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Abstract— The land surface reflectance data are indispensable
to generate many other land products. Global land surface
reflectance data have been routinely produced from remote
sensing sensors aboard different satellite platforms. However,
the original data, especially the daily data, suffer from a
large number of spatial gaps, which result from atmospheric
contamination and instrument deficiencies. This seriously limits
their further applications. Many composite products with less
spatial gaps have been generated to solve the above problem,
but they easily sacrifice their temporal resolutions of origi-
nal data. Even worse, they cannot be directly implemented
in realistic applications because of the noise and composite
seams. This paper proposes a temporal-spatial reconstruction
method (TSRM) to generate daily gapless and seamless land
surface reflectance data. The TSRM integrates both temporal
and spatial information for recovering different land cover types
using three processing steps. First, spatial gaps are coarsely
filled with multiyear weighted average (Stepl). After that, all
the gaps that are not filled in the first step are interpolated by
using harmonic analysis of time series with true value constraint
(Step2). Finally, the reconstructed results in the last step are
seamlessly processed using the Poisson image editing method, and
the seamless daily reflectance data set is generated (Step3). The
Moderate Resolution Imaging Spectroradiometer reflectance data
set (MOD09GA and MYDO09GA) on two testing areas is selected
to verify the performance of the proposed TSRM. Experimental
results show that the TSRM has good performance with regard to
maintaining the temporal and spatial integrity of the daily land
surface reflectance data. Results on different testing sites also
demonstrate that the TSRM preserves spectral integrity with
clear seasonal trends for each spectral band.
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I. INTRODUCTION

ONTINUOUS and spatio-temporally complete remotely
sensed time series play a key role in earth science
research, especially in monitoring the climate change [1]-[4].
Currently, a large number of radiometric data derived from
satellite sensors, e.g., NOAA Advanced Very High Resolution
Radiometer (AVHRR), Terra/Aqua Moderate Resolution Imag-
ing Spectroradiometer (MODIS), or SPOT VEGETATION,
have been archived to record the climate information of the
past 30 years. A series of land surface variables, e.g., the
normalized difference vegetation index (NDVI) [5], the land
surface temperature, the leaf area index, and the fraction of
photosynthetically active radiation, has been derived from
these radiometric data [6] and widely applied in global
climate change research since the 1960s [3], [7]-[12].
However, current radiometric data have a drawback of spatio-
temporal discontinuity due to the atmospheric contamination
and instrument problems. The nonideal atmospheric condi-
tions, i.e., cloud contamination, dust, and heavy aerosols,
adversely affect the process of radiative transfer and bring
about noise and gaps to radiometric data, especially the
data with daily temporal resolution. This negatively affects
downstream products and seriously hampers the progress of
studies on global climate change. Therefore, it is in urgent
need to find out an appropriate method to obtain the daily
spatio-temporally continuous radiometric data [2], [13].
Many scholars have been developing algorithms for reduc-
ing noise and filling the gaps in remotely sensed time series.
Shen et al. [14] comprehensively summarize main temporal-
based method in the review work for reconstructing the
missing information in remote sensing data. The compositing
procedures give an over n-day time period representation of
the data sets, and they are commonly used on the remotely
sensed time-series data to reduce the impact of nonideal
conditions and [15]. The maximum-value compositing (MVC)
technique [16] was developed to reduce the noise of the
AVHRR data, and a higher percentage of clear-sky data can be
obtained [17]. Other compositing schemes, e.g., the maximum
difference in red and near-infrared (NIR) reflectance, the max-
imum thermal radiance, the maximum surface temperature,
the minimum red reflectance, and the minimum scan angle,
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and their combinations [18], have also been presented to pro-
duce standard AVHRR and MODIS land products [19]-[21].
However, all the composite methods are carried out at the cost
of reducing the temporal resolution of the remotely sensed
time-series data. The composited products highly rely on
the selected compositing criteria, and significant bidirectional
effects and temporal biases usually exist [15], [22]-[24].
Even worse, the land surface reflectance data contain many
low-quality pixels, seams, and gaps after the n-day MVC.

A number of methods based on temporal interpolation and
filter were then developed for denoising or filling the gaps in
the remotely sensed time-series data. These methods eliminate
the noise in a single pixel of remote sensing time-series
data and can be generally categorized into four types. The
first types of methods are common and classical, and they
filter the time-series data in sliding windows according to
certain criteria. Typical examples are the best index slope
extraction method [25], the adaptive Savitzky—Golay (SG) fil-
ter [26]—-[28], the mean-value iteration filter [29], the changing-
weight filter [30], and the iterative interpolation for data
reconstruction method [31]. The second type is the function-
based methods, with representative examples of asymmetric
Gaussian (AG) [32] and double logistic (DL) methods [33].
The AG and DL methods have been combined with the
adaptive SG filtering method and integrated into TIMESAT
software to investigate time-series satellite data [27], [34].
The third type is the frequency domain-based methods, e.g.,
the Fourier transform [14], [35], the harmonic analysis of time-
series (HANTS) method [36], the moving weighted harmonic
analysis method [37], and the wavelet-based method [17]. The
typical application of frequency domain-based methods is to
denoise the remotely sensed time-series data [38]-[41]. The
fourth type methods, e.g., the temporal—spatial filter [42], [43],
the CACAO method [44], and the ecosystem curve fitting
method [22], have been developed with the consideration
of some special factors. Researchers have also proposed
other methods focusing on retrieving albedo data based on
the bidirectional reflectance distribution function (BRDF)
model [1], [45], [46]. However, most of these methods change
all the pixel values of the composited time-series data since
most of the publicly available remotely sensed time-series data
are composited. Furthermore, these methods were designed
from envisaged concepts and their performance has not been
verified in processing daily time-series data. To the best of our
knowledge, few temporal methods have been developed for
reconstructing the surface reflectance time-series data (e.g.,
the MODIS MODO09 product), let alone the data with daily
basis.

In addition, several methods based on multitemporal spatio-
temporal information were developed to fill the gaps of the
remotely sensed data. For example, the classical temporal
replacement method could remove clouds from different types
of remote sensing images and fill the gaps by replacing
the lost information with the reference data on the same
region [47]-[51]. And the temporal learning model-based
methods fill the gaps by establishing a mathematical model
under the perspective of compressed sensing or sparse repre-
sentation [52], [53]. These methods work well only for certain
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defined conditions, and the reference data must be carefully
selected. Moreover, these methods cannot be used to generate
time-series data with the daily basis.

So far, it is quite a challenging work to generate gapless
and seamless daily surface reflectance data and no relevant
methods are available for solving the problem. Faced by the
challenges, a new attempt has been made in this paper to
produce daily gapless and seamless surface reflectance data
(MODO09GA and MYDO09GA) in time series. This paper inte-
grates the spatial and temporal information by three processing
steps. First, the spatial gaps are filled with multiyear weighted
average, and that provides initial values for the next step. After
that, all the gaps remained unchanged after the first step are
refilled by using HANTS with true value constraint, where the
true values are recovered in each iterative procedure. Finally,
the Poisson image editing is adopted to make the results
seamless. We will introduce the MODIS surface reflectance
data and analyze the condition of the test data in Section II-A.
The proposed algorithm will be described in Section II-B,
followed by the results and conclusions in Sections III and 1V,
respectively.

II. DATA AND METHOD
A. Study Sites and Data

MODIS is an important sensor equipped in Terra (originally
known as EOS AM-1) and Aqua (originally known as EOS
PM-1) satellites. The orbits of Terra and Aqua around the earth
are timed, so that Terra passes from north to south across the
equator in the morning and Aqua passes south to north over
the equator in the afternoon. Their collected surface reflectance
data products are named MODO09 and MYDQ9, respectively,
and have seven spectral bands (620-670, 841-876, 459-479,
545-565, 1230-1250, 1628-1652, and 2105-2155 nm). The
data have been corrected for the effects of gaseous and aerosol
scattering and absorption as well as adjacency effects caused
by variation of land cover, BRDF and atmosphere coupling
effects, and contamination by thin cirrus [54]. The associated
data state quality assessment (QA) stored in the data [55]
quantifies the quality of these data, whether the pixel has been
flagged as land, deep ocean, shallow ocean, or as containing
cloud, high aerosol, low aerosol, snow, or fire [56]. The
important information helps users to know about the quality
of the MODLAND products.

The daily MODO9GA and MYDO9GA data at 500-m spatial
resolution on two different test areas have been chosen to
evaluate our algorithm in constructing daily MODIS surface
reflectance data. In Fig. 1, the data set (112.9-115.4°E,
30.1-32.3°N) of first area was extracted from the MYD09GA
data of the year 2011. The area is located in mid-southern
China covering all the Wuhan city and part of Hubei province
and enjoys a subtropical humid monsoon climate with plenty
of sunshine and ample rainfalls. The area is mostly covered
by clouds all the year round, and the corresponding daily
MODIS data seriously suffer from information loss. The sec-
ond test area has a subset (97.5-101.1°E, 37.6-39.8°N) of the
MODO09GA data of the year 2011. Its area in Fig. 1 is located
in northwestern China covering most of Zhangye city in
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Fig. 1. Locations of the two test areas in China. Wuhan is located
in mid-southern China within a subtropical humid monsoon climate, and
Zhangye is located in northwestern China within a continental windy and
dry climate.

TABLE I
LAND COVER TYPES OF THE TWO TEST AREAS

Area Land cover type

Wuhan needle leaved evergreen forest, broadleaved deciduoud forest,
bush, slope grassland, city, river, swamp, farmland

Zhangye needle leaved deciduoud forest, bush, alpine and sub-alpine

meadow, desert grassland, meadow, lake, glacier, gravels,
bare rocks

Gansu province. The continental windy and dry climate leads
to less cloud coverage than Wuhan area. Different climates
result in different land cover types of the two test areas. Table I
shows detailed land cover types of the two areas, where the
types are referred from the Global Land Cover 2000 Project
data. The two test areas have multiple land cover types and
different cloud coverage conditions, and they can be good
candidates to evaluate our proposed method.

Four preprocessing works are required for these data
to ensure the successful operation of the test experiments.
First, the bad-quality, high-aerosol, cloudy, and cloud-shadow
MODIS observations will be masked with the help of QA
information. Second, the abnormally high values in each band
are eliminated by threshold judgment. Third, we assume that
the remaining pixels after masking are applicable, and part of
the applicable pixels with true values will be masked randomly
by different percentages, and the masked pixels are set as the
simulated missing observations. Within this step, a number of
pixels are generated randomly in the study area, and buffers
with 10 pixels as the radius are generated for these pixels.
The intersection of these buffers with applicable pixels is the
simulated missing part. The simulated missing observations
are used to carry out the quantitative assessment. All these
simulated masked pixels will be reconstructed by our proposed
method. Finally, the mask file for each band of all the test data
will be generated by combining the QA information with the
simulated missing pixels to help identifying the missing pixels.
The details of above processes and the data condition analysis
will be described in Section III. In addition, we recalculate
the pixel value to the normal value range of 0—1 by dividing
the pixel value by 10000. The resulting pixel values that
are larger than 1 are set to be 1 and those less than 0
are set to be 0. There are 365 datasets for each test area
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Fig. 2. QA of the test data in 2011. The horizontal axis represents the missing
percentages of each image according to QA information, and the vertical axis
counts the total number of images of different missing percentages.

in 2011, and each dataset with seven bands is encountered
with different percentages of missing pixels. Using the QA
information, we mask these missing pixels with bad quality,
high aerosol, cloudy, and cloud shadow. A quantitative statistic
for the masked pixels of each image will be given to assess
the quality of data. As shown in Fig. 2, the horizontal axis
represents the missing percentage of each image according to
QA information, and we divide it into 10 equal parts, each
of which is 0.1. The vertical axis represents the quantity of
images located in these parts. For Wuhan area, 238 images
over 90% of the information were missing. This means that
this area is covered by high cloud all the year round. The
Zhangye area is less affected by cloud cover than is Wuhan
area. A total of 109 images lack over 90% of the information,
and 60% of the test data lack over 70% of the information.
More seriously, there is a big probability that the single-
pixel time-series data are successively missing, which makes
temporal filter methods unable to cope with this situation. The
temporal—spatial reconstruction method (TSRM) is proposed
to address the challenge, and its detailed demonstration will
be provided in Section II-B.

B. Methodology

Fig. 3 illustrates the flowchart of the TSRM in generating
spatio-temporally complete daily MODIS surface reflectance
data. The gradual process includes three main steps: 1) the
determination of the background information (Stepl); 2) the
intra-annual temporal interpolation (Step2); and 3) the post-
processing for seamless data (Step3). Stepl aims to estimate
the background information for Step2 by multiyear weighted
average, where the normalization processing is required.
Step2 fills the gaps of the images remained after Stepl by
using HANTS with true value constraint. Step3 implements the
postprocessing work in the results of Step2, where the Poisson
image editing method is used to adjust all reconstructed pixel
values to ensure the seamless results.

1) Stepl (Determination of the Background Information):
In this step, the background information is first calculated
using the multiyear weighted average, and it is very essential
to the temporal interpolation process in Step2. The moment
matching algorithm [57] is introduced herein to normalize
the data. Assuming that the images across different years



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MODIS surface
reflectance data

Multi-year weighted
average

The original data

The final I i
results | |

The reconstructed |
data ]

Fig. 3. General process of the TSRM.
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Fig. 4. Schematic of Stepl. The schematic of the intermediate position repre-
sents three years of simulated experimental data. Target and Ref. represent the
time-series data that need reconstructing and the reference time-series data,
respectively. (Left and Right) Schematic of three situations that need to be
considered in the reconstruction process.

contain a statistically similar subscene, the algorithm examines
the distribution of pixel values in the image for different
years and adjusts the distribution to that of pixel values in
the reference image. Actually, if the land cover does not
vary dramatically across different years, the linear correla-
tion between multitemporal data is significant. Accordingly,
we only adjust the average values and the standard devia-
tions between each image and the reference image [57]. The
correlation coefficients (CCs) [58] between the target images
(i.e., the time-series data that require reconstructing) and the
reference images (i.e., the multiyear reference data) will be
calculated to estimate the weight of the reference data. This
process is carried out with the consideration of the interannual
variation and the spatial information of the images, and we
will comprehensively explain it with the combination of the
schematic in Fig. 4.

When implementing this step on the MODIS surface
reflectance data, three cases should be taken into account. Take
three years of simulated data as an example to explain the
schematic in Fig. 4, where Target is the time-series data that
need reconstructing, and Ref. is the reference time-series data,
which are the multiyear time-series data in our experiments.
The horizontal axis represents the year when the time-series
data were collected, and the vertical axis denotes one day
of the year. These data have been preprocessed using the
QA information. In the diagram, A; and A represent the
availability areas with applicable pixels of the reference data
and the target data, respectively. B; and By, represent the
masked areas with low-quality pixels of the reference data
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and the target data, respectively. The detailed description is as
follows.

Case © [V(A; N Ar) # @] It means that there are
overlapping availability areas between the reference data and
the corresponding target data. First, the reference data will be
adjusted by using the moment matching algorithm described
as

8haj = (8ker — Hher) 75~ + M ()
Oref

where ggdj is the adjusted pixel value, and gief and ,uief
represent the ith year’s pixel value and mean value of the
overlapping availability areas of the reference data, respec-
tively. uir 1s the mean value of the overlapping availability
area of the target data, o is the ith year’s standard deviation
of overlapping availability areas of the reference data, and oy
is the standard deviation of the overlapping availability area
of the target data.

After that, pixel values of all the reference data have similar
distribution to those of the corresponding target data. The
Pearson CC of the overlapping availability areas are calculated
using the metric defined as

>t (8haicj) — 8aai) (8tar(y — &tar)
\/Z?:l (gladj(j) - g;dj) Z?:l (gtlar(j) — 8lur)
2

where n is the total number of the overlapping availability area
pixels, g;dj( j) and gt’ar( j) are the adjusted reference and target

CC! =

adj_tar

pixel values, respectively, and ggdj and g/, are the mean value
of the adjusted reference data and the target data, respectively.
A larger CC indicates the closer similarity between the two
groups of values.

With the CC, the weight of all the adjusted reference pixels
can be calculated using the following equation:

0, . . Vpéef(j) =0
pl CCH,. 3
— ref(fi) ad]*;ar , others )
Dimt Pres(j)CCuadj_tar

where w;dj( 7 is the weight of the jth pixel of the ith year
reference data, m is the number of years of the reference data,
and pﬁef( 7 is the corresponding quality flag defined as 1 or 0
when the pixel is applicable and inapplicable, respectively.
Vpief( = 0 means that if all the pixels at the same location
of different years are flagged as O simultaneously, the corre-
sponding weights of all the pixels are 0.

Finally, we fill the missing areas of the target data by
multiyear weighted average defined as

i _
Wadj(j) =

m
8tar(j) = Z w;dj(j)g;dj(j) 4)

i=1
where gar(j) is the jth reconstructed pixel value in the missing

areas of the target data.

Case @ [V(A; N Aar) = ¢]: It means that there is no
overlapping availability area between the reference data and
the corresponding target data. The moment matching algorithm
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and the Pearson CC are not appropriate in this case. The
missing areas of the target data will be filled by the simple
multiyear average of the reference data using the following
equation:

S TP =0 5)
doic pref(j)gref(j), others

N
where m is the number of years of the reference data, pief( i
is the quality flag, and N is the total number of the reference
pixels with p equal to 1 at the same location for different
years.

Case @ [(A;NA;qr = ¢)]: This case is the combination of
case @ and case @. We first separate it into case @ and case
@ and then fill the missing area of the target data according to
the rules in case @ and case @. Case @ and case @ produce a
separate value, and we obtain the multiyear average for case 3
by averaging the two values

8tar(j) =

0, peat(j) =0 || peaz(jy =0
Dcal(j)8cal(j) t Pca2(j)8ca2(j)

Deal(j) + Pea2(j) '
where gca1(j) and geao(j) are the jth pixel values of the results
from case @ and case @, respectively. pca1(j) and peao(jy are
their corresponding quality flags. It is 1 if the missing area is
filled; otherwise, it is O.

2) Step2 (Intraannual Temporal Interpolation): The process
in Stepl can only fill the gaps coarsely. The results still contain
gaps when the reference data values are missing over all the
years. Accordingly, we adopt the HANTS algorithm in pixel
level based on the intra-annual temporal information, in order
to fill the gap thoroughly.

The HANTS algorithm was developed based on the Fourier
transform and has been widely used to reconstruct time
series of remotely sensed quantitative products during the past
20 years. Its reconstruction mechanism is to remove random
noise caused by atmospheric contamination and instrument
problems. Its mathematical expression can be represented as
the sum of a constant and the superimposed sequence of sines
and cosines [2], [37], given by

nf
g0 = ap+)_laxcosQa fit) + by sinQ@a fi)] - (7)
k=1
g(1) = g(1) + (),

where g, g, and ¢ are the original time series, the reconstructed
series, and the error series, respectively. ¢ is the time note
of g, and N is the length of the time series. a; and by
are the coefficients of the trigonometric components with the
frequencies f, and nf is the number of harmonics associated
with the frequencies f.

The HANTS algorithm is an iterative process with the
specific steps described as follows.

8tar(j) = (6)

others

t=1,...,N ®)

1) Reject the pixels outside the valid range of data. For
example, the valid range for land surface reflectance can
be 0-1, and the pixels out of this range will be rejected.

2) Fit the remaining valid pixels by solving the equations
above using the least-squares method.

TABLE II

PARAMETER SETTINGS OF HANTS WITH TRUE
VALUE CONSTRAINT IN THIS PAPER

Parameters ~ Description values
NI Number of samples of one base period 365
NF Number of frequencies 10
Hilo The suppression flag indicating whether high or low ~ None
values should be rejected during curve fitting
low Low threshold 0
high High threshold 1
FET Fit error tolerance 0.05
DOD Degree of overdeterminedness, which is a safety 5
measure assuring the number of valid observations
is greater than or equal to the necessary minimum.
Delta Damping factor, which is a small positive numberto 0.5

suppress high amplitudes

3) Repeat the algorithm until the condition satisfies. The
condition is defined as follows: maximum error between
the current curve and the input data is smaller than the
given threshold, or the number of remaining pixels is
not enough for the reconstruction process.

In order to make the reconstructed time-series approach to
the original ones, we adopt the true value constrain strategy.
The strategy is to recover the original value that was not
masked by the QA information after fitting the remaining valid
pixels. It should be noted that the simulated masked true values
mentioned in the preprocessing are used only for validation
purposes and do not participate in the development of the
algorithm for the pixels masked by QA information.

It should be noted that several parameters have to be
set carefully when implementing the algorithm. It has been
pointed out that no objective rules are available to determine
these parameters [38]. Considering that the aim here is to
roughly fill the gaps of the time-series data, we set the
parameter “Hilo” as “none,” and set the parameter ‘“num-
ber of frequency (NF)” experimentally. The other parame-
ters are set by referring to some previous applications from
others. The detailed parameter settings are shown in Table II.
Zhou et al. [2] have given a general evaluation of the recon-
struction performance using the 16-day composite NDVI time
series, where the NF is set as 4. Different from the 23 samples
in an annual series, 365 samples with higher frequencies
(higher than 4) are required to fit the curve reasonably, just
as Moody and Johnson [59] argued that only with higher
frequencies can the fitting captures high temporal variability.
In order to give a more acceptable performance of HANTS,
we experimentally set the NF as 10 in the study. The fit error
tolerance was set as 0.05 (the MODIS surface reflectance unit)
experimentally in consideration of balancing the efficiency
and accuracy of the algorithm. The damping factor is set
as 0.5 [2]. The degree of overdeterminedness (DOD) is set
as 10 in order to ensure that the valid observations satisfy
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Fig. 5. Guided interpolation notations. Unknown function g interpolates in
domain B with the destination function g*, under guidance of vector field v,
which is the gradient field of a source function f.

the necessary minimum. The valid range of land surface
reflectance is between O and 1. It should be noted that the
damping factor and DOD will not affect the reconstruction
results basically, and the parameter settings are empirical and
universal for the daily reflectance product reconstruction.

3) Step3 (Postprocessing for Seamless Data): By using the
HANTS algorithm, we obtain better spatio-temporal contin-
uous time-series data. Unfortunately, some seams still exist
at the boundary between the good areas and the reconstructed
areas. The seamless editing is then necessary, and we introduce
the interpolation machinery based on Poisson equations to
achieve the purpose. The key point of the algorithm is the Pois-
son partial differential equation under Dirichlet boundary con-
ditions. These conditions specify the Laplacian of an unknown
function over the domain of interest, along with the unknown
function values over the boundary of the domain [60]. It is
a minimization problem in the L;-norm to solve the Pois-
son equation, which computes the function whose gradient
is closest to some prescribed vector field under the given
boundary conditions. For convenience, Fig. 5 illustrates the
notations: B is a closed subset of A + B with boundary 0B.
g is an unknown scalar function defined over the interior
of B. g* is a known scalar function defined over A. v is the
guidance of the vector field of a source closed subset C with
function f.

The requirement of image merging is to make the merged
image look as smooth as possible without obvious boundaries.
Therefore, the interpolant g of g* over B is defined as
minimizing the following problem:

min// |Vg|?
8 B

st. glop = &%loB 9)

where V. = [(0./0x), (0./0y)] is the gradient operator. The
minimizer must satisfy the associated Euler—Lagrange equa-
tion defined as

Ag =0

st. glop = &¥loB (10)

where A. = (6%./0x%) 4 (6%./6y?) is the Laplacian operator.
However, the solution obtained by (10) does not contain the
information of the source image. In order to guarantee the
merged image in B close to source image C, we introduce
further constraints in the form of a guidance field as explained
below.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Here, we used the gradient field v of f as the guidance
field, and the extended equation is described as

min// |Vg—v|2
8 B

s.t. glop = &”1aB.

(1)

The minimizer must satisfy the associated Euler—Lagrange
equation, and the unique solution follows the Poisson equation
with Dirichlet boundary conditions:

Ag = divv

st. glop = &%loB (12)

where divv = (0u/ox) + (0v/dy) is the divergence of
v = (u,v). This is the fundamental machinery of Poisson
editing: seven Poisson equations of the form (12) are solved
independently in seven bands of the chosen data.

This step is applied to all the reconstructed images because
of the inevitable existence of the seams on the boundary
between the reconstructed area and the original area. The
mask files are used to determine which images need to be
handled in this step. They are generated in the preprocessing
steps in accordance with the size of the original image. Their
pixel values are composed of two values, where the value of
reconstructed area is assigned to 1 and the value of original
area is assigned to 0. If all the values of the mask file are
1 or 0, its corresponding image does not need to carry out
this step. When this step is performed on the reconstructed
image, the 0 and 1 transition places are the boundary and
where the seam exists. So the boundary and seams can be
identified according to the mask files.

In this step, B is the reconstructed area obtained by HANTS
with true value constraint. The pixel values of the area need
to be corrected. v is the gradient field calculated based on
guidance area C. This area does not need to have a true
value, but it must have effective gradient information. We can
obtain the intermediate product after HANTS before true
value constraint in Step2. Although the pixel value of the
intermediate product cannot represent the true value, it has
the approximate correct gradient information. So the guid-
ance field v is calculated based on the intermediate product.
In conclusion, this step adjusts the pixel values of the whole
reconstructed area, not only smoothing the boundaries in the
image under the guidance of gradient and Dirichlet boundary
conditions.

III. RESULTS

The TSRM described in Section II is employed to generate
spatio-temporally complete MODIS land surface reflectance
data. This is accomplished by analyzing one year’s data of the
MODO09GA (MYD09GA) data from Terra (Aqua) on two test
areas. For the Wuhan area, we selected the MYDO09GA data
in 2009, 2010, and 2012, as the reference data. This ensures
sufficient initial values for temporal interpolation (Step2). For
the Zhangye area, the MODO9GA data in 2010 and 2012 were
selected as the reference data. Sections III-A and III-B detail
both the qualitative and quantitative assessments of this new
method.
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Fig. 6. Results of the reconstructed MODIS surface reflectance time-series data on two spectral bands (band 1 and band 2) generated by each step of TSRM.
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Fig. 6. (Continued.) Results of the reconstructed MODIS surface reflectance time-series data on two spectral bands (band 1 and band 2) generated by each

step of TSRM.

TABLE III
VEGETATION TYPE OF TEST POINTS

Test Testarea  Vegetation type Test Testarea  Vegetation
point point type
1 Wuhan slope grassland 5 Wuhan bush
2 Wuhan broadleaved 6 Wuhan city
deciduoud
forest
3 Wuhan farmland 7 Zhangye  meadow
4 Wuhan lake 8 Zhangye  bare rocks

A. Qualitative Assessment

Certain criteria have been established to evaluate the recon-
struction effectiveness of the proposed method. Among them,
the qualitative assessment is commonly used in the comparison
of alternative reconstruction methods, since ground truth of the
MODIS surface reflectance time series cannot be obtained.
In this section, we undertook a visual inspection for the
qualitative assessment from two aspects. First, we selected
several test pixels to plot their results for each step of the
proposed method. And then, the demonstration of the recon-
struction process for local regions was applied to illustrate the
effectiveness of the new method.

1) Single Pixel Time-Series Demonstration: We selected
200 test pixels randomly from the two test areas with different
land cover types to demonstrate the reconstruction process of
our proposed method. Due to the space limitations, we just
show the results of eight test pixels corresponding to vegeta-
tion types in Table III. Meanwhile, the visual inspection of the
original, intermediately processed, and the final reconstructed
time-series data obtained from the new proposed method gives
a preliminary qualitative assessment. Specifically, we plotted

two spectral bands (band 1 and band 2) time series of the
selected eight test pixels.

Fig. 6 shows the results of reconstructed MODIS surface
reflectance time-series data in pixel level of band 1 and band 2.
The results of each step are also shown to demonstrate the
reconstruction process. The selected eight test pixels with
different land cover types were used to show the results
typically. All the information obtained from the results can be
explained mainly from three aspects. First, the MODO9GA and
MYDO09GA data with daily temporal resolution are with high
cloud coverage, which causes the information loss. Most of
original data in Fig. 6 have the pixel value of 0, which indicates
the high proportions of missing pixels. Particularly, the Wuhan
area has higher cloud coverage than does the Zhangye area.
Much of the successive information missing makes it difficult
to construct the missing pixels using the general temporal
filtering method that only utilizes the temporal information.
Second, the QA information can correctly identify most of the
pixels that are contaminated by cloud, high aerosol, or snow.
Finally, the original surface reflectance time-series data are
with some regular fluctuations, as shown by test pixels 7 and 8.
The general variation profiles of the reconstructed surface
reflectance time-series data show that the proposed method can
fill the missing information correctly with regular fluctuations
of the time series.

For each step of the proposed method, Stepl is essential
to calculate the initial values for the temporal interpolation
of Step2 by averaging the multiyear information. However,
the missing information is not filled completely via Stepl. The
red asterisks in Fig. 6 illustrate the results generated by Stepl,
and most of them are 0 due to the simultaneously missing
of multiyear information at the same location. In Step2,
we used a modified HANTS method to fit the pixels retained
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via Stepl. The blue lines with asterisk in Fig. 6 show the
smooth profiles of the land surface reflectance time-series
data. It is convincing that the temporal continuous data were
generated via Step2. Some correction works have been done
on the atmosphere effects and the adjacency effects caused
by variations in land cover type, BRDF, and the atmosphere
coupling effects, but these residual effects on the surface
reflectance still exist [61]. Therefore, it is impossible for the
real surface reflectance time series to show such a smooth
profile without any fluctuations [62]. The smooth profile only
indicates the main growing trend of the land cover type rather
than the real profile of the time series. In this condition, some
adjustments are required to make the reconstructed time-series
approach to the real profiles. Step3 is the right solution strategy
to adjust the filtered results based on the spatial information.
The green lines with solid dots in Fig. 6 indicate that the final
results after the Poisson image editing own a general profile
with seasonal variations and have some regular fluctuations
along the growing trend.

Most of the eight test pixels were selected with different
land cover types. The first six test points were selected from
Wuhan area while the other two pixels were selected from
Zhangye area. For the test pixels 1, 2, 3, and 5, band 2
(841-876 nm, NIR) clearly displays a seasonal growing trend
with high values in summer period because the chlorophyll
has high reflectivity in the NIR region. Band 1 (620-670 nm,
red) corresponds to one of the main absorption wavelengths
of chlorophyll (430-450 and 650-660 nm). Fig. 6 shows
reasonable results of these four test pixels on band 1, where the
valley values exist in summer period. The test pixels 7 and 8
are located in dry regions with few vegetation covers. The
time-series profiles illustrate a stable tendency all the year
round on all the seven bands. Test pixel 4 has a nearly
seasonal change trend with low values all the year round on
bands 1 and 2. The explanation for this is that water with
phytoplankton has low reflectivity in red and NIR regions.
For test pixel 6, bands 1 and 2 show the stable change curves
with less obvious seasonal pattern. The reason for this is
the spatial homogeneity of underlying surface characteristics.
The aforementioned analysis of the results indicates that the
TSRM can successfully reconstruct the missing information
meanwhile preserving the integrity of the phenology.

2) Demonstration for Local Regions: To further demon-
strate the gradual reconstruction process and test the effective-
ness of the TSRM at a regional scale, we show the examples
of the original MODIS surface reflectance values and the inter-
mediate results of TSRM MODIS surface reflectance values
in each processing step. Considering the space limitations,
we only show the results of MODIS true-color combination
(bands 1, 4, and 3) of the two test areas. There are many unnat-
ural colors appearing in the true-color combination images,
as shown by the red/pink points in Fig. 7 and the red points
in Fig. 8. The reason is that the abnormally high values exist
in different locations of the seventh band image.

Fig. 7 shows the results of Wuhan area on May 12, 2011,
which is right in the vegetation growing season. Fig. 7(a)
shows the original MODIS land surface reflectance data,
where the bad-quality, high-aerosol, cloudy, cloud-shadow, and

@® (b)

Fig. 7.
image. (b) Simulated missing image. (c) Stepl results. (d) Step2 results.
(e) Step3 results.

MODIS true-color combination results for Wuhan area. (a) Original

the abnormally high-value observations were masked using
the QA information and the threshold judgment. Fig. 7(b)
illustrates the simulated missing data based on Fig. 7(a).
The red rectangle in Fig. 7(b) covers some applicable pixels,
and they are manually masked for the further quantitative
assessment. Fig. 7(c) shows the result of Stepl that is obtained
from gap filling with the multiyear weighted average values.
Only a small part of the gaps can be filled because the high
cloud coverage causes the inadequate information across the
multiyears. Fig. 7(d) shows the results derived from Step2.
Almost all the gaps were successfully filled, but some seams
directed by the red arrows in Fig. 7(d) still appear clearly
at the boundary between good areas and the reconstructed
areas. The land surface with the same land cover type displays
inconsistent color between good areas and the reconstructed
areas. Fig. 7(e) explains the seamless results after the Poisson
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© (d)

Fig. 8. MODIS true-color combination results for Zhangye area. (a) Original
image. (b) Simulated missing image. (c) Stepl results. (d) Step2 results.
(e) Step3 results.

image editing in Step3. Almost all the seams have been
removed, and the land surface objects show normal colors in
the true-color combination image.

Fig. 8 shows the results of Zhangye area on
August 2, 2011, which is the summer of the year. Fig. 8(a)
shows that this area has high cloud coverage on the day. But
it has relatively low cloud coverage on the same day of the
adjacent years, and Fig. 8(c) shows that most of the gaps
have been filled after the multiyear weighted average. The
remaining gaps were filled after the temporal interpolation,
and the generated nearly spatio-temporal continuous data are
shown in Fig. 8(d). Fig. 8(d) also show some seams which
are caused by spectrum distortion, and they are completely
removed [shown in Fig. 8(e)] after Poisson image editing.
The Zhangye area has better reconstruction results than
does Wuhan area, and the reason is simplicity and strong
consistency of the land cover type in Zhangye area.

In addition,  the original and  reconstructed
MODIS true-color combination time-series images on the two
test areas are displayed to demonstrate the effectiveness of the
reconstructed results. We selected the images on the 10th and
20th days of each month for Wuhan area and Zhangye area,
respectively. Figs.9(a) and 10(a) show the original MODIS
true-color combination time-series images of Wuhan area and
Zhangye area, respectively. Most of the images suffer from
cloud and other contaminations, and these data cannot be
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TABLE IV

TOTAL QUANTITATIVE ASSESSMENT COMPARISON OF THE RESULTS
OBTAINED AFTER STEP2 AND STEP3 OF THE NEW METHOD

Wuhan area Zhangye area

Step 2 Step 3 Step 2 Step 3

CcC Bandl  0.8128 0.9407 0.8696 0.9550
Band2 0.8536  0.9648 0.8287 0.9461

Band3  0.7861 0.9103 0.8065 0.9122

Band4  0.7281 0.9375 0.8016 0.9297

Band5  0.7688 0.9555 0.7768 0.9186

Band6  0.6558 0.9186 0.8523 0.9513

Band7 0.7640  0.9382 0.8985 0.9627

RMSE Bandl 0.0161 0.0088 0.0305 0.0178
Band2  0.0347 0.0175 0.0347 0.0195

Band3  0.0086  0.0057 0.0227 0.0147

Band4 0.0137 0.0068 0.0307 0.0185

Band5 0.0383 0.0177 0.0427 0.0268

Band6  0.0368 0.0192 0.0401 0.0237

Band7  0.0265 0.0142 0.0371 0.0229

ARE Bandl 0.1904  0.0938 0.1742 0.0876
Band2 0.1344  0.0634 0.1313 0.0641

Band3 0.1896  0.1187 0.2265 0.1287

Band4 0.1506  0.0702 0.2028 0.0977

Band5  0.1467 0.0671 0.1276 0.0691

Band6  0.1755 0.0898 0.1205 0.0641

Band7  0.1943 0.1009 0.1363 0.0794

directly used in further applications. The results from TSRM
on the two test areas are shown in Figs. 9(b) and 10(b).
Visually, all the information in the cloud coverage area is
effectively reconstructed.

Vegetation cover is also the best indication to reflect the tem-
poral variations of the ground truth. The vegetation in different
climates and different places shows different temporal varia-
tions. For the Wuhan area in Fig. 9(b), the temporal variations
of vegetation coverage are not obvious. The explanation for
that is the sufficient sunshine and ample rainfalls in subtropical
humid monsoon climate of Wuhan area brings about the lush
vegetation. Specifically, the mixed broadleaf evergreen and
deciduous forest dominates in the mountains, and the vegeta-
tion variations in mountains are insignificant. Some temporal
variations exist in plain areas, where the crops grow from
seeding to harvesting as the season changes. Fig. 10(b) shows
the clear temporal variations of vegetation coverage appear in
Zhangye area. This area enjoys a continental climate with the
characteristics of drying, less rain, windiness, cold, and long
sunshine hours. The vegetation coverage varies greatly among
different seasons. The snow cover in this area also displays
apparent variations from accumulating to melting as the season
changes. In a word, it shows good consistence between these
time-series results and the ground truth.

In general, the new proposed method improved the quality
of the original data visually. Actually, the result of Step2 can
be viewed as the results generated by the HANTS algorithm.
So we can conclude that the proposed method can improve
the results of the HANTS algorithm that is a representative
method among the temporal filtering methods.

B. Quantitative Assessment

In this section, the quantitative assessment is implemented
to further assess the TSRM algorithm. We made simulated
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Fig. 9. Original and reconstructed MODIS true-color combination time-series images of Wuhan area (the images are selected on the 10th of each month
in 2011). (a) Original MODIS true-color combination time series of Wuhan area. (b) Reconstructed MODIS true-color combination time series of Wuhan
area.
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2011.01.20 2011.02.20

2011.12.20

2011.01.20 2011.02.20 2011.03.20

Fig. 10. Original and reconstructed MODIS true-color combination time-series images of Zhangye area (the images are selected on the 20th of each month
in 2011). (a) Original MODIS true-color combination time series of Zhangye area. (b) Reconstructed MODIS true-color combination time series of Zhangye
area.
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Fig. 10.

2011.11.20
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2011.12.20

(Continued.) Original and reconstructed MODIS true-color combination time-series images of Zhangye area (the images are selected on the 20th of

each month in 2011). (a) Original MODIS true-color combination time series of Zhangye area. (b) Reconstructed MODIS true-color combination time series

of Zhangye area.

missing pixels with different percentages for each image on the
two test areas. The simulated missing pixels are reconstructed
with the real missing pixels by the TSRM method. The
quantitative assessment is given in three metrics by comparing
reconstructed values with the original values of the simulated
missing pixels.

The first metric is the Pearson CC, which measures the
degree of similarity between the reconstructed values and the
original values. The higher the metric value, the closer will be
the two groups of values.

The second metric is the average relative error (ARE) which
describes the variations of the value. A smaller value indicates
a better prediction. It is described as

/ M (13)

where gre(j) and gor(jy are the reconstructed and original values
Jjth missing pixels, respectively. M is the total number of the
missing pixels.

M

ARE = Z (|gre(j) - gor(j)|/gor(j))
j=1

The third metric is the root-mean-square error (RMSE) that
assesses the deviation of the reconstructed values from the
original values. A smaller value indicates a closer similarity
between the two groups of values. The RMSE is defined as

M
RMSE = Z (gre(j) - gor(j))z/(M - 1. (14)

j=1

For the two test areas, 100 and 130 eligible images were
selected to be the simulated missing images, respectively.
We then calculated three metrics for each band of each image;
Figs. 11 and 12 show the comparison curves of three indices
for each band of the selected images. For each band of all
the images, the results of Step3 almost show a better accuracy
than those of Step2 in all indices. The results of Zhangye area
are better than those of Wuhan area. Specifically, almost all
of the CC values from Step3 on the two test areas are larger
than 0.8, and even most of them are larger than 0.9. Only a
few images of Wuhan area have a relatively lower CC values
less than 0.7. The RMSE is stably less than 0.02, and nearly
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Fig. 11. Comparison curves of Step2 and Step3 for each band of each selected image of Wuhan area. The horizontal axis shows the number of simulated

missing images, and the vertical axis denotes the values of three metrics.
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Fig. 12. Comparison curves of Step2 and Step3 for each band of each selected image of Zhangye area. The horizontal axis shows the number of simulated

missing images, and the vertical axis denotes the values of three metrics.

all of the results from Step3 have good accuracy. Especially,
some of these results are less than 0.01.

Comparing with Step3, Step2 shows lower accuracy but
unstable results. Most images reconstructed from Step3 have
the good accuracy with the ARE less than 0.1 on the two
test areas. Only a few images have high value of ARE larger
than 0.2. We guess the partial reason for that is the simulated
missing areas of these images might contain many outliers
with abnormally high values. Overall, the Poisson image
editing is effective in improving the quality of reconstructed
results, and the TSRM improves the quality of each band of
all the images.

A comprehensive quantitative assessment in three metrics
for all the pixels of each band has been further given by

comparing the results from Step2 with those from Step3. The
quantitative assessment was given, as shown in Table IV. The
CC values of Step3 for all the bands on the two test areas
are larger than 0.9, and they are larger than the corresponding
results of Step2. All the RMSE values of Step3 are smaller
than those of Step2, indicating good performance of Poisson
image editing. The entire ARE values of Step2 are larger than
0.13, and they are better than those of Step3 that are smaller
than 0.13.

In addition, Fig. 13 illustrates the scatter plots of the
reconstructed values and the original values. The results of
Step2 have large errors, whereas the results of Step3 coincide
well with their original values. For different bands, the results
of Step2 behave divergently with inconsistent shapes, and the
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Fig. 13. Scatter plots of the reconstructed results from Step2 and Step3 versus the original values for each band of all the selected simulated images on two

test areas. (a) Wuhan area. (b) Zhangye area.

results of Step3 preserve almost the same shape. In summary,
the proposed method can effectively reconstruct the missing
information with good accuracy.

IV. CONCLUSION

The original daily surface reflectance data contain large
numbers of missing values due to atmospheric contamina-
tion or instrument problems. This paper proposes a TSRM
to generate daily spatially and temporally complete surface
reflectance data. The MODIS MOD09GA and MYD09GA
data were selected as the test data, the QA information is
used to identify the missing values, and these missing values
are filled using the proposed method on seven spectral bands
of the MODIS data.

Two test areas were selected to evaluate the performance of
the TSRM, and all the results show that the TSRM preserves
not only the temporal integrity of the surface reflectance data
but also the spatial integrity seamlessly. Moreover, the recon-
structed land surface reflectance data maintain the spectral
integrity, and different test points show clear seasonal trends
in each spectral band image.

The comparison between the results obtained from all three
steps (i.e., Stepl, Step2, and Step3) shows that the TSRM
outperforms the HANTS algorithm in predicting the missing
pixels. Specifically, this new method produces spatially and
temporally complete data with good accuracy and eliminates
the clear seams in the results of the HANTS algorithm.

It should be noted that in Stepl, we only selected adjacent
two years and three years data as the reference data for
Zhangye area and Wuhan area to reduce the probability of
land cover change. The explanation is that the land cover types
may changes abruptly among different years, and an over long
time span might bring about large probability of change in land
cover types. If the land cover changes among the two or three
years, the first step will result in a great deviation. Considering
that, Step2 utilizes the time dependence of the time-series
images in the intrayear to adjust the results of Stepl with
the true value constraint. Step3 further corrects the results of
Stepl and Step2 according to the spatial information. Several
parameters should be carefully determined for the HANTS
algorithm in Step2. In this paper, we set the parameter “Hilo”
as “None.” This means that the parameter “NF” is the main
factor that affects the final reconstructed result, and that makes
the method run faster. The value of NF was manually estimated
by our trial experiments, and other parameters, such as the
damping factor and DOD, are determined by referring to works
by others. The parameter settings are universal because of their
little influence on the reconstruction results. However, a little
deficiency needs to be discussed. Ideally, the reconstruction of
time series at each pixel should have its own optimal parameter
of HANTS. Unfortunately, for time-series data reconstruction
with a large number of pixels, the automatic optimal selection
of parameters is infeasible because dramatically increase the
computing time of the algorithm. Considering the efficiency
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and generalization capability of the TSRM, we manually
adopted the universal empirical values. The fast algorithm for
adaptively estimating optimal parameters will be investigated
in future research. And all the reconstruction works in this
paper use the same parameter settings.

Moreover, the pixels with abnormally high value greatly
affect the reconstructed results, and hence, eliminating abnor-
mally high values is very necessary. For example, if some
abnormally high-value pixels that exist beyond the bound-
ary of missing areas were wrongly regarded as applicable
pixels, the results derived from the Poisson image editing
will encounter fuzzy phenomenon around these bad pixels.
Finally, this paper is to produce daily gapless and seamless
surface reflectance data, and the experiment is implemented
on the basic MODIS surface reflectance data (MODO09). These
products have been processed to correct most effects, including
the BRDF effects. Accordingly, this proposed method allows
direct filling of target data through years of reference data
without considering the BRDF effects. And the results derived
from our method preserve the characteristics of the original
data, of which the temporal profiles are with some regular
fluctuations.
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