
satellite data, which increases the feasibility of continuous production
and reduces the possible uncertainty. A two-year period of
STF9products was estimated from April 2015 to April 2017, and these
products were validated using the available three months of the original
SMAP 9-km product and in-situ data from the International Soil
Moisture Network (ISMN) (Dorigo et al., 2011; Dorigo et al., 2013).

2. Data

2.1. Satellite microwave soil moisture

This study deals with the SMAP soil moisture products of P36, AP9,
and EP9, which have been released by NASA as volume water content
(m3/m3). The accuracy of P36is high in areas where the vegetation
water content is< 5 kg/m2, because TB is only slightly affected by the
vegetation and the retrieval error is small (Chan et al., 2016). AP9 is
retrieved from the combined SMAP active and passive observations and
makes better use of the advantages of the SMAP L-band in soil moisture
monitoring (Colliander et al., 2017; Entekhabi et al., 2014b). Moreover,
the detailed spatial information of AP9 is clearly better than that of P36,
which makes it more practical, for applications such as regional-scale
agricultural yield estimation, drought monitoring, and soil moisture
assimilation. Unfortunately, the SMAP radar failed on July 7, 2015, and
NASA was forced to stop production of AP9. The alternative product,
EP9, released by the NASA SMAP team, is retrieved from the BG-in-
terpolated EASE2 9-km TB using SCA-V. It has been reported that the
accuracy of EP9 is close to that of P36 and is better than that of AP9
(Chan et al., 2017), but the detailed spatial information is clearly
weaker than that of AP9.

In this study, the 9-km soil moisture estimated by the conventional
downscaling method (CD9) (Piles et al., 2011) was used as a com-
parative dataset for validating the effectiveness of STF9.The auxiliary
data used to estimate CD9were the Moderate Resolution Imaging
Spectro-radiometer (MODIS) LST and NDVI (version 6, global 0.05°
MOD11C1 and MOD13C1) and the SMAP 36-kmV-polarized TB. The
satellite soil moisture products used in this study are summarized in
Table 1.

To date, NASA has released SMAP soil moisture products in both
ascending and descending nodes, which can be downloaded freely
through the National Snow and Ice Data Center (NSIDC). The near-
surface temperature homogenization in the morning is better than that
in the afternoon, and is thus more conducive to soil moisture retrieval.
As a result, the SMAP soil moisture in descending node (06:00 a.m.) is
more accurate than that in ascending node (18:00 p.m.) (Burgin et al.,
2017). Therefore, only the SMAP soil moisture in descending node was
used for the STF9 estimation. The two study years (Table 1) can be
divided into two parts by the failure date of the SMAP radar: the
working SMAP radar period T1 (April 13–July 7, 2015) and the SMAP
radar failure period T2 (July 8, 2015–April 12, 2017). AP9 only exists in
T1period.The division is made for the following reasons: 1) it allows
convenient comparison of the detailed spatial information and accuracy
difference between STF9 and AP9 (T1period); and 2) it allows us to
verify the feasibility of the STFM for long time series STF9 estimation
(T2period).

2.2. In-situ soil moisture

In addition to the evaluation of STF9 against AP9in the T1period
(before the failure of the SMAP radar), in-situ soil moisture data from
the ISMN were also used for accuracy assessment of the T1 and T2
periods. The ISMN is hosted by the Technical University of Vienna and
is intended to serve as a centralized data hosting facility where different

Table 1
Satellite soil moisture products used in the study.

Product EASE2 grid Period Data level Method Auxiliary dataa

P36 36 km April 13, 2015–April 12, 2017 L3, Version 4 SCA-V /
AP9 9 km April 13, 2015–July 7, 2015 L3, Version 3 SCA-V /
EP9 9 km April 13, 2015–April 12, 2017 L3, Version 1 BG & SCA-V /
CD9 9 km April 13, 2015–April 12, 2017 / Piles et al., 2011 P36,TB, and MODIS
STF9 9 km April 13, 2015–April 12, 2017 / STFM P36 and AP9

a The data for SCA-V are not listed. Please refer to the SMAP soil moisture product algorithm documentation.
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in-situ soil moisture networks across the globe are collected. The in-situ
soil moisture values were transformed into volumetric units (m3/m3)
and checked for outliers and implausible values. The in-situ data from
the ISMN have been widely used to validate satellite-derived soil
moisture and model-simulated or assimilated soil moisture products
across the world (Chan et al., 2016; Dorigo et al., 2015; Fascetti et al.,
2016; Wu et al., 2016; Zeng et al., 2016). Please refer to Dorigo et al.
(2011) and Dorigo et al. (2013) for a detailed description of the ISMN.

In this study, in-situ data from April 13, 2015, to April 12, 2017,
were downloaded from the ISMN. The microwave emission measured
by the radiometer mostly emanates from the top ~5 cm in the L-band.
Only the surface in-situ data (no> 5 cm) from 06:00 a.m. (local time)
were utilized to evaluate the satellite-based soil moisture. To allow a
better evaluation, the daily P36, EP9, and in-situ soil moisture should
exist at the same time. Furthermore, we set two filtering conditions for
the in-situ site selection: 1) the temporal length should be larger than
20 in the T1 period (before the radar failure, April 13, 2015 to July 7,
2015); and 2) the temporal length should be larger than 80 in the T2
period (after the radar failure, July 8, 2015 to April 12, 2017). After
screening and merging (where there was more than one in-situ site in
the corresponding 9-km pixel), 649 in-situ sites out of 1418 were used
to evaluate the gridded soil moisture. A brief introduction to the ISMN
soil moisture monitoring networks and the spatial distribution of all the
available in-situ sites are provided in Table 2 and Fig. 1, respectively.

3. Method

The purpose of this study was to extend AP9 using STFM in the case
of the SMAP radar failure. As shown in Fig. 2, with the auxiliary of
paired baseline data (composed of AP9 and the corresponding P36in the
T1 period), the daily P36was input into the model and then the daily
STF9was estimated at the corresponding date.

3.1. Composition of the baseline data

As shown in Fig. 2, the ideal baseline data with different spatial
resolutions would be P36 and AP9 with a global coverage, so as to es-
timate STF9 with the maximum spatial coverage. Considering the short-
term stability of soil moisture and the exact 8-day revisit period of
SMAP, it should be considered that the 8-day composite can cover the
globe. However, there is a difference in spatial coverage for the dif-
ferent 8-day composites in the T1 period. Because surface soil tem-
perature can be< 0 °C or the surface may be covered by snow and ice,
there is a lot of uncertainty for soil moisture retrieval (Maitzler, 1994),
and SMAP does not carry out soil moisture generation (Entekhabi et al.,
2014b). With the failure of the SMAP radar, the available AP9for

composing fine-resolution soil moisture as baseline data covers less
than three months (April 13–July 7, 2015). From April to July, the
surface soil temperature is on the rise in most areas of the world, and
the spatial coverage and the accuracy of SMAP soil moisture are gra-
dually increasing. Experiments have shown that the composite data of
the last eight days of the working SMAP radar sensor (June 30–July 7,
2015, T1 period) have the largest spatial coverage of all the continuous
8-day composite data. However, there are some missing data areas for
the last 8-day composites, especially for the composited AP9.To reduce
the missing data, the remaining P36 and AP9in the T1 period were used
to fill the gaps in the last 8-day composites, respectively. Finally, paired
baseline data (Fig. 3) were obtained with the largest spatial coverage.

3.2. The STFM for soil moisture estimation

The STFM has been employed in many different methods and has
been widely used for estimating surface parameters with a fine spatial
resolution. Inspired by the non-local filter based STFM originally pro-
posed for surface reflectance (Cheng et al., 2017), we present a 9-km
soil moisture estimation method by considering the strong spatio-tem-
poral correlation information of soil moisture. In this method, it is as-
sumed that the soil moisture at different spatial resolutions has the
same temporal variation. The temporal variation of AP9 from t0 day to tp
day can be assumed linearly as:

= ∗ +STF x y t a x y Δt AP x y t b x y Δt( , , ) ( , , ) ( , , ) ( , , )p9 9 0 (1)

where STF9(x,y, tP) indicates STF9 at tP, and AP9 indicates the composed
AP9 in the baseline data (Fig. 3b). Δt= tp− t0, t0 indicates the date of
the composed baseline data, tP indicates the day to be estimated, and a
(x,y,Δt) and b(x,y,Δt) are the linear regression coefficients of pixel
(x,y) from t0 to tP.

Soil moisture has correlation in the temporal variation information;
moreover, it also has strong correlation in the spatial neighborhood
information. To make the estimation more accurate, the neighborhood
(such as a 5×5 window size) similar pixel information is introduced
into the estimation process. The so-called similar pixels indicate that
the pixels differ from the target pixel (pixel to be estimated) by less than
a certain threshold. Please refer to Cheng et al. (2017) for more details
about similar pixels. Considering the neighborhood similar pixels, the
9-km soil moisture estimation model is as follows:
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where n, (xi,yi), and W(xi,yi, t0) indicate the numbers of similar pixels,
the locations, and the weights of similar pixels at t0, respectively.

However, STF9 is to be estimated, and it is impossible to select soil
moisture similar pixels at a 9-km resolution. To solve this problem, the
STFM assumes that the 36-km and 9-km soil moisture products have the
same temporal differences. Therefore, the similar pixels of the corre-
sponding position in P36 (resampled to 9 km) are used to estimate the
regression coefficients and weights. The least-squares regression
method is employed to estimate the regression coefficients a and b
according to the temporal variation of the neighborhood similar pixels.
For the similar pixel weights, taking into account the spatial correlation
between similar pixels, the idea of non-local filtering (Buades et al.,
2005) is employed for the calculation, as follows:

= ⎛

⎝
⎜−

∗ − ⎞
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↑ ↑
W x y t

G P B x y t P B x y t
h

( , , ) exp
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0
36 0 36

2
(3)

where G indicates the Gaussian kernel, h indicates the filtering para-
meter, ↑ indicates the 36-km soil moisture resampled to 9 km using the
nearest sampling method, P36 indicates the composed P36 in the base-
line data (Fig. 3a), and B(xi,yi, tP) indicates the non-local block B

Table 2
The maximum, minimum, mean, and standard deviation (SD) of the soil
moisture for each ISMN in-situ network (unit: m3/m3).

Network In-situ no. Max Min Mean SD Location

BIEBRZA 9 0.600 0.270 0.358 0.082 Poland
COSMOS 40 0.485 0.006 0.184 0.101 USA
FMI 18 0.583 0.001 0.1799 0.099 Finland
HOBE 45 0.494 0.001 0.205 0.083 Denmark
REMEDHUS 20 0.422 0.001 0.132 0.097 Spain
RISMA 22 0.540 0.001 0.257 0.104 Canada
RSMN 11 0.418 0.001 0.162 0.061 Romania
SCAN 118 0.515 0.001 0.178 0.113 USA
SMOSMANIA 17 0.449 0.033 0.208 0.102 France
SNOTEL 214 0.520 0.001 0.185 0.107 USA
SOILSCAPE 45 0.428 0.001 0.150 0.091 USA
TERENO 5 0.456 0.002 0.271 0.090 Germany
UMBRIA 2 0.394 0.161 0.247 0.056 Italy
USCAN 80 0.514 0.001 0.182 0.113 USA
WSMN 3 0.455 0.146 0.291 0.070 UK
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centered at (xi,yi).
The STFM assumes the same temporal variation for the 36-km and

9-km soil moisture, so the regression coefficients and weights of the
temporal variation are calculated at the 36-km scale and then applied
for estimating the 9-km soil moisture using the composed AP9 in the
baseline data (Fig. 3b). There are four processes for estimating daily
STF9 using the STFM: 1) the similar pixels of 9-km resolution at location
(x,y) are selected according to the soil moisture at the 36-km resolution;
2) the regression coefficients and the weights of the similar pixels are
calculated by the least-squares algorithm and formula (3), respectively;
3) the 9-km soil moisture is estimated by formula (2) at location (x,y) of
tp; and 4) repeat 1)–3) until all the 9-km soil moisture values are esti-
mated at tp.

4. Results

4.1. Estimated 9-km soil moisture

With the auxiliary of the baseline data (Fig. 3), the missing
AP9could be extended by the STFM using the corresponding daily P36
(Fig. 2). It was found that the suitable spatial moving window size for
the STFM was 5×5 for the 9-km soil moisture estimation. A two-year
period of 9-km soil moisture was estimated from April 13, 2015, to
April 12, 2017.The estimated soil moisture has been publicly released

on http://rs-pop.whu.edu.cn/.The global spatial coverage of the base-
line data (Fig. 3) ensures the close spatial coverage for the daily P36 and
STF9. Moreover, the SMAP passive observation coverage is clearly
larger than its active observation coverage (Entekhabi et al., 2014a), so
the AP9 retrieved from the combined passive and active observations
has the same spatial coverage as the SMAP active observation. There-
fore, the spatial coverage of the daily STF9 is close to that of the cor-
responding daily P36, and should be larger than the daily AP9.

Fig. 4 shows the spatial distribution of STF9 in the different seasons
of 2016. The spatial distribution of STF9 is similar to that of P36 (Fig. 4);
however, the intensity differs greatly in the dense vegetation coverage
areas (e.g. the Amazon basin and the Congo basin). This is mainly due
to the different spatial distribution between P36 and AP9 (Fig. 3), which
is caused by the different surface responses of the SMAP radiometer and
the radar observations and the disaggregation method of the SMAP
passive TB. Without consideration of the intensity, it can be seen that
STF9 captures the seasonal variation of soil moisture well, and its spa-
tial distribution is consistent with that of P36. This demonstrates the
reliability of the STFM for 9-km soil moisture estimation. STF9obtains
more detailed spatial information than P36, which will be beneficial to
the practical applications and makes up for the adverse effects brought
about by the SMAP radar failure. Notably, there are some missing areas
in STF9 that are inherited from the composed AP9 (Fig. 3b). The missing
areas of STF9 could be filled by an interpolation method, which will be

Fig. 1. The 649 in-situ soil moisture sites out of 1418 from the ISMN.

Fig. 2. Flowchart of daily 9-km soil moisture (STF9) estimation using STFM.
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Fig. 3. The baseline data pair composition in the T1period: (a) P36 and (b) AP9.

Fig. 4. The spatial distribution of the soil moisture in the different seasons of 2016.
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addressed in our future study.

4.2. Evaluations

4.2.1. Evaluation before the SMAP radar failure
The 9-km soil moisture estimated by the STFM should have a similar

spatial distribution, similar detailed information, and comparable ac-
curacy to AP9. To compare the difference between AP9 and STF9
quantitatively, the last 8-day composed P36 and AP9in the T1 period
were used as baseline data, instead of the baseline data shown in Fig. 3,
to estimate STF9. In addition, EP9 and CD9were used as comparative
datasets to further verify the effectiveness of STF9.

As the last 8-day composed AP9 and P36in the T1 period were used
as baseline data in the STFM, the remaining 76-day AP9 data were used
as reference to evaluate the difference with STF9. Fig. 5 shows the
spatial distribution of the remaining 76-day composed results of the five
soil moisture products (P36, AP9, EP9, CD9, and STF9) at a global cov-
erage. There is a slight difference between P36 and AP9 (Fig. 5a and b),
which is mainly due to the different surface responses of the SMAP
radiometer and radar observations and the disaggregation method of
SMAP passive TB. In the baseline algorithm of AP9 retrieval, the TB
disaggregation ensures that the TB from the active-passive algorithm is
consistent with the radiometer TB, soP36 and AP9 have strong spatial
consistency (Entekhabi et al., 2014a, 2014b). Compared with AP9, the
spatial distribution of EP9 is closer to that of P36 because they both use
the same microwave polarization TB for soil moisture retrieval
(Fig. 5c). CD9 cannot accurately capture the spatial distribution of P36
and AP9 (Fig. 5d), so there is a big difference. Because the downscaling
model cannot accurately simulate the relationship between soil

moisture and MODIS data (Peng et al., 2017), it introduces errors while
improving the coarse spatial resolution. Moreover, the cloud con-
tamination of MODIS data results in a large amount of missing data for
the daily CD9 (not shown in this paper). Compared to P36, the spatial
distribution of STF9 is much closer to that of AP9, which meets the
expectation of the STFM (Fig. 5e). In general, the spatial distribution of
STF9 is closer to that of AP9 than EP9 and CD9. It is worth noting that
the spatial coverage of STF9 is limited by the 8-day composed AP9 in the
baseline data (Fig. 3b), resulting in less spatial coverage than the 76-
day composed AP9.

Fig. 6 shows the detailed spatial information of the five soil
moisture products under different vegetation cover conditions (Fig. 5a,
red box areas). The left side of the blue dotted line (Fig. 6) is the SMAP
soil moisture, and the right side is the three kinds of 9-km soil moisture.
Clearly, the spatial resolution of P36 can be improved by all three kinds
of 9-km soil moisture. Although the detailed spatial information of EP9
is somewhat better than that of P36, the richness is far less than that of
AP9. The 9-km TB for EP9 retrieval is BG-interpolated by the SMAP
original passive TB, so the improvement of detailed spatial information
is limited. The detailed spatial information of CD9 is better than that of
P36 and weaker than that of AP9. Because the coarse-resolution TB is
added into the downscaling model, the promotion of detailed spatial
information is limited. The detailed spatial information of STF9 is very
close to that of AP9 and is clearly better than that of P36, as the esti-
mation of STF9 takes full account of the temporal and spatial correla-
tion of soil moisture. In general, compared with EP9 and CD9, STF9
demonstrates more detailed spatial information, it shows spatial fea-
tures more clearly than the others, and it is much closer to AP9.

The above analysis does not determine the quantitative difference

Fig. 5. The 76-day composed (a) P36, (b) AP9, (c) EP9, (d) CD9, and (e) STF9in the T1period.
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between the 9-km soil moisture estimates and AP9. Therefore, the
evaluation indices of the correlation (R), bias (i.e. STF9−AP9), root
mean square error (RMSE), and unbiased RMSE (ubRMSE) were used to
evaluate the temporal variation of the three kinds of 9-km soil moisture
at the pixel scale, taking the remaining 76-day AP9 as reference. The
global means of the four indices are summarized in Table 3,and the
spatial distribution of bias is taken as an example to show the difference
between the 9-km soil moisture estimates and AP9 (Fig. 7).

It can be seen from Table 3 that the evaluation results of the three
kinds of 9-km soil moisture against AP9 are significantly different: the
evaluation result of STF9 is the best, followed by EP9, and CD9 is the

Fig. 6. Detailed spatial information of the five soil moisture products (Fig. 5a, red box areas). The legend is the same as Fig. 5. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Temporal variation of the three kinds of 9-km estimations against AP9 at the
pixel scale (global mean, unit: m3/m3).

R bias RMSE ubRMSE

EP9 0.637 0.003 0.069 0.040
CD9 0.422 0.031 0.094 0.049
STF9 0.679 −0.001 0.048 0.039

Fig. 7. The bias spatial distribution of the three kinds of 9-km soil moisture against AP9.
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worst. The global mean correlation coefficient of STF9 is 0.679, which is
higher than the 0.637 of EP9 and much higher than the 0.422 of CD9.
This shows that STF9 can better maintain the temporal variation of AP9.
Moreover, STF9 has the lowest bias, RMSE, and ubRMSE (indicated by
the bold font in Table 3), indicating that its absolute difference with
AP9 is the smallest among the three kinds of 9-km soil moisture. No-
tably, the bias of STF9 is negative (−0.001m3/m3), indicating the un-
derestimation of AP9, while the two other methods overestimate AP9. In
brief, STF9 keeps the temporal variation of AP9 with the lowest error,
confirming the advantage of the STFM for 9-km soil moisture estima-
tion.

From the spatial distribution of the bias (Fig. 7), it can be seen that
the spatial variability of CD9 is the strongest, followed by EP9, and STF9
is the weakest. The stronger the spatial variability, the greater the
difference between the 9-km soil moisture estimate and AP9, and the
greater the difference caused by the estimation model in different re-
gions. EP9 is retrieved by the BG-interpolated TB and its spatial dis-
tribution is consistent with that of P36 (Fig. 5). The difference between
P36 and AP9 mainly causes the spatial variability of the EP9bias
(Fig. 7a). The error of CD9 is high in dense vegetation coverage and
high-latitude areas, which demonstrates the strong spatial variability of
the CD9bias (Fig. 7b). There are two reasons for this:1) the accuracy of
the soil moisture retrieval is decreased and the NDVI is prone to being
supersaturated in the dense vegetation coverage areas, so the down-
scaling model has less capability in these areas (Piles et al., 2016); and
2) the downscaling model and the SCA-V retrieval model show greater
errors during frozen periods (Maitzler, 1994; Sánchez-Ruiz et al.,
2014). The spatial variability of the STF9bias is the weakest (Fig. 7c)
and the bias values are very low in most parts of the world. A possible
reason for this is that STF9 takes full account of the spatial and temporal
correlation of the soil moisture, resulting in the estimation being closer
to AP9.Generally speaking, STF9 is much closer to AP9 than EP9 and CD9

in both temporal variation and numerical value (Table 3 and Fig. 7).
The accuracy of the three kinds of 9-km soil moisture with regard to
AP9 is STF9 > EP9 > CD9. Therefore, STFM is more suitable for ex-
tending 9-km soil moisture than the other two methods.

4.2.2. Evaluation against the SMAP-Sentinel Soil Moisture product and EP9
The SMAP-Sentinel Soil Moisture (SSSM) product is another possible

solution for recovering the missing SAR data. The SSSM product (ver-
sion 2) has been released by NASA with two kinds of spatial resolution:
3 km and 1 km. The officially released products began in March 31,
2015; however, the amount of data released was very small at the be-
ginning. It was not until the end of 2016 that, mass data release really
started. The temporal resolution between SSSM and STF9 has a great
difference. The period of STF9 covers two years from April 13, 2015 to
April 12, 2017, and the period of mass SSSM is from the end of 2016 to
date. The time coincidence between the two products is relatively
small, so it is difficult to make an effective temporal variation com-
parison.

The SSSM global product has not yet been released. Fig. 8 shows the
global composite of daily 3-km SSSM and the daily STF9 on April 12,
2017. It can be seen that the spatial distributions of the two soil

moisture products are very similar, but the spatial coverage of daily
SSSM is far less than that of STF9. However, the higher spatial resolu-
tion of SSSM and the longer temporal resolution make it unsuitable for
weather prediction and hydrological motoring.

At 9kmscale, the EP9 and SSSM have been demonstrated the similar
accuracy against the SMAP core cal/val sites. Therefore, the two years
temporal variation of STF9 is further compared with EP9 and SSSM
which is resized to 9 km scale and is merged globally. As the mass
absence of SSSM in global (Fig. 8), the length of temporal variation for
STF9 and SSSM longer than 20 is used for evaluation. As for STF9 and
EP9, the length of temporal variation is longer than 100. Table 4 shows
the evaluations results of STF9 against EP9 and 9 km SSSM. It demon-
strates that STF9 has the similar temporal trend with EP9 and SSSM as
the high R globally. The small bias and ubRMSE indicate that STF9 is
close to the EP9 and 9 km SSSM in global scale. The less length of
temporal variation results in the more uncertainty of evaluation.
Therefore, the evaluation result for EP9 is better than that of SSSM.

The ubRMSE is computed between STF9 and the two other SM
products at the global extent for each and every valid grid cells at 9 km
(Fig. 9). Notably, the length of temporal variation is no< 100 and 20
for EP9 and SSSM, respectively. Except the dense vegetation covered
area, the large amount of ubRMSE between STF9 and EP9 is< 0.02m3/
m3. It indicates the similar accuracy of EP9 and STF9 and can be con-
sidered that STF9 get the good accuracy with detailed spatial in-
formation. The difference between STF9 and SSSM is larger and the
absolute difference is larger than 0.02m3/m3 in the mass areas. It may
be considered that the accuracy slightly differs between STF9 and SSSM.
The good accuracy of SSSM evaluated by the SMAP core cal/val sites,
however, the small amount of in-situ data makes the accuracy doubt-
fully. Furthermore, the other aspect makes the accuracy doubtfully is
that the less amount of SSSM data. Nevertheless, it can be considered
that the STF9 can get the good accuracy shown in Table 4 and Fig. 9 in
global scale.

4.2.3. Evaluation against ISMN in-situ soil moisture
The 9-km soil moisture estimated by the STFM can capture the

detailed spatial information and temporal variation of AP9 very well;
however, the accuracy difference against in-situ data is still unknown.
To explore the difference, the two-year period of STF9was estimated by
the STFM using the baseline data shown in Fig. 3. The results were then
evaluated against ISMN in-situ soil moisture data (Table 2 and Fig. 1).
In this way, we could assess the ability of STF9 for subsequent 9-km soil
moisture estimation after the SMAP radar failure. In order to decrease
the diversity of more than one in-situ site in the same 9-km soil

Fig. 8. The spatial distribution of STF9 and 3-km SSSM on April 12, 2017.

Table 4
Temporal evaluation result of STF9against EP9 and 9 km SSSM (Global mean,
unit: m3/m3).

R RMSE bias ubRMSE

EP9 0.901 0.052 0.001 0.013
9 km SSSM 0.700 0.101 0.003 0.059
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moisture pixel, the arithmetic average of multiple sites of in-situ data
was used in the evaluation. The temporal variation validates the ac-
curacy of STF9, because the in-situ and 9-km soil moisture show some
mismatch in spatial resolution and probing depth (Dorigo et al., 2015).
The sparse in-situ soil moisture (the ISMN sites used in this study)
cannot fully represent the pixel values. Meanwhile, the temporal var-
iation of soil moisture is less affected by the mismatch (Owe et al.,
2008). The basic principle of the evaluation is to compare the temporal
variation between the in-situ data and the corresponding pixel soil
moisture directly, quantified in terms of R, bias (9-km pixel minus in-
situ), RMSE, and ubRMSE.

Table 5 shows the average accuracies of the five soil moisture
products against ISMN in-situ data during the T1 and T2 periods. In
fact, it can be seen that the accuracy of AP9 is less than that of P36
(Colliander et al., 2017; Pan et al., 2016), which is validated in the T1
period (Table 5). The accuracy of EP9 is close to that of P36 and is better
than that of AP9, because EP9 is retrieved by the BG-interpolated 9-
kmV-polarized TB and inherits the accuracy of P36. The accuracy of CD9

is significantly lower than that of P36, is comparable with that of AP9,
and is slightly better than that of AP9 in some indices such as RMSE and
ubRMSE. However, CD9 is not estimated in the cloud-contaminated area
of the MODIS data, resulting in fewer pixels than AP9. The accuracy of
STF9 is comparable with that of P36 and better than that of AP9. Among
the three kinds of 9-km soil moisture, STF9 has the highest R and
ubRMSE values (as indicated by the bold font in Table 5), which shows
that the STFM can accurately estimate the temporal variation of in-situ
soil moisture. Although the RMSE and bias of STF9do not show an ad-
vantage, this will not affect the accurate application in climate research
or weather prediction studies (De Jeu et al., 2014; Dorigo et al., 2012;
Liu et al., 2012). The applications do not directly use the absolute value
of soil moisture, but instead convert the soil moisture to the range re-
quired by the model. Therefore, the relative variations in soil moisture
(R and ubRMSE) are better suited for such applications than absolute
variations (RMSE and bias).

To further compare the accuracies of the three kinds of 9-km soil
moisture, their R and ubRMSE values based on the International
Geosphere-Biosphere Program (IGBP) land-cover types in the T2 period
are shown in Fig. 10. Except for the evergreen needle leaf forest and
savannas, STF9 has higher R values and lower ubRMSE values than EP9
and CD9in each land-cover type. Nevertheless, the accuracy differences

between STF9 and EP9 are very small. For CD9, the accuracies are the
lowest in the vast majority of land-cover types. It can be seen that the
effect of IGBP land cover on STF9 is significantly weaker than the effect
on EP9 and CD9. The reason for this is that the land cover, which is used
as the yearly static auxiliary data for SMAP soil moisture retrieval
(Entekhabi et al., 2014b), changes only slightly over the two years, so
the 9-km soil moisture can be accurately estimated by the STFM.

Although the accuracy of EP9 is comparable with that of STF9
(Table 5), the detailed spatial information is clearly weaker than that of
STF9. As a result, STF9 is more suitable than EP9 for applications that
need strong spatial heterogeneity, such as drought evaluation and
prediction, watershed surface runoff estimation, and evapotranspira-
tion studies. The accuracy of CD9is comparable with that of AP9;
however, the spatial distributions differ greatly (Fig. 5). Furthermore,
CD9 is seriously contaminated by cloud and cannot capture the tem-
poral variation of AP9 very well, which limits the subsequent applica-
tion as an alternative to AP9. Overall, among the three kinds of 9-km
soil moisture, STF9 has an unparalleled advantage over EP9 and CD9, as
STF9 has a similar spatial distribution and similar detailed information
to AP9 and a comparable accuracy to P36.

4.2.4. Evaluation based on the triple collocation method
The accuracy evaluation against ISMN in-situ soil moisture shows

that STF9 can be considered for the extension of the SMAP 9-km soil
moisture product. However, too much uncertainty is brought into the
accuracy evaluation, as a result of the big difference between in-situ soil
moisture and SMAP pixels in spatial scale. To eliminate the uncertainty,
the triple collocation (TC) method was used for the further evaluation
of the estimated 9-km soil moisture. The TC method was developed by
Stoffelen (1998) to estimate the unknown RMSE of three or more lin-
early-related measurements over the same geophysical variable with
mutually independent errors. It also allows the possibility of obtaining
the correlation coefficients between the satellite retrievals and the true
(but unknown) footprint value (Draper et al., 2013). Therefore, the R
and RMSE were selected as the dominated metrics for the soil moisture
evaluation using the TC method.

To estimate the accuracy with the TC method, three kinds of soil
moisture products from independent sources are required. Although
many kinds of SMAP soil moisture products were used in the study, they
are all related to each other. Thus, to use the TC method, the model-

Fig. 9. The ubRMSE between STF9 and the two other SM products (a: EP9, b: 9 km SSSM).

Table 5
The average accuracies of the five soil moisture products against ISMN in-situ data.

R bias(m3/m3) RMSE(m3/m3) ubRMSE(m3/m3) P < 0.05

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

P36 0.575 0.506 −0.032 −0.001 0.101 0.100 0.048 0.061 474 619
AP9 0.427 / −0.032 / 0.122 / 0.069 / 328 /
EP9 0.578 0.508 −0.037 −0.011 0.102 0.100 0.049 0.062 477 614
CD9 0.447 0.383 0.030 0.047 0.099 0.109 0.053 0.069 359 528
STF9 0.580 0.512 −0.034 −0.001 0.110 0.108 0.048 0.061 478 619

Note: the best results are in bold and the second best results are underlined. P < 0.05 indicates the no. of sites with P-value< 0.05.
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based surface soil moisture was introduced. This was extracted from the
NOAH land surface model (version 2.8), which has been well-evaluated
(Ek et al., 2003) and applied in TC application (Hain et al., 2011). Thus,
a triplet pattern of in-situ, NOAH, and microwave data was built for the
TC evaluation. Two kinds of triplets were constructed—in-situ-NOAH-
STF9 and in-situ-NOAH-P36—so as to compare the temporal accuracy
difference between P36 and STF9 from April 13, 2015 to April 12, 2017.
Table 6 shows the average TC evaluations of the two kinds of triplets.
The Rand RMSE of the in-situ and NOAH data are comparable between
the two triplets, which confirm the reliability of TC method for soil
moisture evaluation without the ground truth values. The Rand RMSE
of the in-situ data are very low, as a result of the big difference between
the point scale and the satellite footprint scale. Both the R of STF9
(0.829) and the R of P36 (0.826) are the highest in the each triplet and
are very close to 0.83. This confirms the robustness of SMAP for soil
moisture retrieval and the comparable accuracy between STF9 and P36.

As a result of the obvious seasonal variations of soil moisture, the R
of the temporal variation cannot be used to evaluate precipitation well.
This is not conducive to the study of weather and climate change. For
this purpose, we further evaluated the variation of the temporal
anomaly soil moisture under the framework of the TC method. The
method described in Albergel et al. (2009) is used to extract the tem-
poral anomaly soil moisture, and the moving window of the temporal
variation was 31 days, 15 days before and after. We stipulated that the
temporal anomaly soil moisture was extracted when there were three
valid data records in each of the 15 days before and after, and seven

valid data records, in total, in the 31-day moving window. According to
the pattern of Table 6, Table 7 shows the average TC evaluations of the
anomaly soil moisture. The anomaly R (Table 7) is less than the R
shown in Table 6. This phenomenon has been validated in previous
works (Zeng et al., 2016; Liu et al., 2012). The anomaly R and RMSE of
STF9are slightly better than those of P36, which suggests that STF9 is
more suitable for the study of weather and climate change. The results
confirm that STF9 has a better accuracy and can better capture the soil
moisture. Generally speaking, it can be considered that this further
confirms the advantage of STFM for 9-km soil moisture estimation.

5. Discussion

In terms of 9-km soil moisture estimation, the performance of the
STFM is clearly better than that of the BG interpolation retrieval
method adopted by NASA and the conventional soil moisture down-
scaling method. This is because STF9 integrates the respective ad-
vantages of the SMAP soil moisture products: the accuracy of P36
(Tables 5, 6, and 7) and the spatial resolution of AP9 (Figs. 5 and 6). The
STFM takes full advantage of the temporal and spatial correlation of soil
moisture, and only P36 and AP9 are used for estimating the 9-km soil
moisture. The method does not require a soil moisture retrieval process
or other ancillary satellite data (such as SAR or optical/thermal infrared
data), so the error in the 9-km soil moisture estimation process can be
decreased. Moreover, there is no time gap between P36 and AP9 as the
SMAP passive and active sensors work together on the same satellite

Fig. 10. The average R and ubRMSE of the three kinds of 9-km soil moisture estimations for each International Geosphere-Biosphere Program (IGBP) land cover in the
T2 period.

Table 6
TC evaluations of the two kinds of triplets.

Triplet In-situ-NOAH-STF9 In-situ-NOAH-P36

In-situ NOAH STF9 In-situ NOAH P36

R 0.438 0.808 0.829 0.440 0.809 0.826
RMSE(m3/m3) 0.107 0.035 0.034 0.1069 0.035 0.034

Table 7
TC evaluations based on anomaly Rand RMSE for the two kinds of triplets.

TC In-situ-NOAH-STF9 In-situ-NOAH-P36

In-situ NOAH STF9 In-situ NOAH P36

R 0.312 0.703 0.801 0.315 0.700 0.779
RMSE 2.054 0.626 0.586 2.084 0.629 0.593
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platform. In comparison, the conventional downscaling method cannot
avoid the influence of the time gap because the other ancillary satellite
data often have different observation times. As there is no time gap and
no other ancillary satellite data requirement for the 9-km soil moisture
estimation using the STFM, the error sources of the estimation are de-
creased and it is a more convenient approach for practical production.

Nevertheless, the uncertainty between P36 and the baseline data
(Fig. 3) will continue to increase as we move further away from the date
of the SMAP radar failure, so it is necessary to discuss its impact on the
temporal variation of STF9. Fig. 11 shows the two-year temporal var-
iation of the averaged P36 and STF9 based on the ISMN in-situ sites.
STF9 is consistent with P36, and the temporal variation is consistent
with the in-situ soil moisture. Because there is no significant change in
land-cover types over the two-year period, STF9can maintain the tem-
poral variation of P36. However, there are seasonal differences between
P36 and STF9, and the difference between December and January is the
most obvious. As the selected ISMN sites are mostly distributed in the
northern hemisphere, the probability of SMAP having abnormal soil
moisture retrievals increases in winter, which may be the main factor
that leads to the obvious difference between STF9 and P36. Therefore, it
is suggested that the seasonal factors may have a greater effect than the
distance from the date of the SMAP radar failure in 9-km soil moisture
estimation using the STFM in the case of small land-cover changes.

P36 underestimates the in-situ soil moisture (negative bias in
Table 5), which was confirmed in previous studies (Chan et al., 2016;
Kim et al., 2017; Zeng et al., 2016); however, the ubRMSE of P36in
Table 5 does not achieve the expected accuracy of SMAP (< 0.04m3/
m3) (Chan et al., 2016) in this study. This is mainly due to the sparse
evaluation sites used in the study leading to the larger ubRMSE (Dorigo
et al., 2015). Only one in-situ site is used in most cases to evaluate the
temporal variation of the corresponding 9-km pixel soil moisture. As a
result, the large spatial resolution difference between the two kinds of
data increases the evaluation error. Furthermore, abnormal value in-
formation in the SMAP soil moisture products (Burgin et al., 2017) may
be another reason that causes the ubRMSE to be on the high side. Al-
though there are some uncertainties in the evaluation against the sparse
ISMN in-situ sites, STF9 keeps the temporal variation of P36 very well
(Fig. 11). This is the reason why STF9 inherits the temporal accuracy of
P36 (Table 5). Moreover, the temporal R and ubRMSE values of STF9 are
slightly better than those of P36 (Table 5), which is determined by the
STFM itself. The evaluations using the TC method also confirm that the
temporal variation of STF9 is slightly better that that of P36 (Tables 6
and 7). Essentially, the STFM is a kind of filtering algorithm and has a
certain smoothing effect (Cheng et al., 2017). For STF9 estimation, the
smoothing of outliers can help to decrease the errors and improve the
temporal correlation with in-situ soil moisture. The accuracy of STF9 is
clearly better than that of AP9 (Table 5), suggesting that the 9-km soil
moisture estimated by the STFM will have a wider range of applica-
tions. However, only a two-year period of STF9was estimated in this
study, and the subsequent estimation results still need further testing
and validation.

6. Conclusions

The failure of the SMAP radar has resulted in the unavailability of 9-
km soil moisture products. In this study, we adopted the STFM to ex-
tend the SMAP 9-km products. The two-year STF9 products have been
publicly released on http://rs-pop.whu.edu.cn/. Compared with other
substitute products, i.e., EP9 and CD9, the STFM-based STF9product has
an obvious advantage in spatial distribution and detailed information,
and is much closer to the original AP9. The R values between AP9 and
EP9, CD9, and STF9are 0.422, 0.637, and 0.679, respectively. In addi-
tion, the evaluation against ISMN in-situ soil moisture shows that
STF9obtains the best R and ubRMSE values (R=0.667 and
ubRMSE=0.048m3/m3in the T1 period; R=0.598 and
ubRMSE=0.060m3/m3in the T2 period), performing better than AP9
and CD9 and slightly better than P36 and EP9. Furthermore, the eva-
luations using TC method show that the accuracy of STF9 is comparable
with that of P36. Overall, STF9 integrates the respective advantages of
both SMAP soil moisture products: the high accuracy of P36 and the
spatial resolution of AP9. The validation of the two-year products
confirmed that the presented method is an effective way to extend the
9-km soil moisture in the case of the SMAP radar failure. However,
whether it could be used for the subsequent multi-year data still needs
further validation.
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