This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Pansharpening for Cloud-Contaminated Very
High-Resolution Remote Sensing Images

Xiangchao Meng

Qiangqgiang Yuan™, Member, IEEE, Huifang Li

, Member, IEEE, Huanfeng Shen™, Senior Member, IEEE,

, Member, IEEE,

Liangpei Zhang™', Senior Member, IEEE, and Weiwei Sun, Member, IEEE

Abstract— The optical remote sensing images not only have
to make a fundamental tradeoff between the spatial and spec-
tral resolutions, but also are inevitable to be polluted by the
clouds; however, the existing pansharpening methods mainly
focus on the resolution enhancement of the optical remote sensing
images without cloud contamination. How to fuse the cloud-
contaminated images to achieve the joint resolution enhance-
ment and cloud removal is a promising and challenging work.
In this paper, a pansharpening method for the challenging cloud-
contaminated very high-resolution remote sensing images is pro-
posed. Furthermore, the cloud-contaminated conditions for the
practical observations with all the thick clouds, the thin clouds,
the haze, and the cloud shadows are comprehensively considered.
In the proposed methods, a two-step fusion framework based on
multisource and multitemporal observations is presented: 1) the
thin clouds, the haze, and the light cloud shadows are proposed
to be first jointly removed and 2) a variational-based integrated
fusion model is then proposed to achieve the joint resolution
enhancement and missing information reconstruction for the
thick clouds and dark cloud shadows. Through the proposed
fusion method, a promising cloud-free fused image with both high
spatial and high spectral resolutions can be obtained. To compre-
hensively test and verify the proposed method, the experiments
were implemented based on both the cloud-free and cloud-
contaminated images, and a number of different remote sensing
satellites including the IKONOS, the QuickBird, the Jilin (JL)-1,
and the Deimos-2 images were utilized. The experimental results
confirm the effectiveness of the proposed method.
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I. INTRODUCTION

UE to the physical constraints of satellite sensors and

other factors [1], [2], such as the incoming energy to
the sensors, the on-board storage, and the data transmission,
the remote sensing images have to feature a fundamental trade-
off between the spatial and spectral resolutions. Accordingly,
more than 70% of the optical earth observation satellites
provide the bundled high spatial resolution (HR) panchro-
matic (PAN) image with a single-band and the low spatial res-
olution (LR) multispectral (MS) image with relatively higher
spectral resolution [3].

PAN/MS fusion, typically referred to as pansharpening,
was proposed to integrate the complementary spatial and
spectral resolutions of the HR PAN and LR MS images to
obtain an HR MS image [2]. The pansharpening methods
originated in the 1980s [1], [4], [5]. Since 1986, the Systeme
Pour I’ Observation de la Terre-1 system has provided
two LR MS images together with one HR PAN image,
the pansharpening methods have got a rapid development
over a period of 30 years. To date, there have proposed a
large number of pansharpening methods. In general, most
of them can be classified into three major categories [6]:
1) the component substitution (CS)-based methods; 2) the
multiresolution analysis (MRA)-based methods; and 3) the
variational optimization (VO)-based methods. In addition,
the deep learning (DL)-based pansharpening methods have
been proposed, and they are attracting increasing attention.

Among different categories of pansharpening methods,
the CS-based and MRA-based methods are the most popular
due to their simplicity and high efficiency.

1) CS-Based Pansharpening Methods: They are based on
the substitution of an LR component of the MS image by
the HR PAN image to obtain the fused HR MS image,
and the LR component is generally obtained by spectral
transformation of the MS image. On the whole, the
development process of CS-based methods includes two
stages: 1) the traditional understanding [7], [8] charac-
terized by the process of the “forward transformation—
CS—inverse transformation” and 2) the general under-
standing with a unified framework [9]-[11], which
makes a major contribution to the improvement and
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development of this kind of methods. The CS-based
methods generally produce fused image with sharp spa-
tial structures, and they are also robust to the MS-to-PAN
misalignment. However, the traditional CS-based meth-
ods, such as intensity—hue—saturation (IHS) method [7]
and principal component analysis method [7], generally
produce serious spectral distortions [12], [13]. But, it is
noteworthy that this is not true for all the CS-based
methods, especially for some improved CS-based
methods [6], [14], [15].

MRA-Based Pansharpening Methods: This category of
pansharpening methods is based on the injection of the
high frequency, extracted by the spatial decomposition
on the HR PAN image, into the LR MS image to obtain
the fused HR MS image. Similar to the CS-based
methods, the MRA-based pansharpening methods
have experienced a development process from the
traditional understanding to the general understanding.
The traditional understanding is strictly based on MRA
algorithms, such as the wavelet transform [16] and
the Laplacian pyramid [17]. This is characterized by a
complex process with “multiresolution decomposition—
fusion—image reconstruction.” Then, the MRA-based
methods are simplified and extended to a general
fusion framework [10], [11], [18], which has promoted
the emerge in large numbers of improved methods
[13], [19], [20]. In contrast to the CS-based methods,
the MRA-based pansharpening methods are relatively
sensitive to the MS-to-PAN misalignment, whereas they
are more robust to the temporal and instrumental mis-
alignment between the PAN and MS observations [21].
VO-Based Pansharpening Methods: The VO-based
methods are based on the variational theory, which
features the optimal solution of an energy functional.
The representative methods include the popular model-
based methods [22], [23] and the sparse-based methods
[24], [25]. For the model-based pansharpening methods,
they regard the fusion process as an ill-posed inverse
problem, based on the observation model by considering
the imaging process of the observations [26], [27].
For the sparse-based pansharpening methods, the first
work was proposed by Li and Yang [24]. They are
characterized by the dictionary learning, which includes
the early offline learning methods based on the external
database [24], [28] and the mainstream online learning
methods based on the observations to be fused [25], [29].
DL-Based Pansharpening Methods: In addition to
the above three categories of pansharpening methods,
the DL-based pansharpening methods [30] have been
attracting ever-increasing attention. They are based on
the DL theory [31]-[33]. Such as Masi et al. [34] and
Zhong et al. [35] proposed pansharpening methods
based on convolutional neural networks, respectively.
Yuan et al. [36] proposed the multiscale and multidepth
convolutional neural network for pansharpening of
remote sensing images. Though the existing DL-based
pansharpening works have shown good performance,
whether the DL could better solve the problems for
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pansharpening should be further fully tested and
verified.

Although a large number of pansharpening methods
have been proposed, most of them do not consider the
possible cloud contamination [37], [38] in the optical
remote sensing observations. However, it is noteworthy that
at any one time, approximately 35% of the global land
surface is covered by clouds [38], [39]. In addition, for the
actual optical remote sensing observations, especially for
the very high-resolution (VHR) satellite images, multiple
cloud-contaminated factors, including the thick clouds, the
thin clouds, the haze, and the cloud shadows, are generally
simultaneously existed. Therefore, for the cloud-contaminated
VHR satellite PAN and MS images, how to effectively achieve
the joint resolution enhancement and cloud removal to obtain
the cloud-free HR MS image is a promising and challenging
work. To the best of our knowledge, few papers [40] have
addressed this problem, especially for the challenging VHR
remote sensing scenes with multiple cloud-contaminated
factors simultaneously, including the thick clouds, the thin
clouds, and the cloud shadows.

Based on the above problems, we proposed a pansharp-
ening method for the cloud-contaminated remote sensing
observations. The proposed method is based on multisource
and multitemporal PAN and MS observations, and multiple
cloud-contaminated factors including the thick clouds, the thin
clouds, the haze, and the cloud shadows are comprehensively
considered. Through the proposed method, the cloud-free
image with both high spatial and high spectral resolutions will
be obtained. Two contributions are made in this paper.

1) This is the first work to propose the pansharpening
method for the images with challenging complex cloud-
contaminated conditions, including all the thick clouds,
the thin clouds, and the cloud shadows.

2) A variational-based integrated fusion model was pro-
posed to achieve the joint resolution enhancement and
information reconstruction.

The rest of this paper is organized as follows. Section II
presents the description of the proposed fusion framework.
Section III presents the variational-based integrated fusion
model in detail. The experimental results and analysis are
presented in Section IV, and Section V shows the conclusion.

II. PROPOSED FUSION FRAMEWORK

In this paper, a pansharpening method for the cloud-
contaminated VHR remote sensing images is proposed. The
proposed fusion framework is based on multisource and
multitemporal LR MS and HR PAN observations, as shown
in Fig. 1. The target LR MS and HR PAN images are both
contaminated by clouds, and the cloud-free auxiliary LR MS
and HR PAN images, which should be performed geometrical
registration and radiometric normalization, are applied to pro-
vide the complementary information. It should be noted that
the auxiliary images with approaching phase should be chosen
as far as possible to ensure the consistent ground features to the
target images. The aim of the proposed method is to obtain the
desired cloud-free HR MS image at the target time. To achieve
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Fig. 1. Schematic of the proposed fusion framework.

this aim, two challenging problems should be solved: 1) how
to construct an effective fusion model to achieve the joint
resolution enhancement and cloud removal to avoid the error
accumulation of the step-by-step fusion and 2) how to process
the optical remote sensing scenes with the great challeng-
ing complex cloud degradation conditions, such as the thick
clouds, the thin clouds, the haze, and the cloud shadows
existed simultaneously. To solve the challenges, a two-step
integrated fusion strategy is proposed, by comprehensively
considering the relations and difference among the multiple
degradation factors. On the one hand, in consideration of the
common semitransparent visibility of ground features for the
thin clouds, the haze, and the cloud shadows, an integrated
removal strategy based on moment matching is applied to
perform the joint information restoration for them. On the
other hand, a variational-based integrated fusion model is
further proposed, and the resolution enhancement and the
missing information reconstruction for the thick clouds are
jointly achieved based on the proposed integrated variational
fusion model. Through the proposed fusion method, the cloud-
free image with both high spatial and high spectral resolutions
can be obtained.

As aforementioned, the proposed fusion method can achieve
the joint resolution enhancement and cloud removal to obtain
the cloud-free HR MS image. Furthermore, it can be applied
to the fusion of the challenging cloud-contaminated optical
remote sensing observations with multiple complex cloud
degradation conditions, including the thick clouds, the thin
clouds, the haze, and the cloud shadows.

A. Preprocessing

The proposed method involves multisource and
multitemporal images, and the preprocessing including
the geometrical registration and radiometric normalization
should be performed first. For the geometrical registration,
the processing by professional software of the environment
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Fig. 2. Schematic of the radiometric normalization.

for visualizing images can meet the requirements for fusion.
For the radiometric normalization, a two-step radiometric
normalization method for the auxiliary images is proposed,
as shown in Fig. 2.

The radiometric normalization includes two steps.

1) The auxiliary MS and PAN images are normalized to
the target MS and PAN images, respectively, based on
the relationships calculated by the common cloud-free
regions as shown in the dashed areas of Fig. 2.

2) In consideration of the possible slight radiometric dif-
ference between the target and auxiliary images after
the first normalization, and also considering that the
auxiliary images mainly provide useful information for
the cloud regions of the target images.

We propose to further normalize the local regions of the aux-
iliary images corresponding to the cloud regions of the target
image, as shown in Fig. 2, based on the Poisson equation.
Following the proposed two-step radiometric normalization
processing, the radiometric difference between the target and
auxiliary images is minimized.

1) The First-Step Radiometric Normalization: It is assumed
that the relationship between multitemporal scenes can
be expressed by a linear model [6], [38], [41]. For
convenience, the target image is denoted by Qp, and the
auxiliary image is denoted by Oj. It is represented as

O = ;0% + 2 (1)
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where Q denotes the common cloud-free regions of
the target and auxiliary images, and cy,cy are the
relationship coefficients, which are solved based on the
robust regression analysis using iteratively reweighted
least squares [42]. Then, the normalized auxiliary image
is obtained by

01 =c101+c (2)

where O; denotes the normalized auxiliary image.

2) The Second-Step Radiometric Normalization: The
Poisson editing [43] has been successfully applied to
a variety of applications, such as the seamless interpo-
lation, the local illumination change, and color transfer.
In this paper, the Poisson editing is applied for the local
radiometric normalization. It is represented as

07 =07 +g 3)

where Q— represents the regions, corresponding to the
cloud regions of the target image, to be further normal-
ized, and 6?_ is the final normalized result. g represents
the possible slight radiation difference between the target
image and the first-step normalized auxiliary image. It is
solved by

Ag =0 over Q—, gloa_ = (00— 0o @)

where 0Q2— denotes the boundary of the local regions.

B. Moment Matching-Based Joint Removal

How to process the optical remote sensing observations
with multiple cloud degradation conditions, such as the thick
clouds, thin clouds, the haze, and the cloud shadows existed
simultaneously, is a challenging work. On the one hand, to
obtain the cloud-free image with both high spatial and high
spectral resolutions, all the information restoration for the
thin clouds, the haze, the light cloud shadows, the miss-
ing information reconstruction for the thick clouds, and the
resolution enhancement should be achieved. On the other
hand, error accumulation during the above multiple complex
processing tasks in pansharpening of the cloud-contaminated
images should be minimized.

For the removal of the thin cloud, the haze, and the
light cloud shadows, the sliding window-based local moment
matching method [44] is introduced by comprehensively con-
sidering the possible ground feature changes between the
target image and the auxiliary image. This can preserve the
spatial structures of the target images as much as possible,
by only adjusting the local mean value and the variance. The
schematic of the sliding window-based local moment matching
method is shown in Fig. 3.

As shown in Fig. 3, the normalized cloud-free auxiliary
image is regarded as the reference, and the processing is
performed pixel by pixel by making use of the contextual
information. It is represented as follows:
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local moment matching

Fig. 3. Schematic of sliding window-based local moment matching for
haze and light cloud shadow removal. (a) Target image with cloud shadows.
(b) Auxiliary image.

where Qg denotes the result, and the superscript p denotes
the patch extraction. The subscript std denotes the standard
deviation, and subscript mean represents the mean value.
Through the sliding window-based local moment matching
method, the thin cloud, the haze, and the light cloud shadows
of the target images can be jointly removed.

C. Variational-Based Integrated Fusion Model

After the thin clouds, the haze, and the light cloud shadows
have been removed, the target MS and PAN images are still
polluted by the thick clouds and the dark cloud shadows, and
the information in these regions can be assumed to be com-
pletely missing. Furthermore, for the VHR satellite images,
the cloud-contaminated regions are generally large. Therefore,
how to achieve the joint missing information reconstruction
and the resolution enhancement to obtain the desired cloud-
free image with both high spatial and high spectral resolutions
is challenging. In this paper, a variational-based integrated
fusion model is proposed. The proposed model is based on
the multisource and multitemporal images, and it can achieve
the joint resolution enhancement and the missing information
reconstruction to obtain the desired cloud-free HR MS image.

III. VARIATIONAL-BASED INTEGRATED FUSION MODEL

Let Y = {yp,y4} denotes the group of the target and
auxiliary LR MS images, where y, denotes the target image
with thin cloud and light cloud shadow being removed, and
¥4 denotes the normalized auxiliary image. Z = {z,,z,}
represents the group of the target and auxiliary HR PAN
images, where z, represents the target HR PAN image with
thin cloud and light cloud shadow being removed, and z,
represents the normalized auxiliary HR PAN image. The
desired fused image is denoted by x.

A. Spectral Fidelity Term for the Integrated Model

In this paper, a 3-D spectral fidelity term is proposed.
The spectral fidelity term relates the desired fused image x and
the LR MS images Y. It is based on the observation model
of the LR MS image [1], [23], [45]. For convenience, let y
denotes a general LR MS image. The observation model is
represented as

y=DSx+v (6)
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where S represents the blurring matrix, D denotes the down-
sampling matrix, and v denotes the additive noise. Hence,
the traditional spectral fidelity term [23], [46] is generally
represented as

B
Espe = Y _ llys — DSpx3 5 )
b=1
where b denotes the band number, and B denotes the total
number of spectral bands.

It can be seen that the traditional spectral fidelity term only
builds the top—down relationship for each band of the LR
MS image and the desired fused image. However, it does not
comprehensively consider the interband spectral correlation
among the MS bands. For the pansharpening of the cloud-
contaminated images, the spectral fidelity is more challenging.
Therefore, to further improve the ability of the spectral fidelity,
a 3-D spectral fidelity term is proposed, represented as

B B
Espspe = ) > Iy —¥1) =D (Spxp — Sixi) 3 (8)
b=1 k=0
where k denotes the kth band, and it should be noted that
Yk, Xk, Si will be zero matrix with k = 0. Hence, the proposed
spectral fidelity term for the integrated fusion model based on
target and auxiliary images is represented as follows:

B B
E;Dspe = Z Z || (Y/b - Y/k) —MD (Spxp — Ska)H; )
b=1 k=0

where M = [M,, Mq]T denotes the image masks; here,
M,, is the mask for the target image, and the pixel value of
M, is O for the missing information regions, and it is 1 for
the cloud-free regions. My, in which zero value for the cloud-
free regions and one value for the missing information regions,
is the mask for the auxiliary image. Y'p, = Mpyp.b, quq,b]T
and Y = Mpyp i, quq,k]T denote the group of the
corresponding target and auxiliary LR MS images.

B. Spatial Enhancement Term for the Integrated Model

The spatial enhancement term relates the desired fused
image x and the HR PAN image Z. It is based on spatial
structures other than the gray value [22], [26], and this
will weaken the negative influence of low frequency of the
HR PAN images, especially for the auxiliary HR PAN image.
It is assumed that the desired HR MS image has similar
spatial structures to the HR PAN image [22], [47], repre-
sented as Vz =~ Vxp, where z denotes an HR PAN image,
V = [V}, VI1T denotes the gradient operators, and Vi =
[—1, 1], Vy = [—1, 1]7 are the horizontal and vertical gra-
dient operators, respectively. In this paper, moment matching
of the gradient features is introduced to further enhance the
robustness. The spatial enhancement term for each spectral
band is represented as

Efy = IVZ — f(MVxp)I13

spa —

(10)

where f(-) denotes the moment matching of the gradient
features. M = [M,, Mq]T represents the image masks, cor-
responding to M in (9), at the spatial scale of the HR PAN

images, and Z' = [Mpzp,quq]T denotes the group of the
HR PAN images.

C. Total Energy Functional

Based on the proposed spectral fidelity term and the spa-
tial enhancement term, the total energy functional is finally
obtained. It is represented as follows:

B B
EX) =721 > I(Ys=Y') — MD (Spx; — Sixo) 3
b=1 k=0
B B
+ D wp|VZ = FMVx) (5 + 22 Y Wy A3
b=1 b=1

Y

where the first term is the spectral fidelity term, the second
term is the spatial enhancement term, and the third term is
the prior term. In this paper, the spatial weighted Laplacian
prior is developed based on [1] and [48]. A denotes the
Laplacian operator, and W, denotes the adaptive weight for
each pixel location (i, j) calculated as 1/(14+abs(Vxy(i, j))).
A1 and Ay denote the model parameters to control the relative
contribution of the three terms. Furthermore, the weight wj
in the spatial enhancement term is developed by considering
the correlation among the spectral bands to adaptively adjust
the spatial enhancement for different spectral bands. It is
represented as

. cov(M,yp.p, MpI)/var(M,I)
S8 cov(M,y 5, M,I) /var(M, 1)

where I denotes the intensity calculated by the generalized
IHS transformation [10] of the spectral bands of MS image.

12)

Wp

D. Optimization Procedure

The fused image is solved by the classical gradient descent
method, and the fused image is obtained by the iterative
optimization solution. First, differentiating the energy func-
tion (11) with respect to xp, it is represented as

VE(Xp)
B
== > SED M/ M, (y:,5—yr.4) —M/D(Spx, —Sixp)]
k=0 t=p.q
—wpy Y M [M;Az;— f (M, Axp) ]+ 12 W] Wy AT Ax;,.
=p,q

13)

The desired fused image can then be solved by successive
approximation iterations, and it is represented as
Xp,n+1 = Xpn — Tb,nVE(Xh,n) (14)

where n denotes the iteration number, X, , and Xp ,+1 denote

the results of the nth iteration and (n + 1)th iteration, respec-
tively, and 7, denotes the step size of the nth iteration,
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TABLE I
DATA SETS IN THE EXPERIMENTS

Experimental settings Satellites Spatial and spectral dimensions Region
Simulated KONOS PAN: spatial size 256256 Wuhan city, Hubei province,
, _ experiments MS: spatial size 64x64 with 4bands China
Cloud-free image fusion
experiments . L
. . PAN: spatial size 400x400 Wuhan university in Hubei
Real experiments QuickBird

MS: spatial size 100x100 with 4 bands

province, China.

Simulated
fmuiate Jinlin(JL)-1
experiments

Cloud-contaminated image

PAN: spatial size 600x600
Kansas city, Missouri, America

MS: spatial size 150x100 with 3 bands

fusion experiments

Real experiments Deimos-2

PAN: spatial size 1600x1600
Vancouver, Canada

MS: spatial size 400x400 with 4 bands

represented as
Th,n
_ [VE(xp,)]" VE(Xp,n)
[VEGp ) [ X4 3=, SEDTM! M, DS),)

+wy Y M fVA)+1Wh Wy AT AIVE (xp.0). (15)
t=p.,q

The fused image is updated in each iteration, and it is
terminated when

%1 — X 12/ 1%n 1> < d (16)

where d is the threshold value.

1V. EXPERIMENTS
A. Data Sets and Experimental Settings

To comprehensively test and verify the performance of the
proposed method, the experiments were performed based on
both the cloud-free and cloud-contaminated data. Furthermore,
the performance of the proposed method was evaluated on both
the simulated and real experiments from the qualitative and
quantitative aspects. For cloud-free image fusion experiments,
the simulated experimental data were obtained by the spatial
degradation of the original PAN and MS images based on
Wald’s protocol [49], and the original MS image was used as
the reference image for evaluation. For cloud-contaminated
image fusion experiments, they are implemented based on
the target and auxiliary images. The simulated data were
acquired by low-pass filtering of the original cloud-free target
and auxiliary images, using Gaussian modulation transfer
function blurring and then downsampling by a factor of the
spatial resolution ratio between the HR PAN image and the
LR MS image. Then, the missing information of the thick
cloud corruption was simulated for the target MS and PAN
images, and the original cloud-free target HR MS image was
used as the reference for the evaluation. In addition, in the
fusion experiments, a number of different remote sensing
satellites including the IKONOS, QuickBird, Jilin(JL)-1, and
Deimos-2 images were employed, as shown in Table 1.

In addition, a number of state-of-the-art pansharpening
methods were utilized for comparison. On the one hand,
for the cloud-free image fusion experiments, the popular
Gram-Schimidt (GS) pansharpening method [8], the par-
tial replacement adaptive component substitution (PRACS)
[14] pansharpening method, the additive wavelet luminance
proportional (AWLP) method [13], the modulation transfer
function (MTF)-generalized Laplacian pyramid (GLP) method
[19], and the adjustable model-based data fusion (AMDF)
pansharpening methods proposed in [23] were compared.
On the other hand, for the cloud-contaminated image fusion
experiments, in consideration that the existing pansharpening
methods cannot obtain the desired cloud-free fused HR MS
image, the proposed integrated fusion model was compared
with the step-by-step processing way, i.e., the thick clouds
of the target MS and PAN images were first removed by
using the state-of-the-art missing information reconstruction
methods; then, the cloud-free LR MS and HR PAN were fused
based on the proposed variational fusion model. In addition,
to ensure the objectivity and sufficiency, two popular miss-
ing information reconstruction methods of weighted linear
regression (WLR) method [50], which can be downloaded
from the website (http://sendimage.whu.edu.cn/send-resource-
download/), and the spatio-temporal Markov random fields
(STMRF) method [51] are both applied. In the experiments,
unless otherwise specified, the model parameter 1; was set
to 20, and A1, was set to 0.1.

B. Experimental Results and Analysis

The experiments were performed based on both the cloud-
free and cloud-contaminated images, including: 1) pansharp-
ening experiments for cloud-free images and 2) pansharpening
experiments for cloud-contaminated images.

1) Pansharpening for Cloud-Free Images:

a) Simulated experiment: The simulated experiment was
performed based on IKONOS images acquired over the
Wuhan, Hubei, China. The IKONOS is the first commercial
operational satellite of the world; it provides PAN image
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Fig. 4.
result. (¢) AWLP fusion result. (f) MTF-GLP fusion result. (g) AMDF fusion result. (h) Proposed fusion result. (i) Original MS image.

with a spatial resolution of 1 m and MS image [blue, green,
red, and near infrared response (NIR) spectral bands] with a
spatial resolution of 4 m. In the experiment, the simulated LR
MS, shown in Fig. 4(a), and HR PAN, shown in Fig. 4(b),
are 4 and 16 m, respectively, and the original MS image
with a spatial resolution of 4 m, as shown in Fig. 4(i), was
regarded as the reference for the quantitative evaluation. In the
experiments, five widely used quality indices in pansharpening
were applied for the quantitative evaluation. They are the
correlation coefficient [23], the peak signal-to-noise ratio [52],
the dimensionless global error in synthesis [49], the spectral
angle mapper (SAM) [53], and the Q2"-index [54].

Fig. 4 shows the experimental results. The proposed fused
result is shown in Fig. 4(h), and the fused results of other state-
of-the-art pansharpening methods are shown in Fig. 4(c)—(g),
respectively. It can be seen that the proposed method and
other pansharpening methods can all obtain good fused results
for cloud-free images. On the one hand, visually, all the
fused results show sharp spatial details, and they also show
similar colors with the reference image. On the other hand,
to more objectively evaluate the performance, the quantitative
evaluation is performed and shown in Table II. It is shown
that the proposed method shows the best results in most of
the quantitative evaluation indices.

b) Real experiment: The real experiment for pansharpen-
ing of the cloud-free PAN and MS images was implemented
based on QuickBird data. The QuickBird satellite provides
HR PAN and LR MS images (blue, green, red, and NIR
spectral bands) with a spatial resolution of 0.61 and 2.44 m,
respectively, and the images in the experiment were acquired
over the Wuhan University, Wuhan.

Fig. 5 shows the fusion results. The LR MS and HR
PAN images are shown in Fig. 5(a) and (b), respectively.
The proposed fusion result is shown in Fig. 5(h), and other

Fusion results of the simulated experiment for cloud-free images. (a) LR MS image. (b) HR PAN image. (c) GS fusion result. (d) PRACS fusion

TABLE II

QUANTITATIVE EVALUATION RESULTS IN THE SIMULATED
EXPERIMENT FOR CLOUD-FREE IMAGES

GS  PRACS AWLP MTEF-GLP AMDF _ Proposed
CcC 0.965 0.973 0.972 0.971 0.977 0.978
PSNR 36.269  38.952  37.992 37.207 38.976 39.069
ERGAS 2.048 1.730 1.747 1.798 1.580 1.549
SAM 2912 2.689 2.649 2.666 2.518 2.467
Q2"-Index  0.841 0.876 0.879 0.873 0.894 0.892

fusion results of the state-of-the-art pansharpening methods
are shown in Fig. 5(c)—(g), respectively. For comparison, the
fusion results of the GS, AWLP, and MTF-GLP methods
have good spatial details; however, they show slight a little
spectral distortions visually. In addition, the quantitative eval-
uation results are shown in Table III for objective evaluation.
It should be noted that due to the lack of the referenced
images in the real experiment. The quantitative evaluation was
comprehensively performed from two aspects. First, the fused
image was spatially degraded to the spatial dimension of
the LR MS image, and the LR MS image was applied
as the reference image for the quantitative evaluation. Second,
the fused results were evaluated based on nonreference quality
evaluation indices, i.e., the popular quality with no refer-
ence [55]. Table III shows that the proposed method has the
best performance in most of the quantitative evaluation indices.
2) Pansharpening for Cloud-Contaminated Images:

a) Simulated experiment: The simulated experiment was
implemented based on the multisource and multitemporal
JL-1 MS and PAN images. The JL-1 is the first commercial
operational satellite of China. It provides the HR PAN image
with a spatial resolution of 0.72 m and the LR MS image
(blue, green, and red spectral bands) with a spatial resolution
of 2.88 m. the data sets were acquired on February 22, 2019
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Fig. 5.
(e) AWLP fusion result. (f) MTF-GLP fusion result. (g) AMDF fusion result. (h) Proposed fusion result.

TABLE III

QUANTITATIVE EVALUATION RESULTS IN THE REAL
EXPERIMENT FOR CLOUD-FREE IMAGES

GS  PRACS AWLP MTF-GLP AMDF Proposed
cc 0942 0974  0.984 0.990 0.995 0.998
PSNR 47938 53234 48758 55412 57324 59.618
ERGAS 1.590  1.128  0.741 0.740 0.558 0.268
SAM 0898  0.739  0.270 0.553 0.408 0.190
Q2%Index 0.861  0.940  0.938 0.966 0.976 0.992
QNR 0836 0892 0811 0.878 0.943  0.949
D, 0.063 0052  0.111 0.067 0.033 0.025
D 0.107  0.059  0.088 0.060 0.025 0.026

N

and April 13, 2016, over Kansas, MO, USA. The simulated
target LR MS and HR PAN images with thick clouds on
February 22, 2016 are shown in Fig. 6(a) and (b), respec-
tively, and the information in the thick cloud regions can be
assumed to be completely missing. The auxiliary LR MS and
HR PAN images on April 13, 2016 are shown in Fig. 6(c)
and (d), respectively. The main task is to obtain cloud-free
HR MS images. The original cloud-free target MS image
on February 22, 2016 shown in Fig. 6(h) is employed to
evaluation.

Fig. 6 shows the experimental results. The proposed fused
result is shown in Fig. 6(g), and the fused results of the GS
method and the PRACS method are shown in Fig. 6(e) and (f)
to demonstrate the cloud removal effect of the proposed
fusion model. It can be seen that the proposed variational-
based integrated model can obtain the cloud-free HR MS
image, and it is similar to the original target image. For the
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Fusion results of the real experiment for cloud-free images. (a) LR MS image. (b) HR PAN image. (c) GS fusion result. (d) PRACS fusion result.

traditional pansharpening methods, though they can realize
the resolution enhancement, the missing information has still
existed. In addition, it should be noted that due to the existing
pansharpening methods cannot realize the missing information
reconstruction as well as to improve the resolutions for the
cloud-contaminated images and to comprehensively test and
verify the proposed integrated fusion method, the proposed
integrated variational model is further compared with the step-
by-step fusion. The fused results and the corresponding local
zoomed-in areas are shown in Fig. 7.

For the step-by-step fusion, the missing formation in the
thick cloud regions of the target LR MS image and the HR
PAN image was first reconstructed by the state-of-the-art miss-
ing information reconstruction methods of WLR and STMRF
methods, based on the auxiliary images, and the reconstructed
results were then fused to obtain the final cloud-free HR
MS image. Fig. 7(c) and (g) shows the fused result with
the proposed integrated fusion model, Fig. 7(a) and (e) and
Fig. 7(b) and (f) show the step-by-step fused results with the
state-of-the-art WLR and STMRF methods, respectively. The
original target MS images are presented in Fig. 7(d) and (h).
It can be seen that the proposed integrated fusion model and
the step-by-step fusion can both obtain the cloud-free HR MS
image. However, the zoomed-in fusion results show that the
step-by-step fusion generally introduces the spatial errors, and
the proposed integrated fusion result is more consistent to the
original target MS image. It stems from the fact that the error
accumulation was generally introduced for the step-by-step
fusion.

To evaluate the proposed methods objectively, the quanti-
tative evaluation results are shown in Table IV. It is shown
that the proposed integrated fusion model achieves the best
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Fig. 6. Fusion results of the simulated experiment for cloud-contaminated images. (a) Target LR MS image with simulated cloud contamination. (b) Target
HR PAN image with simulated cloud contamination. (c) Auxiliary LR MS image. (d) Auxiliary HR PAN image. (e) GS fusion result. (f) PRACS fusion

result. (g) Proposed fusion result. (h) Original target MS image.

Fig. 7.
(b) Step-by-step fusion result with STMRF method. (c) Integrated fusion result. (d) Original target MS image. (e)—(h) Local zoomed-in areas corresponding
to (a)—(d), respectively.

quantitative evaluation result in all the quantitative evaluation
indices.

b) Real experiment: The real experiments were imple-
mented based on Deimos-2 satellite images at level 1 C. The
Deimos-2 satellite provides HR PAN and LR MS images (blue,
green, red, and NIR spectral bands) with a spatial resolution
of 1 and 4 m, respectively. The data sets were acquired over
Vancouver, BC, Canada (N 49° 15, W 123° 6'). The target LR

Comparison between the proposed integrated fusion model and the step-by-step fusion. (a) Step-by-step fusion result with WLR method.

MS and HR PAN images were acquired on March 31, 2015,
as shown in Fig. 8(a) and (b), respectively, and the auxiliary
LR MS and HR PAN images were acquired on May 30, 2015,
as shown in Fig. 8(c) and (d), respectively. It can be seen
that the target LR MS and HR PAN observations were both
contaminated by the thick clouds, the thin clouds, and the
cloud shadows. The aim of the experiment was to obtain the
desired cloud-free image on March 31, 2015, with both high
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Fig. 8. Fusion results of the real experiment for cloud-contaminated images. (a) Target LR MS image. (b) Target HR PAN image. (¢) Auxiliary LR MS
image. (d) Auxiliary HR PAN image. (e) GS fusion result. (f) PRACS fusion result. (g) Proposed fusion result.

HR PAN HR PAN HR PAN

Resampled MS Resampled MS Resampled MS Resampled MS

Fused result Fused result Fused result Fused result

(@) (b) © (d)

Fig. 9. Four typical zoomed-in areas of the proposed fusion result. (a) Cloud-free region. (b) Cloud shadow region. (c) Thin cloud region. (d) Thick cloud
region.

spatial and high spectral resolution. The window size in (5) The proposed fused result is shown in Fig. 8(g), and the
was set to be 31 by experience. The experimental results are fused result of the GS and PRACS pansharpening methods
presented in Fig. 8. is shown in Fig. 8(e) and (f), respectively. It can be seen
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Fig. 10.

®

Comparison between the integrated fusion model and the step-by-step fusion. (a) Step-by-step fusion result with WLR method. (b) Step-by-step

fusion result with STMRF method. (c) Fusion result of the variational-based integrated model. (d)—(f) Zoomed-in areas corresponding to (a)—(c), respectively.

TABLE IV

COMPARISON OF THE QUANTITATIVE EVALUATION RESULTS BETWEEN
THE INTEGRATED FUSION AND THE STEP-BY-STEP FUSION

Step-by-step fusion Step-by-step fusion Integrated
with WLR with STMRF fusion
cc 0.867 0.929 0.950
PSNR 41.025 41.238 41.646
ERGAS 6.727 6.615 6.258
SAM 1.519 1.223 1.212
Q2"-Index 0.621 0.686 0.710

that the traditional pansharpening method can only achieve
the resolution enhancement; however, the clouds and cloud
shadows have still existed. On the contrary, the proposed pan-
sharpening method can effectively achieve the joint resolution
enhancement and cloud removal, and the cloud-free HR MS
image was obtained. For details, a cloud-free region and three
typical cloud polluted local regions are shown in Fig. 9. It can
be obviously seen that the proposed method can achieve the
resolution enhancement for the cloud-free regions, and for the
cloud and cloud shadow regions, not only the resolution can
be enhanced, but also the cloud and cloud shadows have been
effectively removed.

To more comprehensively verify the performance of the
proposed variational-based integrated fusion methods, it is
further compared with the step-by-step fusion results. The
experimental results are presented in Fig. 10. It can be seen
that the error accumulation was introduced for the step-by-step
fusion results based on both the WLR method and the STMRF
method. On the contrary, no extra spatial distortions and errors
were introduced for the proposed integrated fused result. Since
the ground truth cannot be obtained, the quantitative evaluation
was not given.

C. Parameter Analysis of the Variational-Based Integrated
Fusion Model

The parameters of the proposed variational-based integrated
fusion model were analyzed and discussed.

1) Convergence Analysis and Determination of the Iterative
Threshold: The convergence of the proposed fusion model
and the determination of the iterative threshold corresponding
to simulated cloud-contaminated image fusion experiments
were presented, as shown in Fig. 11. For the convergence
analysis of the fusion model, the relative error versus iterations
was plotted, and the relative error was computed as (16).
It can be seen that the proposed fusion model is convergent
effectively. The determination of the iterative threshold was
performed based on the statistical quantitative evaluation from
both the spatial and spectral fidelity of the fused results
with different iterative thresholds. Among them, the spectral
distortion, represented by SAM, versus the iterative threshold
line, and the spatial distortion, denoted by Dg, versus the
iterative threshold line were plotted. It can be seen that both the
SAM and Dg are getting better and better with the threshold
value decreasing, and they achieve the best fusion results
when the iterative threshold is 1E-7. Then, the fusion result
becomes stable with the increasing of the iterative threshold.
Therefore, iterative threshold value of 1E-7 was selected in
the experiments.

2) Parameter Analysis of A; and A;: The selection of
the model parameters A1 and A in (11) has been discussed
and is represented in Fig. 12. They are analyzed based on
the statistical quantitative evaluation from both the spatial
and spectral aspects of the fused results with a variety of
different A; and A,. The statistical results based on spectral
quality evaluation by the SAM and spatial quality evaluation
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Parameter analysis of the model parameters A1 and A;. (a) Statistical spectral quality evaluation (SAM) with different 21 and 1,. (b) Statistical

spatial quality evaluation (Dg) with different 11 and 2. (¢) Normalized SAM and Dg with different 11 and 4;.

by Dg are plotted in Fig. 12(a) and (b), respectively.
In addition, the quantitative evaluation results of the SAM
and Dg are both normalized to 0—1 and shown in the same
coordinate space. It is shown that both the spectral evaluation
index of SAM and spatial evaluation index of Dg are
relatively stable with a different Ay, as shown in Fig. 12(a)
and (b), respectively. Specifically, when 4; is set to 10-30,
the fusion model shows relatively better performance in
both SAM and Dg, as shown in Fig. 12(c). Therefore, 1;
is set to 20 in the experiments. For the model parameter A;,
the quantitative evaluations show good performance when
A2 < 1E-1, and it is noteworthy that with the increasing of this
parameter within this range values, the fusion model generally
show robust performance for different experimental data sets.
When 4, > 1E-1, with the increasing of 1, the SAM and
Dg show worse and worse performance. Therefore, the model
parameter 1, was set to 0.1 in the experiments.

V. CONCLUSION

This paper has presented a pansharpening method for
the cloud-contaminated VHR remote sensing images.
Furthermore, the complex cloud contaminations, i.e., the
simultaneous cloud contamination with the thick clouds,
the thin clouds, the haze, and the cloud shadows are compre-
hensively considered. In the proposed method, considering the
common semitransparent characteristics of the thin clouds,
the haze, and the light cloud shadows, they are first jointly
removed based on the sliding window-based local moment

matching method. Then, an integrated variational fusion model
is proposed to achieve the joint resolution enhancement and
missing information reconstruction. The proposed method
was finally tested and verified by a number of different remote
sensing satellite images, including the IKONOS, QuickBird,
JL-1, and deimos-2, based on both the simulated and real
experiments. Furthermore, the pansharpening experiments
for both the cloud-free and cloud-contaminated images are
implemented to comprehensively test and verify the proposed
methods. The experimental results show that the proposed
method can effectively obtain the cloud-free image with both
high spatial and spectral resolutions.

However, it should be noted that there is still room for
the proposed fusion method to be further improved. The first
limitation is the determination of the cloud masks. In this
paper, the cloud masks are determined by manual selection.
This is because the thin clouds and the thick clouds should
be distinguished for the proposed framework; in addition,
the light cloud shadows and dark cloud shadows should
also be classified. To the best of our knowledge, this may
be challenging as well as a complex problem for most of
the cloud detection methods. Therefore, they are selected
manually, and this can be further improved by developing
adaptive determination method. The second limitation is that
this paper assumed that the auxiliary images with approaching
phase should be chosen as far as possible to ensure the
consistent ground features to the target images. However,
if we cannot obtain such auxiliary images, how to realize the
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integrated fusion? This may be further improved by making
use of the useful complementary and redundancy information
from both multitemporal auxiliary images and the synthetic
aperture radar observations. Finally, it is the efficiency of the
integrated fusion model; a faster optimization algorithm and
acceleration strategies such as parallel computing could be
incorporated into the integrated fusion framework.
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