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Abstract Almost all remote sensing atmospheric PM2.5 estimation methods need satellite aerosol optical
depth (AOD) products, which are often retrieved from top-of-atmosphere (TOA) reflectance via an
atmospheric radiative transfer model. Then, is it possible to estimate ground-level PM2.5 directly from satellite
TOA reflectance without a physical model? In this study, this challenging work was achieved based on a
machine learning model. Specifically, we established the relationship between PM2.5, satellite TOA
reflectance, observation angles, and meteorological factors in a deep learning architecture (denoted as
Ref-PMmodeling). This relationship was trained with station PM2.5 measurements, and then the PM2.5 values
of those locations without stations could be retrieved. Taking the Wuhan Urban Agglomeration as a case
study, the results demonstrate that, compared with AOD-PM modeling, the Ref-PM modeling obtains a
competitive performance, with sample-based cross-validated R2 and root-mean-square error values of 0.87
and 9.89 μg/m3, respectively. Also, the TOA-reflectance-derived PM2.5 has a finer resolution and a larger spatial
coverage than the AOD-derived PM2.5. This work provides an alternative technique to estimate ground-level
PM2.5, and may have the potential to promote the application in atmospheric environmental monitoring.

1. Introduction

Fine particulate matter (PM2.5, airborne particles of less than 2.5 μm in aerodynamic diameter) has been
reported to be associated with many health problems, including cardiovascular and respiratory morbidity
and mortality (Habre et al., 2014; Madrigano et al., 2013). Previous studies have indicated that severe PM2.5

pollution resulted in more than 3 million premature deaths around the world in 2010 (Lim et al., 2012).
There is thus an urgent need to acquire accurate spatiotemporal distributions of ground-level PM2.5 concen-
trations for the environmental health concerns (Brauer et al., 2012; Crouse et al., 2012).

The satellite-derived aerosol optical depth (AOD) products have been extensively employed to expand PM2.5

estimation beyond that only provided by ground monitoring stations (Hoff & Christopher, 2009; Lary et al.,
2014, 2015; Z. Li et al., 2016). The AOD products used include those retrieved from the Moderate
Resolution Imaging Spectroradiometer (MODIS; Fang et al., 2016), the Multiangle Imaging
Spectroradiometer (You et al., 2015), the Visible Infrared Imaging Radiometer Suite (Wu et al., 2016), and
the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (Paciorek et al., 2008), and
so forth. In addition, many different models have been developed to establish the relationship between
AOD and PM2.5 (denoted as AOD-PM modeling), such as multiple linear regression (Gupta &
Christopher, 2009b), geographically weighted regression (Hu et al., 2013), linear mixed effects model
(Lee et al., 2011a), neural networks (Gupta & Christopher, 2009a; T. Li, Shen, Zeng et al., 2017), and so
on. Based on these models, satellite-derived AOD products have played an important role in the estimation
of ground-level PM2.5 (Lee et al., 2011b; Liu et al., 2009; Martin, 2008; van Donkelaar et al., 2016).

The AOD products are often retrieved from satellite top-of-atmosphere (TOA) reflectance through an atmo-
spheric radiative transfer model (e.g., second simulation of the satellite signal in the solar spectrum [6S],
MODerate resolution atmospheric TRANsmission [MODTRAN]; Hsu et al., 2004; Kaufman, Tanré et al., 1997;
Levy et al., 2007). Hence, the previous procedure of satellite-based PM2.5 estimation usually involves two
steps. The first step is to retrieve the AOD from the satellite TOA reflectance, this process may not be neces-
sary for researchers focusing on PM2.5 estimation (e.g., MODIS AOD can be obtained from the NASA website).
The second step is to estimate the ground-level PM2.5 from the satellite-derived AOD. A challenging
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proposition is whether it is possible to avoid the intermediate process of
AOD retrieval and to estimate ground-level PM2.5 directly from satellite
TOA reflectance (denoted as Ref-PM modeling). Actually, previous studies
have provided some potentials for Ref-PM modeling. On the one hand,
some researchers (Radosavljevic et al., 2007; Ristovski et al., 2012) have
adopted neural networks to learn a functional relationship between
MODIS observations and ground-observed AOD, and neural network-
based AOD retrieval has achieved satisfactory results when compared with
the physically retrieved AOD. On the other hand, many aforementioned
models have been employed to establish the AOD-PM2.5 relationship.
Given that the physical retrieval of AOD from TOA reflectance can be simu-
lated using statistical approaches, as well as the AOD-PM2.5 relationship, it
appears possible to directly model the statistical relationship between
TOA reflectance and ground-level PM2.5.

Anyhow, it would be very complicated to estimate ground-level PM2.5

from satellite TOA reflectance in one step. The retrieval of AOD from
satellite TOA reflectance is a nonlinear physical problem; the satellite-
derived AOD in conjunction with auxiliary factors (e.g., meteorological
parameters) is also usually nonlinearly correlated with PM2.5 (Zheng
et al., 2017). Hence, the estimation of ground-level PM2.5 directly from

TOA reflectance is highly complex, and the conventional models may encounter some challenges. Deep
learning, which is a further development of neural networks, has been used for time series prediction
(Ong et al., 2015) and satellite AOD-based estimation (T. Li, Shen, Yuan et al., 2017) of ground-level
PM2.5. The deep learning models have shown the ability to effectively predict/estimate ground-level
PM2.5, which can be attributed to their ability to fit nonlinear and complicated relationships (Hinton
et al., 2006; LeCun et al., 2015). Thus, deep learning may be a good tool for satellite TOA reflectance based
estimation of ground-level PM2.5.

The objective of this study is to develop a deep learning-based modeling for the estimation of ground-level
PM2.5 using satellite TOA reflectance rather than satellite AOD products. To be specific, a deep belief network
(DBN; Hinton et al., 2006) model will be employed to establish the relationship between ground-level PM2.5,
satellite TOA reflectance, observation angles, and meteorological factors. Through the Ref-PM modeling, we
can not only simplify the procedure of satellite-based PM2.5 estimation, but also avert the accumulative error
of AOD retrieval (Munchak et al., 2013). The proposed Ref-PM modeling will be validated with data from the
Wuhan Urban Agglomeration (WUA; Figure 1) covering the whole year of 2016.

2. Study Region and Data
2.1. Study Region

The study region was the WUA, which is presented in Figure 1. The study period was the whole year of 2016. The
WUA is located in Hubei province, central China. To make full use of the PM2.5 station measurements, all the
monitoring stations in the latitude range of 28.4°–32.3°N and longitude range of 112.0°–116.7°E were included
in our analysis. The WUA is a city group made up of the city of Wuhan and eight adjacent cities (Huangshi,
Ezhou, Huanggang, Xiaogan, Xianning, Xiantao, Qianjiang, and Tianmen). It has a total population of more than
30million, which accounts formore than half of the total population of Hubei province.With over 60%of the gross
domestic product of Hubei province, theWUA is one of the largest urban groups in central China (Tan et al., 2014).
In 2007, the WUAwas designated as one of the pilot areas for “national resource-saving and environment-friendly
society” by the Chinese government.

Due to the dense urbanization and industrial activities, the WUA has been suffering serious air pollution.
Previous studies have reported that Wuhan is especially affected by fine-mode particles (Wang et al., 2014,
2015). Moreover, with the rapid economic development, the other cities in the WUA (e.g., Ezhou and
Huangshi) also have high levels of PM2.5 concentration. It is thus urgent and necessary to obtain the
spatiotemporal distribution of PM2.5 in this area.

Figure 1. Study region and the spatial distribution of PM2.5 stations.
CNEMC = China National Environmental Monitoring Center;
HPEMCS = Hubei Provincial Environmental Monitoring Center Station.
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2.2. Ground-Level PM2.5 Measurements

Hourly PM2.5 concentration data within the study region in 2016 were obtained from the China National
Environmental Monitoring Center (CNEMC) website (http://www.cnemc.cn) and the Hubei Provincial
Environmental Monitoring Center Station (HPEMCS) website (http://www.hbemc.com.cn/). In this study, 77
CNEMC stations and 27 HPEMCS stations (104 stations in total) were included. The distribution of the PM2.5

monitoring stations is shown in Figure 1. It can be seen that the CNEMC stations are unevenly distributed,
but the HPEMCS stations compensate for this. In light of the Chinese National Ambient Air Quality
Standard, the ground-level PM2.5 concentrations are usually measured with beta attenuation monitors (or
beta-gauges) or by the tapered element oscillating microbalance method. Previous study indicated that they
have an uncertainty of 0.75% for the hourly records (Engel-Cox et al., 2013). We averaged the hourly PM2.5 to
daily mean PM2.5 data for the satellite-based estimation of PM2.5. The reasons for not taking only the hourly
measurements during the MODIS overpass time but using the daily mean PM2.5 can be summarized as fol-
lows. First, the daily averages and yearly averages of PM2.5 concentration have aroused more concern than
hourly PM2.5 data, and the interim targets were made based on the daily averages and yearly averages
(Ministry of Ecology and Environment of the People’s Republic of China, 2012; WHO, 2006). If the hourly
PM2.5 data are used, the satellite-based PM2.5 retrievals can only reflect the PM2.5 concentrations at some cer-
tain hours, then the daily averages and yearly averages are hard to obtain. Second, the integration of satellite
remote sensing and ground stations is aimed at mapping the spatial distribution of PM2.5. However, the satel-
lite overpass time varies from location to location. If the hourly PM2.5 data corresponding to the satellite over-
pass time are adopted, then the hourly PM2.5 data at different times can be used in different places. Thus, the
satellite-based PM2.5 retrievals over a certain region can represent PM2.5 concentrations at various times over
different subregions. Finally, the daily mean PM2.5 data have actually been extensively employed for satellite-
based PM2.5 estimation (Liu et al., 2005, 2007; Ma et al., 2016). For each monitoring station, the dates with less
than 18-hourly observations were excluded from our analysis.

2.3. Satellite Observations

The Aqua MODIS Level 1B calibrated radiances (MYD02) product was downloaded from the Level 1 and
Atmosphere Archive and Distribution System website (https://ladsweb.modaps.eosdis.nasa.gov). This pro-
duct has a spatial resolution of 1 km at nadir. The TOA reflectance on bands 1, 3, and 7 (R1, R3, and R7)
and observation angles (i.e., sensor azimuth, sensor zenith, solar azimuth, and solar zenith) are exploited
for the retrieval of AOD via a dark-target-based algorithm (Kaufman, Tanré et al., 1997). The reflectance bands
have wavelengths of 0.620–0.670, 0.459–0.479, and 2.105–2.155 μm, respectively. Despite the avoidance of
AOD retrieval, these parameters were still extracted from the MYD02 product to estimate the ground-level
PM2.5. To eliminate the cloud contamination, the MODIS cloud mask product (MYD35_L2) was adopted,
which is available at a resolution of 1 km every day. The cloud mask products have been reported to have
a high accuracy when compared with the observations from ground-based and satellite-based LiDAR/radar
(Ackerman et al., 2008). They have four confidence levels, that is, “cloudy,” “uncertain clear,” “probably clear,”
and “confident clear” (Ackerman et al., 1998). In this study, we only used the data with the highest confidence
level (confident clear).

The MODIS normalized difference vegetation index (NDVI) product (Level 3, MYD13), with a resolution of
1 km every 16 days, was also downloaded from the Level 1 and Atmosphere Archive and Distribution
System website. The MODIS NDVI was incorporated into the PM2.5 estimation model to reflect the land-cover
type. For comparison purposes, the MODIS AOD products of Collection 6 were utilized to establish the AOD-
PM modeling. The data field of “Optical_Depth_Land_And_Ocean” was extracted in this study. These pro-
ducts have a spatial resolution of 3 km and are retrieved using a dark-target-based algorithm (Remer
et al., 2013).

2.4. Meteorological Data

As the level of PM2.5 concentration is associated with meteorological parameters (Yang et al., 2017), the
Goddard Earth Observing System Data Assimilation System GEOS-5 Forward Processing (GEOS 5-FP;
Lucchesi, 2013) meteorological data were incorporated in this study. GEOS 5-FP exploits an analysis devel-
oped jointly with NOAA’s National Centers for Environmental Prediction, which allows the Global
Modeling and Assimilation Office to take advantage of the developments at National Centers for
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Environmental Prediction and the Joint Center for Satellite Data Assimilation. These GEOS 5-FP meteoro-
logical data have a spatial resolution of 0.25° latitude × 0.3125° longitude. Wind speed at 10 m above
ground (WS, m/s), air temperature at a 2-m height (TMP, K), relative humidity (RH, %), surface pressure
(PS, kPa), and planetary boundary layer height (PBL, m). If the abbreviations are excluded, readers will
not understand the meaning of Equation (1) between 1 and 2 P.M. local time (the Aqua satellite overpass
time corresponds to 1:30 P.M. local time) were used. More details can be found at the official websi-
te (https://fluid.nccs.nasa.gov/weather/).

2.5. Data Preprocessing and Matching

First, we created a 0.01° grid and a 0.03° grid for the Ref-PM modeling and the AOD-PM modeling, respec-
tively. The data matching, model establishment, and spatial mapping were based on the established grids.
For each grid, ground-level PM2.5 measurements from multiple stations were averaged. Meanwhile, we
resampled the meteorological data to match the satellite observations. All these data were reprojected to
the same coordinate system. Finally, we extracted the satellite observations and meteorological parameters
for the locations where PM2.5 measurements were available.

3. Deep Learning Based Ref-PM Modeling for PM2.5 Estimation

In the process of AOD retrieval, the satellite TOA reflectance bands and observation angles are utilized as the
primary input in the atmospheric radiative transfer model. Although the Ref-PM modeling is aimed at avoid-
ing the process of AOD retrieval and estimating ground-level PM2.5 directly from satellite TOA reflectance, the
original input (i.e., TOA reflectance and observation angles) is still adopted for the estimation of ground-level
PM2.5. The physical relationship between TOA reflectance and surface PM2.5 is presented in supporting
information Text S1 (Bilal et al., 2013; Gordon & Wang, 1994; Kaufman, Tanré et al., 1997; Kokhanovsky &
Leeuw, 2009; Tanre et al., 1988; Vermote et al., 1997; Zhang & Li, 2015).

Generally, the structure of the Ref-PMmodeling approach is depicted in equation (1). The dependent variable
is PM2.5 concentration, and the explanatory variables are satellite TOA reflectance (R1, R3, and R7), observa-
tion angles, meteorological parameters, and satellite NDVI. In addition, we incorporated the geographical cor-
relation of PM2.5 into the Ref-PMmodeling approach, because the nearby PM2.5 from the neighboring s grids
and the PM2.5 measurements from the prior t days for the same grid are useful information for the estimation
of PM2.5 (Di et al., 2016). In this study, s,t were set as 5 and 3 (Text S2), respectively.

PM2:5 ¼ f R1; R3; R7; angles; RH;WS; TMP; PBL; PS;NDVI; S-PM2:5; T -PM2:5;DISð Þ; (1)

where f() means the estimation function. S - PM2.5, T - PM2.5, DIS denote the geographical correlation of PM2.5

(see our previous study for details of their calculation, T. Li, Shen, Yuan et al., 2017). S - PM2.5 and T - PM2.5 take
the spatial and temporal autocorrelation of PM2.5 into consideration, and DIS is incorporated to reflect the
spatial heterogeneity of unevenly distributed stations. Instead of satellite-derived AOD, the satellite original
signals (i.e., TOA reflectance and observation angles) are directly used to estimate ground-level PM2.5. Thus,
the key point of Ref-PM modeling is to mine the deep association between TOA reflectance and PM2.5 via a
statistic approach rather than a physical model.

The relationship between PM2.5, satellite TOA reflectance, observation angles, and meteorological factors is
very complex. Thus, deep learning, which has great potential for fitting nonlinear and complex relation-
ships, was employed to represent the estimation function f(). In this study, a DBN (Hinton et al., 2006),
which is one of the widely used deep learning models, was adopted for the estimation of ground-level
PM2.5. Figure 2 presents the structure of a DBN model containing two hidden layers. As illustrated in
the figure, the basic unit is a restricted Boltzmann machine (RBM). An RBM contains a visible layer and
a hidden layer, where the hidden layer of the prior RBM is the visible layer of the next RBM. The DBN con-
sists of multiple RBMs and a back-propagation (BP) layer. This BP layer can be utilized for classification or
prediction, and it is used here for the prediction of the ground-level PM2.5. In this study, two RBM layers
with 15 neurons in each RBM layer were chosen (Text S2). For details of the DBN model, we refer the read-
ers to T. Li, Shen, Yuan et al. (2017). The procedure of this model for Ref-PM modeling is divided into three
steps, which are shown in Figure 3.
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First, the satellite TOA reflectance, observation angles, meteorological parameters, NDVI, and geographical
correlation of PM2.5 are input into the DBN model. This model is pretrained using the input data themselves,
and without the supervision of station measurements. In other words, the station PM2.5 measurements are
not used to tune the model coefficients in this step, and the initial model coefficients are trained from the
input data.

Second, the estimated PM2.5 can be obtained from the DBN model. Subsequently, we calculate the mean
square error between the estimated PM2.5 and ground-observed PM2.5. The error is sent back to fine-tune
the model coefficients using the BP algorithm (Rumelhart et al., 1986). This process is repeated until the
model achieves a satisfactory performance. Through this step, the DBN model can effectively establish the
relationship between PM2.5 and satellite reflectance.

Finally, the model is validated and exploited to predict the PM2.5 concentration on those locations
with no ground monitoring stations. Thus, the distribution of PM2.5 concentration can be acquired.

Figure 2. The structure of the deep belief network model for Ref-PM modeling. TOA = top-of-atmosphere;
NDVI = normalized difference vegetation index; RBM = restricted Boltzmann machine; BP = back-propagation.

Figure 3. Flowchart describing the process of the deep belief network model for Ref-PMmodeling. NDVI = normalized dif-
ference vegetation index; BP = back-propagation.
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To evaluate the Ref-PM modeling, we compared it with the AOD-PM modeling. For the AOD-PM modeling,
the inputs are satellite AOD, meteorological parameters, NDVI, and the geographical correlation of PM2.5,
and the specific model is the same as for the Ref-PM modeling, that is, the DBN model. Furthermore, we
adopted a tenfold cross-validation (CV) technique (Rodriguez et al., 2010) to test the potential of model
overfitting and the predictive power. Previous studies have usually used sample-based CV (T. Li, Shen,
Zeng et al., 2017; Ma et al., 2014) or site-based CV (Lee et al., 2011a; Xie et al., 2015) to evaluate the model
performance. In this study, both sample-based CV and site-based CV were chosen for the model validation.
For the sample-based CV, all the samples in the model data set were randomly and equally divided into 10
subsets. One subset was used as the validation samples, and the other subsets were used to fit the model
for each round of validation. For the site-based CV, we divided the monitoring stations into 10 subsets ran-
domly and equally. One subset was used for the validation and the remaining stations were used for the
model fitting in each round. We selected the statistical indicators of the coefficient of determination (R2),
the root-mean-square error (RMSE, μg/m3), the mean prediction error (μg/m3), and the relative prediction
error (defined as RMSE divided by the mean ground-level PM2.5) to give a quantitative evaluation of the
model performance.

Figure 4. Histograms and descriptive statistics of the Ref-PMmodeling variables in the sample data set. WS = wind speed; TMP = temperature; RH = relative humid-
ity; PS = pressure; PBL = planetary boundary layer; NDVI = normalized difference vegetation index.
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4. Results and Discussion
4.1. Descriptive Statistics

Figure 4 presents the histograms and descriptive statistics of the variables in the sample data set. The PM2.5

concentrations range from 5 μg/m3 to 256.96 μg/m3, with an average of 49.43 μg/m3. R1, R3, and R7 are
mostly distributed in the range of 0–0.2, with mean values of 0.09, 0.13, and 0.08, respectively. As a whole,
the distributions of satellite TOA reflectance, relative humidity, surface pressure, height of planetary bound-
ary layer, and NDVI appear similar with that of PM2.5 concentration, while the other variables have different
distribution patterns. The correlation coefficient between R1/R3/R7 and PM2.5 is 0.10/0.12/�0.27, implying a
nonlinear relationship between TOA reflectance and PM2.5.

4.2. Performance of Ref-PM Modeling

Figure 5 shows the CV performance of Ref-PM modeling and AOD-PM modeling, respectively. The sample
size of the AOD-PM modeling data set (N = 1663) is much smaller than that of the Ref-PM modeling data
set (N = 4244). The main reason for this is that the TOA reflectance data have a finer spatial resolution and
larger coverage than the AOD products. As can be observed from Figure 5, the Ref-PM modeling achieves
an outstanding performance, with sample-based (site-based) CV R2 and RMSE values of 0.87 (0.79) and
9.89 (12.97) μg/m3, respectively. Meanwhile, the sample-based (site-based) CV R2 and RMSE values of the
AOD-PMmodeling are 0.86 (0.72) and 10.42 (15.30) μg/m3, respectively. It can be seen that the sample-based
CV results of the Ref-PMmodeling (R2 = 0.87) show a slight advantage over the AOD-PMmodeling (R2 = 0.86).
Meanwhile, the site-based CV results of the AOD-PM modeling report a larger decrease (from 0.79 to 0.72 for
R2) than the Ref-PM modeling. It is worth noting that the site-based CV approach, which uses a spatial hold-
out validation strategy, can reflect the spatial predictive power more adequately (T. Li, Shen, Yuan et al.,

Figure 5. Scatter plots of the Ref-PMmodeling and the AOD-PMmodeling cross-validation results: (a) and (b) are the sam-
ple-based and site-based cross-validation results of the Ref-PM modeling; (c) and (d) are the sample-based and site-based
cross-validation results of the AOD-PM modeling. RMSE = root-mean-square error; MPE = mean prediction error;
RPE = relative prediction error.
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2017). Hence, the results indicate that the Ref-PMmodeling approach has a superior spatial predictive power
than AOD-PM modeling.

Another finding worth noting in Figure 5 is that the sample-based and site-based CV slopes for the Ref-PM
modeling are 0.87 and 0.82, respectively. This means that the proposed Ref-PM modeling approach tends
to underestimate when the ground-level PM2.5 concentrations are greater than ~50 μg/m3. Meanwhile, the
AOD-PM modeling reports a slightly higher extent of underestimation, with sample-based and site-based
CV slopes of 0.86 and 0.79, respectively. The possible reason for this underestimation could be that we
exploited a spatially averaged modeling framework and point-based monitoring data. For a given grid, a
great estimation of the spatially averaged concentration may not be given by the sampling distribution of
the monitoring stations (T. Li, Shen, Yuan et al., 2017). Another possible reason is the lack of samples in the
training data set with higher PM2.5 values. It is difficult for the model to capture the features of higher
PM2.5 concentrations, and thus the model tends to underestimate high values.

The spatial site-based CV performance of the Ref-PM modeling and the AOD-PM modeling was also evalu-
ated. The R2 and RMSE values between the observed PM2.5 and estimated PM2.5 on each grid were calculated
(see Table S1), and are shown in Figure 6. Overall, the Ref-PM modeling approach achieves a satisfactory per-
formance, with 70% of the grids reporting a high R2 value of greater than 0.80, and low RMSE values (<15 μg/m3)
are found on 81% of the grids. For the AOD-PM modeling, only 58% of the grids have R2 values of greater
than 0.80, and the grids with RMSE values of less than 15 μg/m3 account for 73%. These statistics indicate that
the Ref-PM modeling approach shows some superiorities in the spatial prediction of PM2.5 over AOD-PM
modeling. Some spatial variations can also be observed in Figure 6. For instance, compared with the results
of the AOD-PM modeling, some advantages are found in Wuhan for the Ref-PM modeling. In contrast, the
AOD-PM modeling achieves a slightly better result than the Ref-PM modeling in the regions of Huanggang.

Figure 6. Spatial performance of the site-based cross-validation: (a) and (b) are, respectively, the R2 and RMSE values for the
Ref-PM modeling; (c) and (d) are, respectively, the R2 and RMSE values for the AOD-PM modeling. RMSE = root-mean-
square error.
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4.3. Discussion

The retrieval of AOD often meets a challenge, which is the bright surfaces (e.g., R7 > 0.15, C. Li et al.,
2005). The 3-km AOD products used here are retrieved via dark-target-based algorithms, and have no
retrievals on bright surface regions. Thus, the AOD-based estimation of PM2.5 is often missing on these
regions. In this study, the TOA reflectance on bright surfaces was included to estimate ground-level

Figure 7. Daily estimates of PM2.5 on some specific days (1 day in each season, and these days have as much as valid data). From top to bottom: (a) 20160115,
(b) 20160516, (c) 20160725, and (d) 20161127. Left column: top-of-atmosphere reflectance based estimation of PM2.5. Middle column: aerosol optical depth-based
estimation of PM2.5. Right column: ground station measurements. The white regions indicate missing data.
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PM2.5. As illustrated in Figure 7, the reflectance-derived PM2.5 has a larger spatial coverage than the
AOD- derived PM2.5, which can largely be attributed to the estimates on bright surfaces. We evaluated
the performance of the Ref-PM modeling approach on the bright surfaces. The results show that the
sample-based cross-validated R2 value is 0.80 on the bright surface regions and 0.87 on the dark target
regions. It can therefore be concluded that the accuracy of the PM2.5 estimation on bright surfaces is
acceptable, and Ref-PM modeling can effectively estimate ground-level PM2.5 on bright surface regions.
It can also be observed in Figure 7 that the reflectance-derived PM2.5 has a finer resolution than the
AOD-derived PM2.5. Owing to the larger coverage and finer resolution, the reflectance-derived PM2.5

has the capacity to provide more details for pollution monitoring.

In this study, we selected R1, R3, R7, and observation angles from MODIS observations for the model
development. The physical explanations for the selection can be summarized as follows. First, the reflec-
tance of most land surfaces is relatively low in blue channel, and the atmosphere may make a larger
contribution to TOA reflectance. The aerosol appears to be separated from the TOA reflectance more
easily. For the red channel, it also reports relatively low surface reflectance on dark targets (e.g., vegeta-
tion), and there is little absorption of dust (Hsu et al., 2004). Hence, R1 (red channel) and R3 (blue chan-
nel) from MODIS have been widely used for aerosol retrieval (Kaufman, Tanré et al., 1997; Levy et al.,
2007). Second, the 2.1 μm band (band 7) is only slightly influenced by the atmosphere compared to
the visible bands, and R7 is often adopted for the recognition of surface types (e.g., dark targets), and
to obtain the surface reflectance (Kaufman, Wald et al., 1997). Furthermore, the observation angles were
employed because they are important parameters in the physical relationship between TOA reflectance
and surface PM2.5, which is presented in Text S1.

This study provides an effective solution for the estimation of ground-level PM2.5 from satellite TOA
reflectance rather than AOD products. However, the satellite-derived AOD is still one of the most
important atmospheric parameters. For example, the AOD data are an indicator of atmospheric pollu-
tion and play an important role in research on aerosol-cloud interaction, climate change, and so forth.
This paper only suggests that for the estimation of ground-level PM2.5, it appears possible to avoid the
retrieval of satellite AOD. The proposed solution could also be extended to the monitoring of other
environmental features (Lary et al., 2016, 2018), especially when no proper satellite parameters such
as AOD are available. Therefore, this study has no intention to belittle satellite AOD retrieval or
AOD-PM modeling, but instead proposes a new solution for the satellite-based estimation of ground-
level PM2.5.

5. Conclusions and Future Work

In this paper, the Ref-PM modeling approach was developed to avoid the intermediate process of AOD
retrieval and to estimate ground-level PM2.5 directly from satellite TOA reflectance without a physical
model. Using the WUA as an example, the results show that, compared with AOD-PM modeling, the
Ref-PM modeling approach achieves a competitive performance, with sample-based CV R2 and RMSE
values of 0.87 and 9.89 μg/m3, respectively. The daily distribution of PM2.5 in the WUA was also mapped,
and the reflectance-derived PM2.5 has a finer resolution and larger spatial coverage than the AOD-derived
PM2.5. All these results indicate that the proposed Ref-PM modeling approach has the capacity to
estimate ground-level PM2.5 concentration directly from satellite TOA reflectance. This study provides
an alternative technique to estimate ground-level PM2.5, and will provide useful information for pollution
monitoring and control.

Our future studies will focus on two aspects. First, the Ref-PMmodeling approach has achieved some reason-
able results for the estimation of PM2.5 directly from TOA reflectance. However, we only selected R1, R3, R7,
and observation angles for the model establishment. Would the incorporation of surface reflectance data
(e.g., MOD09) boost the accuracy of PM2.5 estimation? Whether or not more/other satellite parameters can
better explain PM2.5 concentration still has room for exploration. Second, the proposed Ref-PM modeling
approach was validated in the small region of the WUA. Larger geographic regions may bring new challenges
and problems. The application and validation of the Ref-PM modeling approach in large geographic regions
will be conducted in our future studies.
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