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Abstract— Enhancing the spatial resolution of hyperspectral
(HS) images by fusing with higher spatial resolution multispectral
(MS) data is of significance for applications. However, due to the
narrow bandwidth, HS images (HSIs) are vulnerable to various
types of noise, such as Gaussian noise and stripes, which can
severely affect the fusion performance. This paper focuses on
antinoise HS and MS image fusion to enhance the spatial details
and suppress the noise. By analysis of the intrinsic structure and
noise properties, we formulate this problem as the minimization
of an objective function. Under the optimization framework,
small multilinear ranks in tensor are first used to identify the
intrinsic structures of the clean HSI part. Then, considering the
high spectral correlation, it is assumed that any bands can be
represented by the combination of certain adjacent bands. The
difference between one band and its corresponding combination
can be used to preserve the spatio-spectral consistency and
characterize the distribution of sparse noise (such as stripe noise),
based on the variational properties along two directions. The
alternating direction method of multipliers (ADMM) is applied
to solve and accelerate the model optimization. Experiments with
both simulated- and real-data demonstrate the effectiveness of the
proposed model and its robustness to the noise, in terms of both
qualitative and quantitative perspectives.

Index Terms— Hyperspectral (HS) image, image fusion,
multispectral (MS) image, variational optimization.
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I. INTRODUCTION

HYPERSPECTRAL (HS) imaging is a widely used
modality that can simultaneously acquire images of

the same scene across a number of different wavelengths.
Obtaining dense HS bands is important for remote sensing
and computer vision applications [1]–[3] including object
segmentation, tracking, and recognition. However, due to
the tradeoff between the spatial resolution and spectral res-
olutions, HS imaging with a high spectral resolution has
severe limitations in spatial resolution when compared with
regular multispectral (MS) sensors. Namely, it is not easy to
simultaneously obtain the high spectral and spatial resolution
versions of such images. To meet the high spatial and high
spectral requirements of the potential applications, a spatio-
spectral fusion method is developed as a solution to yield a
high-resolution HS (HRHS) image by merging a low spatial
resolution HS image (HSI) into a high spatial resolution MS
image [4].

Unfortunately, these observed data coming along with the
noise may seriously restrict the fusion accuracy. Especially
for HSIs, the narrow bandwidth inevitably causes the var-
ious types of noise [5], [6], mainly grouped into random
noise and structure (also called fixed-pattern) noise. More
specifically, stripe noise, as a typical example of structure
noise, appears as a series of striping artifacts in the along-
track direction, due to the radiometric miscalibration among
detectors, the detectors’ response changes influenced by the
temperature or the functional failure of individual detector
elements. To remove the stripe, researchers have proposed
many algorithms [6]–[16], but mainly committed to a single-
band destriping task [7]–[12]. For HSI destriping, spectral
moment matching [13] is derived based on the abundant spec-
tral autocorrelation. The subspace-based approaches [14], [15]
can be used to estimate the striping component and to remove
it from the image. Low-rank matrix recovery (LRMR) [6] can
also be applied to HSI destriping problem mixed with the
Gaussian noise. To treat the multichannel image as a spectral–
spatial volume, an anisotropic spectral–spatial total variation
(ASSTV) regularization [16] is posed to enhance the smooth-
ness of solution along both the spectral and spatial dimensions.
The noise artifacts may result in the obscured details and
spectral distortion. The most direct idea to eliminate them
in fusion is denoising preprocessing, which yet may smooth
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details, remain artifacts, and accumulate error. As a result,
there is an urgent need to achieve a higher fusion quality with
a satisfactory antinoise effect when faced with the problem of
noise interference.

To date, many algorithms have been presented for HS
and MS image fusion, with the increasing availability of
HS systems. Early research mostly extended pansharpening
methods [17], [18], which are aimed at fusing panchromatic
image and MS image, to HS fusion. These methods mainly
focus on the component substitution (CS) and multiresolution
analysis (MRA). The CS approaches [19]–[22] mainly rely
on the substitution of the spatial component of the HSI
using the higher spatial resolution information from the MS
image in a transformed space. By dividing the spectrum of
the HS data into several regions [19], HS and MS band
images are fused in each region using the conventional
pan-sharpening techniques [23], such as principal compo-
nent analysis [21] and Gram–Schmidt (GS) spectral sharp-
ening [22]. The CS method investigates the fusion problem
under a low-dimensional spectral subspace and relies upon
the correlation between the replaced components. But low
correlation easily causes spectral distortion [24]. The MRA
approaches [25]–[27] are based on the injection of spatial
details, which are obtained through a multiscale decomposition
of the high-resolution MS (HRMS) images. In [28], MRA-
based pan-sharpening methods were effectively adapted to HS
and MS fusion by synthesizing a high-resolution image for
each HS band as a linear combination of MS band images via
linear regression. However, the performance is highly depen-
dent on the spectral resampling method, which can greatly
limit the enhancement of the spatial resolution of the HS
band images.

To overcome the above drawback, variational methods have
been proposed, among which the Bayesian approach and
the matrix factorization methods are widely used methods
[17], [29]. The Bayesian fusion methods formulate a posterior
distribution with prior knowledge to produce an intuitive inter-
pretation of the fusion process. The ill-posed fusion problem
is regularized by adding the appropriate prior distribution for
the scene of interest, such as l2-Gaussian priors [30], total
variation prior [31], sparsity prior [32], and low rank [33], [34].
In terms of a Bayesian method based on a maximum a poste-
riori (MAP) estimator developed in [35], a stochastic mixing
model and wavelet analysis derived in [36] and [37] can be
subsequently combined to capture the spectral characteristic
and spatial knowledge. Considering the spatial and spectral
characteristics simultaneously, a group spectral embedding-
based fusion method [34] was proposed by exploring the
multiple manifold structures of the spectral bands and the low-
rank structure of the HRHS data. In addition, the optimization
of the MAP-based method can be processed in the principal
component subspace. This idea of fusing the HS and MS
images based on the spectral information of both input images
on a subspace has been the main source of inspiration for many
HS and MS fusion methods developed subsequently [38]–[40].

In the subspace optimization-based fusion category,
the matrix factorization methods are the successful ones.
Matrix factorization approaches [41]–[49] intend to exploit the

inherent spectral characteristics of the same scene between HS
and MS images in a subspace. The observed HSI is usually
decomposed into a certain basis (or the spectral signatures of
the materials), and the optimized high-resolution coefficient
(or abundance) matrices are subsequently combined to obtain a
fused image. For example, coupled nonnegative matrix factor-
ization (CNMF) [42] employs unmixing techniques to generate
the HS endmember matrix and the high spatial resolution
abundance matrix for the low-resolution HS (LRHS) and
HRMS image fusion. In addition, the sparse representation-
based methods [32], [45] are widely used to produces desired
results, by combining the learned dictionary from the HSI and
the high-resolution sparse coefficient. To improve the accu-
racy of matrix factorization, the nonnegative structured sparse
representation (NSSR) [46] imposes a structural constraint to
ensure the spatial correlation of the coefficients. Moreover,
nonparametric Bayesian learning was also employed in [49]
to achieve the HRHS image. To better consider and retain a
3-D property of HSIs, a coupled sparse tensor factorization
[50] redefines the fusion problem as the estimation of a core
tensor and dictionaries of the three modes.

Although the existing variational methods, including the
Bayesian approaches and matrix factorization approaches, can
obtain promising results under the noise-free conditions, many
methods often ignore the real case of mixed noise in HSIs
such as Gaussian noise or stripe. Under the influence of noise,
the spatial structures and the internal spectral relations of the
HSI cannot be well maintained during the process of fusion.
And, the structural artifacts induced by stripe noise are even
more difficult to be removed with the conventional methods.
Furthermore, due to the lack of the consideration of different
noise distribution properties, the existing methods [32], [37],
[46] are generally designed to remove a certain type of noise,
i.e., Gaussian noise, while inadaptable to the structure noise.
In order to further improve the fusion quality, it is crucial
to design a model which can not only effectively remove
the various types of noise, but can also maintain the fused
healthy details. Therefore, this paper presents an antinoise HSI
fusion method by mining the spatio-spectral properties and
characterizing the various noise features. Due to the supe-
riority of the tensor modeling techniques in simultaneously
preserving spatial structures and spectral continuity for high-
order tensor data [51]–[53], tensor decomposition is employed
to separate the noise part, particularly the Gaussian noise, from
the intrinsic structures of the clean HSI. Considering only
tensor decomposition, which utilizes similarity in space and
global correlation in the spectrum, is not enough to eliminate
the structure noise because of the similar redundant properties
of the structure noise in the HSI. A residual image containing
the high-frequency information is used to remove the mixed
noise by describing the residual intrinsic spectral and spatial
characteristics. From the spectral perspective, an assumption
that each HS band can be represented by the adjacent bands
based on the high spectral correlation is utilized to design
a spectral guidance-based variational (SGV) model. First,
the subtraction between each HS band and its estimation
based on adjacent bands forms the residual image, which
is utilized to restrain the spectral correlation. Second, in the
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spatial dimension, two differential regularizations in different
directions are applied to characterize the residual image by
capturing the smoothness along the stripes and the discontinu-
ity across the stripes. Finally, an alternating direction method
of multipliers (ADMM) algorithm [54] is used to achieve a
robust solution for the HRHS image. The experimental results
on several data sets confirm the effectiveness of the proposed
method and its obvious antinoising capability for LRHS and
HRMS fusion under a noise scenario.

The remainder of this paper is organized as follows.
Section II introduces some notations of various parameters and
the basic relationship between the two observed images and
the desired fusion result. Section III formulates the proposed
fusion algorithm and the optimization strategy. The simulated-
and real-data experimental results followed by the quantitative
and visual assessments are presented in Section IV. Finally, our
conclusion is given in Section V.

II. PROBLEM FORMULATION

A. Notation and Preliminaries

Throughout this paper, we denote scalars, vectors, matrices,
and tensors by the nonbold letters, bold lower case letters,
bold upper case letters, and calligraphic upper case letters,
respectively. It is known that a tensor can be seen as a multi-
index numerical array, and its order is defined as the number of
its modes or dimensions. We shall provide a brief introduction
to tensor algebra in the following.

A tensor of order N is denoted by X ∈ R I1×...×In×...×IN

with the N-dimensional data array. Its element is denoted
by xi1...in ...iN , where 1 ≤ in ≤ In . The mode-n flattening of
the tensor X is denoted by X(n) ∈ RIn×Jn , where the tensor
element (i1 . . . in . . . iN ) maps to the matrix element (in, j)
with j = 1 +∑N

k=1,k �=n(ik − 1)Jk , where Jk = ∏k−1
l=1,l �=n Il .

The mode-n multiplication of a tensor X with a matrix U ∈
RJ×In , denoted by X×n U, is an N th order tensor, with its ele-
mentwise (X ×n U)i1,...,in−1 j in+1,...,iN = ∑

in xi1,i2,...,iN · u j,in .
The corresponding Frobenius norm of a tensor is defined
as ‖X‖F = √〈X ,X 〉 = (

∑
i1,...,iN

|xi1,...,iN |2)1/.2. As a
three-order tensor, the HSI can be translated into three dif-
ferent mode-n matricizations, respectively, representing the
properties of two spatial and one spectral characteristics. For
convenience, the mode-3 flattening of any HS tensor X(3) is
expressed as X in the following.

B. Fusion Problem With Noises

HSI Y ∈ R
Mh×Nh ×Lh and MS image X ∈ R

Mm×Nm ×Lm

can be thought of as 3-D arrays or tensors, which are often
called data cubes. Generally, for convenience, LRHS and
HRMS images are represented as the mode-3 multiplication
of the image, i.e., Y ∈ R

Lh×Mh Nh and X ∈ R
Lm×Mm Nm ,

meaning lexicographically transforming a 3-D cube into a
2-D matrix representation along the spectral dimension. Lm

and Ln are the numbers of spectral bands, and Mm Nm and
Mh Nh represent the high-resolution and low-resolution spatial
dimension, respectively, for the MS image and HSI. Thus,
similar to the LRHS and HRMS images, the high spatial

resolution HS cube Z ∈ R
Mm×Nm ×Lh to be estimated is

denoted by Z ∈ R
Lh×Mm Nm .

The relationship between the observed HSI and the recov-
ered HRHS image can be described as

Y = ZM + Eh (1)

where M ∈ R
Mm Nm ×Mh Nh is the spatial degradation factor

(including blurring and down-sampling factors), which indi-
cates spatial degradation and spectral consistency between Y
and Z. Eh represents the noise and model error. The model
can also be called the spatial degradation model.

In real cases, it is known that HSIs are always corrupted by
several different types of noise, e.g., Gaussian noise, stripes,
and their mixture. The random noise is generally generated
due to the limitations of equipment performance like sensor
sensitivity, photon effects, and calibration error [55], [56],
while the stripes occur mainly because of the inconsistent
responses between different detectors [11], [12]. The noises in
HSI are, thus, still of acute and can badly influence the fused
HSI images if there is no proper way to cope with them.

Following the above description, the noise term Eh can
be divided into two subterms Nh and Sh , respectively, rep-
resenting the Gaussian noise term and the sparse noise term
like stripes. Thus, the spatial degradation model (1) will be
transformed into the following degradation model:

Y = ZM + Nh + Sh . (2)

On the other hand, the HRMS image X can also be mea-
sured by left multiplying spectral response transform factor R
to Z

X = RZ + Em (3)

where R ∈ R
Lm×Lh is the spectral degradation and describes

the spatial consistency between X and Z. Em represents the
noise and model error.

III. PROPOSED MS AND HS IMAGE FUSION ALGORITHM

To recover the desired high spatial resolution HSI through
LRHS and HRMS image fusion, the resulting HRHS image is
assumed to possess the same spatial resolution as the HRMS
image and the same spectral resolution as the input LRHS
image. Therefore, based on both the spectral correlation with
the LRHS image and the spatial correlation with the HRMS
image, the HRHS image can be calculated via the model-based
spatio-spectral fusion method in the following minimized cost
function E(Z), including the spectral fidelity term, the spatial
enhancement term, and the prior term:

E(Z) = fspatial(Y, Z) + fspatial(X, Z) + fprior(Z). (4)

In general, the prior term is based upon reasonable assump-
tions or prior knowledge about the recovered HRHS image.
After analyzing and mining the image properties, the proposed
fusion algorithm exploits the low-multilinear-rank and the vari-
ational properties to construct the constraints for the recovered
image. Namely, the low-multilinear-rank property of tensor
is employed to indicate the high spatio-spectral redundancy,
while the variational properties are used to excavate the
difference of the desired HRHS image and the noisy image.
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Fig. 1. Low-rank property in the HSI cube.

A. Low-Multilinear-Rank Tensor

For the desired HRHS image, each spectral signature (row
of the mode-3 matricization Z) can be represented by a linear
combination of a small number of pure spectral endmembers.
As demonstrated in [57], the number of used endmembers is
relatively smaller than the total number of bands, which means
that a majority of singular values of Z are close to zero as
shown in the singular value curve of Z (the so-called Z(3)

in Fig. 1). In addition, similar local patches exist in the space
of typical remote sensing, composing of homologous aggre-
gation of microstructures. Therefore, two spatial modes Z(1)

and Z(2) also contain high correlations which can be reflected
as the obvious decaying trends in the curves of the singular
values, as shown in Fig. 1. Conversely, the random noise does
not have the redundancy. Hence, by characterizing the high
spatio-spectral correlation, tensor decomposition can be used
to excavate the underlying clean HSI part by subtracting the
structures of the heavy noise or artifacts part. For the estimated
HSI, the optimization problem that we wish to solve is

min
C,U1,U2,U3

α‖Z − C ×1 U1 ×2 U2 ×3 U3‖2
F,

s.t. C ∈ R
r1×r2×r3 , U1 ∈ R

Mm×π , U2 ∈ R
Nm×r2 ,

U3 ∈ R
Lh×r3

and UT
i Ui = I (i = 1, 2, 3) (5)

where C ×1 U1 ×2 U2 ×3 U3 is the Tucker decomposition
with core tensor C and factor matrices Ui of rank ri . The
basic idea is to find those components Ui that best capture
the variation in mode n, independent of the other modes.
Corresponding to these components, a low-multilinear-ranks
constraint ranki (Z(i)) ≤ ri can be used to draw off the com-
ponents of the dominant singular vectors Z(i) which describe
the clean HSI part.

However, the use of only the tensor decomposition is not
enough to eliminate the structure noise, because the structure
noise has an obvious pattern in the spatial dimension, i.e., the
high redundancy in the HSI. It is, therefore, necessary to
characterize the structures of the noise part and add a proper
prior to better deal with the mixed noise.

Fig. 2. Correlation surface map of the HSI.

B. Variational Properties via Spectral Guidance

It is well known that the adjacent bands of HSIs are highly
correlated and similar according to the correlation in Fig. 2.
Furthermore, different bands with high correlation have dif-
ferent gradient strengths, meaning that the high-correlation
bands with more detailed information can be better used to
enhance the current band. As stated in [58], each image patch
can be reconstructed by its nonlocal similar patches, and the
spatial noise can be expected to be prominently alleviated by
averaging among these similar patches. Similarly, in this work,
it is assumed that a band can also be efficiently fitted by its
neighbor and similar bands

Zl =
Lh∑

j �=l, j=1

w j Z j (6)

where Zl is the lth band of the HSI, Z j is the neighboring
bands, and w j denotes the weight assigned into the neighbor-
ing bands. w j can be estimated by the least-squares method
[38], [59] and formulated as the weight matrix W. The above
assumption provides us with reasonable knowledge to form a
gradient relation to ensure the spatial and spectral consistency

DZl = D

⎛
⎝ Lh∑

j �=l, j=1

w j Z j

⎞
⎠+ ε (7)

where D is the difference operator containing D1 and D2,
while D1 and D2 are the first-order horizontal and vertical
difference operators, respectively. With regard to an HSI with
stripes, D1 and D2 also refer to the across-stripe and along-
stripe directions of each band and are used to capture the
directional property of the stripe noise. ε is the residual image
representing the model error, which is also obtained through
the subtraction of the fitted image from the current band l.
Each band in the HRHS images is related to the corresponding
band in the LRHS images because the LRHS images can be
regarded as the spatial degradation of the HRHS images. It is
assumed that the similar local geometry in the LRHS images is
shared with the HRHS images. Thus, the W can be calculated
through the LRHS image and then transplanted to the HRHS
images.

Since the gradient reflects the variation between adjacent
pixels, the smoothness can be effectively described by mini-
mizing the local difference along both the vertical and hori-
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Fig. 3. Variational property of an HSI in both vertical and horizontal modes
for the initial 1st band image under a mixed-noise situation. (a)–(c) Current
band image Z1, the fitted image

∑Lh
j �=1 w j Z j , and the residual image between

them. (d)–(f) Across-stripe (horizontal) differential result of Z1, the fitted
image, and the residual image between the two differential results. (g)–(i)
Along-stripe (vertical) differential result of Z1, the fitted image, and the
residual image between the two differential results.

zontal directions. For example, the local smooth structure in
the along-stripe (vertical) direction is given in Figs. 3(g)–(i)
and 4(g)–(i). However, the smooth structure of an HSI in the
across-stripe direction will be damaged when the structure
noise exists in the space. More specifically, the gradients
in the across-stripe (horizontal) direction often have a large
absolute value at the stripe locations and a small value at
the nonstripe locations. Hence, the saliency characteristics of
discontinuity in the across-stripe gradient image can reflect the
actual location of a stripe.

Considering the fact that the differences between the along-
and across-stripe properties, it is natural to construct two
different terms to help suppress the discontinuity of the
stripes and maintain the local spatial smoothness. Accordingly,
combined with (7), an SGV regularization employing the high-
correlation bands is designed to solve the aforementioned
mixed noise including both the random and the structure noise

λutv‖D1(Z − WZ)‖1 + λtvTV(D(Z − WZ)) (8)

where λutv and λtv are two parameters to balance the con-
straining degree of the two terms. The first l1 norm term is the
unidirectional total variation used to describe the discontinuity
across the stripes, while the second term is the anisotropic total
variation-based gradient consistency constraint, representing
the distributional properties of the local smoothness of the
residual image and the spatial preservation with the sharper
fitted image. To facilitate the calculation, we can simplify (8)
as λ1‖D1(Z − WZ)‖1 + λ2‖D2(Z − WZ)‖1, where λ1 is the
combination of λutv and λtv, and λ2 is equivalent to λtv.

Fig. 4. Variational property of an HSI in both vertical and horizontal
modes for the 1st band image after iteration under the mixed-noise situation.
(a)–(c) Current band image Z1, the fitted image

∑Lh
j �=1 w j Z j , and the residual

image between them. (d)–(f) Across-stripe (horizontal) differential result of
Z1, the fitted image, and the residual image between the two differential
results. (g)–(i) Along-stripe (vertical) differential result of Z1, the fitted image,
and the residual image between the two differential results.

Three advantages arise when the SGV regularization is
implemented. First, on account of the relationship consistency
along the spectral bands, the band correlations of the LRHS
images can be preserved in the recovered HRHS images,
which better characterizes the spectral property. Second,
by weighted averaging among similar bands, the spatial noise
can be expected to be suppressed, as shown in Figs. 3(b)
and 4(b). Furthermore, it can be clearly observed that the
along-stripe differential result of Zl [Fig. 4(g)] and the fitted
image [Fig. 4(h)] have the same gradient direction. Then,
the residual image with the opposite gradient then reveals
the fact that the differential absolute value |DZl | of Zl is
smaller than the differential absolute value of its fitted image.
In other words, the fitted image can bring more detailed
information. Therefore, the gradient consistency constraint
between Zl , and its fitted image can better enhance the spatial
structure. Third, due to the sparsity of the residual image after
removing the low-frequency information, its differential results
in Figs. 3(f) and 4(f) can better point out the characteristics and
location of the stripes, in comparison with Figs. 3(d) and 4(d).
The sensitivity to the stripes in the residual image, in turn,
helps to find and suppress the underlying discontinuous struc-
ture of the stripe noise.

C. Proposed Fusion Model

Considering the tensor low-multilinear-rank and variational
properties of imagery, we propose a novel antinoise HSI fusion
by exploiting low-multilinear-rank tensor constraint and SGV.
After combining the proposed regularizers, we can formulate



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

a constrained optimization problem as

min
Z,Sh ,Nh

α

2
‖X − RZ‖2

F + β‖Sh‖1 + γ ‖Nh‖2
F

+λ1‖D1(Z − WZ)‖1 + λ2‖D2(Z − WZ)‖1

s.t. Y = ZM + Nh + Sh, ranki (Z(i)) ≤ ri (9)

where the parameters α, β, and γ are used to control the
relative importance of different terms. The first term is the
data-fitting term, imposing that the HRHS image Z should be
able to explain the observed HRMS data X according to the
spectral relationship model defined in (3). The constraint term
Y = ZM+Nh +Sh is the spatial reconstruction constraint with
LRHS image Y and the estimated HRHS image Z defined in
(1) and (2). The l2 norm regularization ‖Nh‖2

F can be used to
describe the Gaussian distribution of the noise. Meanwhile,
the l1 norm used in the sparsity regularization ‖Sh‖1 and
SGV regularization can not only fit the sparsity of the stripes
but can also capture the fine details in the residual map. The
SGV regularization, in particular, can help to simultaneously
characterize the piecewise smooth structure and suppress the
discontinuity caused by the noise. The l1 norm is chosen
to ensure that the differential information across the stripe
from D j (Z)( j = 1, 2) can be more accurately mapped to
D j (WZ)( j = 1, 2). As a result, the spectral correlation of the
desired image can be well preserved.

D. Optimization Problem

By introducing some auxiliary variables, we rewrite (9) as
the following equivalent minimization problem:

min
Z,Sh ,Nh

α

2
‖X − RV‖2

F + β‖Sh‖1 + γ ‖Nh‖2
F

+λ1‖Q1‖1 + λ2‖Q2‖1

s.t. Y = ZM + Nh + Sh, H = Z, ranki (H(i)) ≤ ri

V = Z, E = V − WV, Q1 = D1(E), Q2 = D2(E) (10)

where Q1, Q2, V, H, and E are the auxiliary variables. Then,
the constrained optimization problem can be transformed into
the following augmented Lagrangian function:

L(Z, Sh , Nh , H, V, E, Q1, Q2, P1, P2, P3, P4, P5, P6)

= α

2
‖X − RV‖2

F + β‖Sh‖1 + γ ‖Nh‖2
F

+ λ1‖Q1‖1 + λ2‖Q2‖1 + 〈P1, Y − ZM − Nh − Sh〉
+ 〈P2, Z − V〉 + 〈P3, V − WV − E〉 + 〈P4, D1(E) − Q1〉
+ 〈P5, D2(E) − Q2〉 + 〈P6, Z − H〉
+μ

2
‖Y − ZM − Nh − Sh‖2

F

+ μ

2
‖Z − V‖2

F + μ

2
‖V − WV − E‖2

F + μ

2
‖Z − H‖2

F

+ μ

2
‖D1(E) − Q1‖2

F + μ

2
‖D2(E) − Q2‖2

F (11)

where Pi (i = 1, 2, 3, 4, 5, 6) are the Lagrange multipliers, and
μ represent the penalty parameter, which determines the step
sizes used to update the corresponding Lagrange multipliers.
The above function can be solved by the ADMM. Each
iteration of the algorithm can be decomposed into seven
simpler subproblems, and their variables are updated in an
alternating and sequential way.

1) The Z subproblem is given by all the terms containing
Z from the function

min
Z

〈
P(k)

1 , Y − ZM − N(k)
h − S(k)

h

〉+ 〈P(k)
2 , Z − V(k)

〉
+ 〈P6, Z − H〉 + μ

2

∥∥Y − ZM − N(k)
h − S(k)

h

∥∥2
F

+ μ

2
‖Z − V(k)‖2

F + μ

2
‖Z − H(k)‖2

F . (12)

Equation (12) is a quadratic minimization problem. It has an
explicit formula

Z(MMT + 2I) = (Y − N(k)
h − S(k)

h

)
MT

+V(k) + H(k) + (P(k)
1 MT − P(k)

2 − P(k)
6

)
/μ. (13)

The preconditioned conjugate gradients (PCG) method is used
to solve (13) and get the mode-3 flattening Z.

2) Solving H subproblem needs to consider the following
problem:

μ

2
‖(Z + P6/μ) − H‖2

F s.t. ranki (H(i)) ≤ ri . (14)

Due to ranki (H(i)) ≤ ri is equivalent to a Tucker model
for H with factor matrices Ui of rank ri , then, the Tucker
decomposition is replaced to optimize the subproblem for H
as follows:

min
UT

i Ui=I

μ

2
‖(Z + P6/μ) − C ×1 U1 ×2 U2 ×3 U3‖2

F . (15)

By the classic higher order orthogonal iteration (HOOI)
algorithm used in [60], we can easily obtain C(k+1) and
U(k+1)

i (i = 1, 2, 3). Then, H can then be updated by H(k+1) =
C(k+1) ×1 U(k+1)

1 ×2 U(k+1)
2 ×3 U(k+1)

3 .
3) The V subproblem is given by

V(k+1) = argmin
V

α

2
‖X − RV‖2

F + 〈P(k)
2 , Z(k+1) − V

〉
+ 〈P(k)

3 , V − WV − E(k)
〉+ μ

2
‖Z(k+1) − V‖2

F

+ μ

2
‖V − WV − E(k)‖2

F (16)

and hence,

[αRT R + μI + μ(I − W)T (I − W)]V(k+1)

= αRT X+μZ(k+1)+μ(I− vW)T E(k)+P(k)
2 −(I−W)T P(k)

3

(17)

which can be simply solved by the PCG method.
4) The E subproblem is given by

E(k+1) = argmin
E

〈P3, V − WV − E〉 + 〈P4, D1(E) − Q(k)
1

〉
+〈P5, D2(E)−Q(k)

2

〉+ μ

2
‖V(k+1)−WV(k+1)−E‖2

F

+μ

2
‖D1(E) − Q(k)

1 ‖2
F + μ

2
‖D2(E) − Q(k)

2 ‖2
F . (18)

This problem can be transformed into the following linear
system:

(μI + μD∗
1 D1 + μD∗

2 D2)E(k+1)

= μ(V(k+1) − WV(k+1)) + μD∗
1

(
Q(k)

1

)
+μD∗

2

(
Q(k)

2

)+ P(k)
3 − D∗

1

(
P(k)

4

)− D∗
2

(
P(k)

5

)
(19)
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where D∗
j ( j = 1, 2) indicates the adjoint operator of

D j ( j = 1, 2). Equation (19) can be efficiently solved by fast
Fourier transform (FFT).

5) The Q1 and Q2 subproblems are given by

Q(k+1)
1 = argmin

Q1

〈
P(k)

4 , D1(E(k+1)) − Q1
〉

+λ1‖Q1‖1 + μ

2
‖D1(E(k+1)) − Q1‖2

F (20)

which can be solved using a soft-threshold shrinkage operator
as follows:

Q(k+1)
1 = F λ1

μ

(
D1(E(k+1)) + P(k)

4

μ

)
(21)

where

Ft (x) =

⎧⎪⎨
⎪⎩

x − t, x > t

0, |x | ≤ t

x + t, x < −t .

(22)

Similarly, Q2 can also be obtained using the above operator.
6) The Sh subproblem is given by

S(k+1)
h = argmin

Sh

β‖Sh‖1 + 〈P(k)
1 , Y − Z(k+1)M − N(k)

h − Sh
〉

+ μ

2

∥∥Y − Z(k+1)M − N(k)
h − Sh

∥∥2
F . (23)

By using the above soft-thresholding operator, the solution of
the subproblem can be formulated as

S(k+1)
h = F β

μ

(
Y − Z(k+1)M − N(k)

h + P(k)
1

μ

)
. (24)

7) The Nh subproblem is given by

N(k+1)
h = argmin

Nh

γ ‖Nh‖2
F +〈P(k)

1 , Y−Z(k+1)M−Nh −S(k+1)
h

〉
+ μ

2

∥∥Y − Z(k+1)M − Nh − S(k+1)
h

∥∥2
F . (25)

Then,

N(k+1)
h = μ

(
Y − Z(k+1)M − S(k+1)

h

)+ P(k)
1

μ + 2γ
. (26)

8) Finally, in each iteration, the Lagrange multipliers
Pi (i = 1, 2, 3, 4, 5, 6) are updated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(k+1)
1 = P(k)

1 + μ
(
Y − Z(k+1)M − N(k+1)

h − S(k+1)
h

)
P(k+1)

2 = P(k)
2 + μ(Z(k+1) − V(k+1))

P(k+1)
3 = P(k)

3 + μ(V(k+1) − WV(k+1) − E(k+1))

P(k+1)
4 = P(k)

4 + μ
(

D1(E(k+1)) − Q(k+1)
1

)
P(k+1)

5 = P(k)
5 + μ

(
D2(E(k+1)) − Q(k+1)

2

)
P(k+1)

6 = P(k)
6 + μ(Z(k+1) − H(k+1)).

(27)

Combining these subproblems from (1)–(8) introduced,
we have a one-step iteration for the ADMM. By decom-
posing the difficult minimization problem into several easy
subproblems, the proposed model can be summarized as
Algorithm 1.

Algorithm 1 Proposed Fusion Algorithm
Input: HRMS image X, LRHS image Y, parameters α, β, γ ,
μ, λ1, λ2, maximum iterations kmax , and stopping criterion
τ .
Initialize: Pi (i = 1, 2, 3, 4, 5, 6) = 0,Q1 = 0,Q2 = 0,Nh =
0,Sh = 0,τ=10−4, H and V is the interpolation of Y, E is
initialized by V − WV.
While (

∥∥Z(k) − Z(k+1)
∥∥2

F

/
‖Y‖2

F > τ and k < kmax) do

Update Z(k+1), H(k+1), V(k+1), E(k+1), Q(k+1)
1 ,

Q(k+1)
2 S(k+1)

h , N(k+1)
h by repeating (13), (15), (17), (19),

(21), (24), (26)
Update the Lagrange multipliers P(k+1)

i (i = 1, 2, 3, 4, 5, 6)
by (27)
End While
Output: The fused HRHS image Z.

IV. EXPERIMENTS AND DISCUSSION

To highlight our contribution and verify the effectiveness of
the proposed method, we compare the results of the related
HSI fusion methods to the fusion results of the proposed
method, both visually and quantitatively. The five compared
methods are HS super-resolution (HySure) [38], CNMF [42],
NSSR [46], image fusion based on a sparse representation
(BSR) [32], and HS super-resolution using proximal alter-
nating linearized minimization (SupResPALM) [47]. We have
conducted experiments on both simulated LRHS images and
real-world LRHS images. The mean peak-signal-to-noise ratio
(MPSNR) [61], the mean structural similarity (MSSIM) index
[62], the mean spectral angle (MSA) mapper [63], the uni-
versal image quality index (UIQI) [64], the root-mean-square
error (RMSE), the erreur relative globale adimensionnelle de
synthèse (ERGAS) [65], and the correlation coefficient (CC)
served as evaluation indices for the simulated experiments.
Generally speaking, higher MPSNR, MSSIM, UIQI, and CC
values reflect the better fusion results, while a lower RMSE,
ERGAS, and MSA values means that the fusion results
maintain better quality of the fused image, with lower spectral
distortion.

The basic parameters of the proposed method are dis-
cussed as follows. The maximum iteration number kmax in
Algorithm 1 was set as 50. The adjacent spectral band num-
ber K was set as 20 for both the simulated- and real-data
experiments. Due to different degradation levels of the test
images in our experiments, the functioning degree of the
corresponding constraint terms in model (10) needs to be
adjusted accordingly through the regularization parameters.
The coefficient α for the spatial enhancement term can control
the degree of the fused detailed information from the MS
image. However, the overlarger value of α will damage the
spectral fidelity, and thus, the coefficient value was chosen as
1 for all the experiments in this paper. The parameters λ1 and
λ2 are related to the noise level. Specifically, λ1 for the across-
stripe differential term stands out a superior ability to control
the stripe noise levels, and a larger λ1 can help to eliminate
the traces of heavy stripe. When the image is simultaneously
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TABLE I

QUANTITATIVE EVALUATION OF THE FUSION RESULTS FOR THE SIMULATED EXPERIMENTS WITH s = 4

contaminated by the stripes and Gaussian noise, λ1 should
be larger than the value of λ2, in order to overcome the
discontinuity of the stripes. λ1 and λ2 were empirically set
within the range from 0.0001 to 0.005 in this paper. The pro-
portion of the stripes is in close accordance with the sparsity
parameter γ . In addition, the parameter β is used to control
the processing strength for the Gaussian noise. The more
severe the Gaussian noise level is, the larger should be the
parameter β. The parameter β was set within the range [0.5, 1]
in our implementations. Notably, the tensor decomposition of
rank ri (i = 1, 2, 3) can extract the clear HSI part, and thus,
an image with the high noise intensity needs to select the
lower ri (i = 1, 2, 3) for the three dimensions. To simplify the
steps of the parameter adjustment in ADMM algorithm, the
coefficient μ was tuned by μ(k+1) = 1.2μ(k) with an initial
value of 0.001. In all the experiments, the parameters of the
other methods were adjusted to the optimum.

The test data sets used in the experiments are described
in the following, for both the simulated- and real-data
experiments.

1) Data set A was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) optical sensor over the
urban area of the University of Pavia, Pavia, Italy. The
reference image scene was cropped to 200 × 200 × 93
after removing 22 water absorption bands. The image
spans the 0.43–0.86-μm spectral range and has a spatial
resolution of 1.3 m.

2) The data set B used in the real-data experiments was
made up of images taken over Suzhou in China, which
were obtained by the earth Observing-1 Mission (EO-1)
satellite and the Gaofen-1 (GF-1, Gaofen means high
resolution in Chinese) satellite.

The Hyperion sensor onboard EO-1 is an HS imager with
a spatial resolution of 30 m, while the GF-1 provides MS
images at resolutions of 16 m, containing four MS bands,
spanning the visible to the near-infrared spectral regions from
0.45 to 0.89 μm. To ensure spectral range consistency, the
total number of 38 bands and spatial size of 400 × 362 from
Hyperion were used to enhance the spectral information of
GF-1. To allow a quantitative evaluation, the gray values of
all the HSI bands were normalized to [0,1].

A. Simulated-Data Experiments

In the simulated HSI fusion process, the HSIs from the data
set A serving as ground-truth images were used to generate
simulated LRHS images and HRMS images. As described
in [38], HRMS images Y were generated by filtering the
ground-truth images along the spectral dimension using the
reflectance spectral responses like the IKONOS. As for the
LRHS images, the original HRHS images were first downsam-
pled to obtain the LRHS images by averaging over disjoint
s × s blocks, where s was the scaling factor of 4 or 8.
In the next step, the LRHS images were contaminated with
three different cases of additional noise detailed as follows.
In case 1, the LRHS image was contaminated by low-intensity
Gaussian noise, and the simulation was conducted with 30-dB
SNR. The SNR of each band with the noise standard deviation
σl was defined as follows:

SNRl = 10log

(‖(ZM)l‖2

σ 2
l

)
, l = 1, ..., Lh . (28)

In case 2, the simulations were generated with 10-dB SNR
for each band, meaning that all bands were contaminated by
high-intensity Gaussian noise.
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TABLE II

QUANTITATIVE EVALUATION OF THE FUSION RESULTS FOR THE SIMULATED EXPERIMENTS WITH s = 8

Fig. 5. Results for the data set A in case 2 with s = 8. (a) Original HRHS image with bands 59, 30, and 13 (false color). (b) Simulated LRHS image.
(c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

In case 3, the intensity of Gaussian noise was the same as
that in case 1. In addition, all bands were also corrupted by
the stripes, with 30% of the total row or column number.

In the simulated experiments, the regularization coefficient
[λ1, λ2] used in the proposed method was set as [0.0001,
0.0001], [0.0001, 0.0001], and [0.0005, 0.0001], respectively,
for case 1 to case 3. To better separate the noise or artifacts
part, the ranks ri (i = 1, 2, 3) of tensor decomposition were
selected as [200, 200, 15], [200, 200, 5], and [195, 195, 5]
corresponding to different [λ1, λ2] from case 1 to case 3.
In addition, the regularization parameter β was empirically
set as 0.5 for the low Gaussian noise case and 1 for the high
Gaussian noise case, while the parameters γ were empirically
set as 1e−4.

To achieve an integrated comparison of the other meth-
ods and the proposed method, seven quantitative evaluations,
a visual comparison, curves of the spectra, and the overall
difference results were used to analyze the spatial and spectral
effectiveness of the results of different methods. In addi-
tion, the mean cross-stripe profiles were used to reflect the
destriping ability. The contrasting evaluation indices for the
three cases with various spatial resolution ratios s are listed
in Tables I and II, respectively. The best performance for
each quality index is marked in bold, and the second-best
performance for each quality index is underlined.

From the numerical assessments of all the fused images
listed in Tables I and II, the values of the RMSE, UIQI, and
PSNR indices show that the proposed method generates the
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Fig. 6. Magnified results for the data set A in Fig. 5. (a) Original HRHS
image with bands 59, 30, and 13 (false color). (b) Simulated LRHS image.
(c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed
method.

lowest radiometric distortion in most situations. The SSIM
index evaluating the SSIM indicates that the proposed method
can capture more details than the other methods. Moreover,
in most cases, the proposed method has the lowest SAM
and ERGAS values, meaning that the proposed method can
preserve more spectral information. The proposed method also
achieves the highest CC value, indicating closer similarity
with the reference image. Notably, the proposed method
shows a stable ability with different noise levels and shows
significant superiority in the high-intensity noise and mixed-
noise cases. In the low-intensity noise situation, such as
case 1, the proposed method obtains better or similar results to
BSR and SupResPALM, which also show a good quantitative
performance.

Compared with the other algorithms, the proposed method
achieves a better visual quality in Figs. 5–7 and 9–11. To verify
the fusion effect of the proposed method when confronted
with the Gaussian noise, bands 59, 30, and 13 from the
HSIs of the compared methods are selected to form a false-
color composite for visual comparison in Figs. 5–7. It can be
observed that all the fusion methods provide clear and sharp
spatial details, compared with the LRHS images. However,
there are still some spatial and spectral differences between the
reference image and the fusion results of different methods.
For example, the results of CNMF and NSSR contain obvious
residual noise and spectral distortion. Although fake artifacts
are not found in the results of SupResPALM, some areas,
especially trees, clearly show spectral distortion. The fusion
results of HySure and BSR show good noise suppression and
enhancement of the spatial details. However, from the magni-
fied areas in Figs. 6 and 7, some spectral distortion near the
trees and streets is obvious. The proposed method obtains
the closest results to the original HRHS image by exploring
the low-multilinear-rank and the spatio-spectral correlation
between bands. Furthermore, the spectral characteristics are
better preserved and good spatial structures can be observed.

In order to further compare the performance of the proposed
method in spectral preservation, the spectral curves from
different objects are plotted in Fig. 8, which shows the spectral
signatures of the pixel (101, 100) from data set A in case 2.
From Fig. 8, we can see violent fluctuations in the curves
of the simulated LRHS image for CNMF and NSSR, which

Fig. 7. Magnified results for the data set A in Fig. 5. (a) Original HRHS
image with bands 59, 30, and 13 (false color). (b) Simulated LRHS image.
(c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed
method.

indicate that these two methods fail to remove the spectral
noise. Furthermore, HySure, BSR, and SupResPALM cannot
approximate the reference spectral curve at the end of the
bands very well. For the proposed method, a smoother curve
possessing better consistency with the reference curve can
be seen in Fig. 8, indicating good recovery of the spectral
information.

To further validate the effect of the proposed method when
confronted with the mixed noise, Figs. 9–11 show different
visual results of different methods with a false-color composite
of the bands 84, 48, and 28 from the HSIs. As displayed
in Figs. 9–11, although all the results show the larger enhance-
ment of spatial details, the five compared methods retain
different degrees of residual stripes, and some of the methods
introduce some heavy spectral distortions. The detail region
in Fig. 10 reveals that the proposed method has a much
better ability to preserve the healthy and sharp information
in addition to suppressing the stripe noise successfully.

Using Fig. 12 to further describe the spectral preservation,
these results are in good agreement with those visual results
in Figs. 9–11. Our method can give a relatively smoother curve
than the other methods and maintain a similar wave shape
to the reference curve. Due to the less minor uneven on the
curve in Fig. 12(h), we give the difference results between all
methods and the original HRHS image in Fig. 13 to elaborate
the consistency of the spatio-spectral information. The largest
minimum, the smallest maximum, and the smallest box region
from the 25th to the 75th and the 1st to the 99th percentile
reveal that the overall quality of the fusion result of our method
is the closest to that of the reference image. Accordingly, it is
proved that the proposed fusion algorithm greatly improves
the fusion quality under the influence of mixed noise.

In addition, in order to test the abilities of different methods
to keep healthy pixels in the fusion process along with destrip-
ing, Fig. 14 displays the mean cross-track profiles of band
28 in Case 3. The best mean cross-track profile of the destriped
image should be the same as the original reference image.
From Fig. 14, we can see that the corresponding profiles of
these methods, except for the proposed method, differ a lot
from the curve of the reference image. However, the proposed
method alleviates the fluctuation and brings the profile into
correspondence with the reference image. Especially, the left
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Fig. 8. Spectra of pixel (101, 100) in the fused results with s = 8 in case 2. (a) Original HRHS image. (b) Simulated LRHS image. (c) HySure. (d) CNMF.
(e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

Fig. 9. Results for the data set A in case 3 with s = 8. (a) Original HRHS image with bands 84, 48, and 28 (false color). (b) Simulated LRHS image.
(c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

Fig. 10. Magnified results for the data set A in Fig. 9. (a) Original HRHS image with bands 84, 48, and 28 (false color). (b) Simulated LRHS image.
(c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

part of the result, which is a nonstripe region, is the same as
the reference image. This confirms that the proposed method is
a reliable way to suppress the stripes while preserving healthy
detailed information.

B. Real-Data Experiments

In the data set B, most of the bands from the Hyperion
were seriously degraded by Gaussian noise, stripes, or the
mixed noise. To overcome the influence of the various noises,
the parameters κ1, κ2, and β were set as 0.005, 0.001, and 1,
respectively. In addition, based on our experience in the sim-
ulated experiments, the small ranks on the spatial dimensions

can be empirically selected as 97.5% of the dimension. Thus,
the ranks ri (i = 1, 2, 3) were set as [390, 350, 5]. To further
verify the effectiveness of the proposed method, a visual
comparison with the false-color results with the combined
bands 38, 19, and 2 bands is given in Figs. 15–17.

In Figs. 15–17, it can be seen that some spectral information
is lost in the result of SupResPALM, particularly in the build-
ing areas in top-left and top-right corners. The result coincides
with the performance of SupResPALM in the simulated case 2.
SupResPALM has difficulty solving the problem of heavy
Gaussian noise, and the noise results in wrong information,
as shown in the top-right corner of Fig. 16(e). In addition,
Fig. 16 shows that HySure, CNMF, NSSR, and BSR also
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Fig. 11. Results for the data set A in case 3 with S = 8. (a) Original HRHS image with band 28. (b) Simulated LRHS image. (c) HySure. (d) CNMF.
(e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

Fig. 12. Spectra of pixel (105, 70) in the fused results for the data set A in case 3 with S = 8. (a) Original HRHS image with bands. (b) Simulated LRHS
image. (c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

Fig. 13. Box plots of the difference between the compared methods and the
original HRHS image for the data set A in case 3. Each box plot represents
the difference between a compared method and the original HRHS image.

fail to suppress the spectral distortion induced by the noise
of the LRHS image. For example, the color of the building
areas shows an abnormal red, due to the impact of the mixed
noise. What is worse, these compared methods show obvious

residual striping and result in nonsmoothness of the spatial
information. Unlike the five existing methods, the fused image
produced by the proposed method shows a more natural and
sharp visual effect, by effectively removing the mixed noise
and fusing the details and structural information. Moreover,
Fig. 18 displays the mean cross-track profiles of band 1 in
the data set B, where the corresponding profiles of the five
existing methods still show too much fluctuation. In contrast,
the proposed approach can process stripes well, with the least
amount of distortion, and is better able to preserve the fused
detailed information.

C. Discussion

1) One-Step Versus Step-by-Step: To further validate the
effect of the presented method, we compared a group of fusion
approaches with two steps, where the stripes or mixed noise
were first removed using a denoising method and then image
fusion is performed. These experiments are conducted in two
cases. One is the same as Case 3, and ASSTV [16], as one
representative method in the multichannel image destriping,
is employed to remove the stripes. The other one is set to
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Fig. 14. Mean cross-stripe profiles of band 28 in case 3. (a) Original HRHS image with band 28. (b) Simulated LRHS image. (c) HySure. (d) CNMF.
(e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

Fig. 15. Results for the data set B. (a) Observed LRHS image with bands 38, 19, and 2 (false color). (b) Observed HRMS image with bands 4, 3, and 2
(false color). (c) HySure. (d) CNMF. (e) NSSR. (f) BSR. (g) SupResPALM. (h) Proposed method.

Fig. 16. Magnified results for the data set B in Fig. 15. (a) HySure. (b) CNMF. (c) NSSR. (d) BSR. (e) SupResPALM. (f) Proposed method.

be contaminated by the heavier noise with 10-dB SNR and
contain 50% stripes for each band. Due to the high-intensity
Gaussian noise in this case, we adopted LRMR [6] which
is one of classical and effective methods for the mixed-noises
reduction. The best denoising results from ASSTV and LRMR
are obtained as the initial values for fusion.

In these experiments, two fusion methods with better per-
formance on quantitative evaluation of the previous sim-
ulated experiments are selected to implement the step by
step strategy, denoted as “BSR(s)” and “SupResPALM(s).”
Contrarily, our method adopts one algorithm to simulta-
neously achieve the denoising and fusion, and is denoted

by “Proposed(o).” The fusion results of the ROSIS image
with s = 4 are listed in Table III with different meth-
ods. All evaluation indices in Table III are almost the best
for the proposed method. Furthermore, our method gives a
significant superiority with the heavier noise. Nevertheless,
the compared methods may lack sufficient capacity in dealing
with the denoising results with artifacts or oversmoothing
under high-intensity noise condition. The all above results
from Tables I–III demonstrate that the proposed method
not only can achieve good performance in high SNRs
condition but also can better restrain the interference of
noise.
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Fig. 17. Results for the data set B with band 1. (a) Observed LRHS image. (b) HySure. (c) CNMF. (d) NSSR. (e) BSR. (f) SupResPALM. (g) Proposed
method.

Fig. 18. Mean cross-stripe profiles of band 1 in the data set B. (a) Observed LRHS image. (b) HySure. (c) CNMF. (d) NSSR. (e) BSR. (f) SupResPALM.
(g) Proposed method.

TABLE III

QUANTITATIVE EVALUATION OF THE FUSION RESULTS

FOR THE SIMULATED EXPERIMENTS WITH s = 4

2) Run-Time Comparison: To compare the work efficiency
of different fusion algorithms, the average running times were
recorded for three simulated experiments with s = 4 under
the same operational environment (Software: Windows 10,
MATLAB R2015b; Hardware: 8-GB RAM, i7-6500 CPU),
as listed in Table IV. Although BSR and the proposed methods
spend a relatively more time to fuse HSI and MS images,
they can obtain better performance in Tables I–III and limit
time cost within an acceptable range. Hence, to improve the
efficiency of the proposed method, the admixture program-

TABLE IV

RUN-TIME COMPARISON FOR THE SIMULATED

EXPERIMENTS WITH s = 4 (SECONDS)

ming with C language, which applied in SupResPALM, can
be employed in the future. In addition, the program structure
can also be optimized.

V. CONCLUSION

In this paper, we have proposed an antinoise HSI fusion
method by combining tensor decomposition and SGV regu-
larization. The tensor decomposition is used to satisfy low
multilinear ranks for characterizing the underlying clean HSI
part by the subtraction of the structures of the heavy noise and
artifacts parts. In order to well remove the stripes in the fusion
process, the spectral relationship between bands is explored to
form a spectral guidance-based gradient variational constraint.
In one respect, the intrinsic gradient complementarity induced
by the nonuniform spectral response coefficient is exploited
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to enhance the details and preserve the spectral property. On
the other hand, the differentials of the two directions for the
sparse residual image help to suppress the mixed noise. The
experiments indicated that the proposed method outperforms
the mainstream methods, and the proposed fusion method can
produce finer spatial details, while overcoming complex noise,
and is better able to preserve the spectral characteristics.

Although the proposed method works well in the HSI
fusion, especially in a noisy situation, there are still some
limitations for the recovery of a spectral curve when con-
fronted with stripes. Thus, in the future, we will focus on the
task of improving the spectral characteristics for HSIs with
stripes. The acceleration for fusion should also be considered.
Furthermore, for fusion at higher spatial ratios, multisource
data and heterogeneous data will be considered in our future
work.
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