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Land surface temperature (LST) is one of the most important parameters in land surface processes.
Although satellite-derived LST can provide valuable information, the value is often limited by cloud
contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed.
First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using
multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-
contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy
balance equation-based procedure is used to correct for the filled values. With shortwave irradiation
data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have
been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation
results indicate that the proposed method can recover LST in different surface types with mean average
errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST
images has a greater impact on the results than the size of the contaminated area.
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1. Introduction

Land surface temperature (LST) is of primary importance in
understanding global environment change, urban climatology,
and land-atmosphere energy exchange (Kustas and Anderson,
2009; Weng, 2009; Weng and Fu, 2014; Estoque and Murayama,
2017; Zhang and Li, 2018). LST observations are therefore widely
used in a variety of fields, including hydrology, meteorology, cli-
mate change, vegetation ecology, environmental monitoring, and
military reconnaissance (Anderson et al.,, 2008; Arnfield, 2003;
Hansen et al., 2010; Shen et al., 2016). Given the complexity of
surface temperatures over land, ground stations cannot provide
spatially consistent and temporally continuous measurements
over large areas. Satellite remote sensing offers the only possibility
for observing LST over the entire globe with acceptable temporal
resolution and completely spatial coverage (Li et al., 2013).
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Satellite-based LST is often retrieved using thermal infrared (TIR)
data with the generalized split-window algorithm (Jimenez-Munoz
and Sobrino, 2003; Qin et al., 2001; Wan and Dozier, 1996).
However, like all the other TIR data-based retrieval methods, the
generalized split-window algorithm can only work well when the
data are acquired under clear-sky conditions. When solar radiation
is obstructed by cloud and/or impacted by other atmospheric dis-
turbances, the retrieval of LST will be greatly affected. As a result,
in LST images, only clear-sky pixels have useable information,
whereas cloud-covered regions are filled with invalid values
(Rajasekar and Weng, 2009). As completely cloud-free weather is
rare, especially in rainy seasons or in humid regions, most LST
images are contaminated by cloud. Cloud contamination, therefore,
greatly limits the subsequent applications of satellite-derived LST
in related fields (Yoo et al., 2018).

It has been found that reconstruction techniques can effectively
recover missing information and improve the usability of the dete-
riorated LST. A number of methods have been developed, which
can be generally divided into three types according to the sources
of reference information: (1) spatial information, (2) multi-
temporal observations, and (3) other complementary data, for
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example, from ground meteorological stations. The basic spatial
information-based methods are spatial interpolation approaches,
including inverse distance weighting, spline function and geosta-
tistical interpolation methods. Some studies have attempted to
take more factors into account using some multi-variable interpo-
lation methods, such as cokriging (Cai et al., 2009; Ke et al., 2011;
Neteler, 2010). As only limited spatial information is referred, the
reconstructed regions are often blurred resulting in unsatisfied
accuracy. A spectral angle distance weighting reconstruction
method has been explored (Shuai et al.,, 2014). The property of
the land surface is quantitatively considered in this study by calcu-
lating the spectral angle of original multispectral images. The tem-
poral information-based methods have also been well developed.
Reconstruction methods based on time domain analysis have also
been developed (Xu and Shen, 2013). The temporal filtering meth-
ods, like harmonic analysis, often work well for regions with fre-
quent and dense cloud cover. However, extreme LST values may
not be well reconstructed due to the smoothing effect of low-
pass filtering. Zeng et al. (2015) filled invalid LST values using a
multi-temporal classification and a robust temporal regression.
Compared with the temporal filtering approach, the method can fill
invalid LST values accurately with much less reference data.

It should be noted that the aforementioned methods can only
provide hypothetical clear-sky LST values, but not the real LST
under cloudy conditions. In general, during daytime the cloud-
covered LST is lower than the cloud-free LST because the land sur-
face receiving solar radiation is hidden by cloud. For the third type
of reconstruction methods, other land surface information is incor-
porated to estimate the real LST. Jin (2000) proposed a
neighboring-pixel (NP) approach to reconstruct the LST of cloudy
pixels based on the surface energy balance. In this approach, the
LST of cloudy pixels is interpolated from the neighboring clear pix-
els surrounding the cloudy pixels. In addition, surface wind and air
temperature are also incorporated. Based on Jin’s approach, a tem-
poral NP method was developed to estimate cloudy LST pixels from
geostationary satellites (Lu et al., 2011). Then, a spatially and tem-
porally NP method was also proposed to reconstruct cloud-
contaminated pixels in daily MODIS LST products (Yu et al,
2014). Since the surface energy balance is considered, the NP-
based method can reconstruct the real LST for cloudy pixels. How-
ever, for these methods, ground-based measurements are often
needed to calculate regional parameters, which makes them diffi-
cult to implement for ungauged or poorly gauged regions.

With the development of the above methods, the usability of
satellite-derived LST has been greatly improved. However, these
methods all have their advantages and limitations under different
circumstances. In general, the temporal information-based methods
are more effective, but the real LST cannot be obtained. The surface
energy balance-based methods are more accurate, but the parame-
ters are difficult to obtain. The overall objective of this study is
therefore to develop a new flexible and effective method for
cloud-contaminated LST reconstruction. The advantage of the newly
developed approach is that it can generate more accurate LST for
cloudy pixels, without depending largely on ground-based ancillary
data. This approach makes satellite-based LST observations more
applicable to large areas, and should be valuable in meteorological
and hydrological studies and applications. In the following sections,
we first describe the algorithm, and then demonstrate its perfor-
mance based on both simulated and actual experiments.

2. Method

As shown in the flowchart of Fig. 1, first, a multi-temporal
reconstruction process is employed to obtain the ideal clear-sky
LST for the cloud-contaminated region in combination with the

Multi-temporal
NDVI " a .
econstruction
A 4
“Clear-sky” Shortwave
LST Radiation
[ ]
SEB based Correction
A 4
SURFRAD » Reconstructed LST

Fig. 1. Flowchart of the proposed two-step framework for LST reconstruction.

Normalized Difference Vegetation Index (NDVI). Second, a surface
energy balance (SEB) equation-based method is used to correct
the clear-sky LST to the real LST with surface shortwave radiation
information. And the results are verified using SURFace RADiation
(SURFRAD) ground measurements.

2.1. Multi-temporal reconstruction

In the first step, a multi-temporal reconstruction method was
introduced to obtain the clear-sky land surface temperature. It
has been shown that two LST maps acquired during a short period
change linearly for the same type of feature (Zeng et al., 2015).
Therefore, the contaminated LST can be reconstructed by the LST
acquired at another time:

T50:a~T50/+b (1)

where Tyis the LST to be recovered, Ty'is the reference LST
acquired at a near time for Tyo, and a and b are regression coeffi-
cients. Since pixels with the similar land surface property have
similar trends in LST change, the regression coefficients a and b
can be calculated by the similar common pixels (common pixels
are referred to as the pixels with valid values in both LST images)
of the contaminated LST image and the reference LST image. The
procedures are shown in Fig. 2.

It has also been found that LST has a strong relationship with
the vegetation index (VI) (Amiri et al., 2009, Dousset and
Gourmelon, 2003; Jin and Dickinson, 2010; Schultz and Halpert,
1995). A hypothesis is therefore proposed here: during a period,
the change of LST is related to vegetation index values. To test this
hypothesis, an example is shown in Fig. 3. Two MODIS LST images
acquired on January 1, 2010, and January 5, 2010 are shown in
Fig. 3(a). The difference map between the two LST images is shown
in Fig. 3(b). The corresponding NDVI map for the same area is
shown in Fig. 3(c). Fig. 3(d) shows the scatterplot of the tempera-
ture difference against NDVI. The distribution of the black dots
indicates a strong relationship between the temperature difference
and NDVI, showing a correlation coefficient (R) of 0.666.

Therefore, the VI could also be involved in the calculation of the
regression coefficients in Eq. (1). Since VI values often remain con-
stant in a short term, multi-day composite VI can be used for con-
venience. In this paper, an adaptive determination procedure for
the similar pixel selection was employed (Zeng et al., 2013). In



32

Contaminated LST image

C. Zeng et al./ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 30-45

Reference LST image
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1.Search for common pixels

2.Find similar pixels from common
pixels in reference LST by refering to VI

- Contaminated pixel

Vegetation Index
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Fig. 2. Procedures of searching for similar common pixels from both the contaminated LST images and reference LST image for calculating regression coefficients a and b in

Eq. (1).

the reference LST image, similar pixels are searched from the com-
mon pixels using the following constraints:

|T50/ - Tsi/| < Tthd

(2)

Vo — Vil < Via 3)

where Ty'is the LST for the pixel near the pixel withTy', V;and
Voare the corresponding VI values, Tpg and Vg are the threshold
values of LST and VI, respectively. The thresholds represent the
local similarity related to the smoothness of adjacent areas (e.g.,
5 x 5 pixels). In this study, they are adaptively calculated by the
local standard variation:

where n is the total number of valid pixels in the adjacent areas.
The local standard variation can represent the smoothness of the

area. Therefore, the constraints would be smaller for homogeneous
surface to select the most similar pixels. But it would also be effec-
tive in searching for similar pixels for heterogeneous surfaces
without being greatly affected by noise in images. For serious
cloud-contaminated situations, not enough pixels can be found in
a small region. In this situation, a maximum threshold value will
be assigned (e.g., 0.05). After determining the similarity thresholds,
the similar pixels of center pixel can then be selected. In this pro-
cedure, an adaptive searching window centered on each contami-
nated pixel is used to select the similar pixels. First, an initial
and a maximum window size and the desired number of the sim-
ilar pixels are set (e.g., 11 x 11 pixels). For each contaminated
pixel, all the common pixels of the contaminated LST image and
reference LST image located in the window are set as candidates.
Then Egs. (2) and (3) are implemented. If the desired number of
similar pixels (e.g., 20) is not satisfied, the window size will be
enlarged until the maximum size has been reached.

When all the similar pixels in the window have been identified,
the coefficients can then be calculated with Eq. (1). Considering
that the contributions of each pixel vary due to differences in land
surface property and spatial location, a weighted linear regression
method is employed here. A synthetic difference index is employed
to calculate the weight:
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Fig. 3. An example of the relationship between NDVI and LST: MODIS LST acquired on (a) January 1 and January 5, 2010, (b) the LST difference between the two dates, (c) the
corresponding 16-day composite NDVI distribution for the period, and (d) the scatterplot of (b) and (c).

Di= T =T/ + & - IVo— Vi + &l (%~ %0 + 0~ %0)°)  (6)

where x;, y; , Xo and y, represent the locations of the similar pixel
and contaminated pixel, and ¢&is a small value to ensure that D; is
not equal to zero (e.g. 0.001). The term ((x,- —x0)” + (¥; —yo)z)
describes the spatial distance between the corresponding similar
pixel and the contaminated pixel in the reference image, and
|Tso' = Tsi' + &| - Vo — Vi + ¢|represents the difference of land
surface property.

For the convenience of calculation, weights of each selected
similar pixel are normalized as:

Wi=(1/Dy) / > (1/Dy) )
i=1

Then the range of weight W; is normalized from 0 to 1, and the
sum of all the weights is 1. Subsequently, the coefficients can be
solved by:

m = =
Z Wi(Tsi - Ts)(Tsi/ - Ts )
i=1
a== — (8)
Y Wil —Ts)
i=1

andb =T, — aT, 9)
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where T.and Ts'are the mean values of all the similar pixels in
the searching window on the contaminated and reference LST
images, respectively.

Extreme situations that only a few or even no similar pixel
could be found after the procedure illustrated above should also
be considered. In the case that the number of similar pixels does
not meet the desired number (e.g., 20) even the window size
reaches the maximum size, but the number is more than 2, the
algorithm will still be performed using all the selected similar pix-
els (minimum number: 3). For the exceptional case when there is
no similar pixel for the algorithm, the center pixel will be identified
as an outlier. Under this condition, the contaminated pixel value
will be adjusted to fit the background. Therefore, the coefficient
is simplified as:

|

a=—; (10)

~|

S

andb= 0 (11)

2.2. Surface energy balance-based correction

Since cloud may obstruct solar radiation and consequently
affect LST, it is necessary to correct the clear-sky LST to the real
LST under cloudy conditions:

TclaudO = TsO + ATSO (12)

where Tgouq0is the real LST under cloudy conditions and ATy is
the correction for Ts, and can be derived using the SEB. In this
study, a SEB-based method was employed to address this issue.
Over the land surface, the SEB is written as:

Q=G+H+IE (13)

where Q is the net radiation, G is the ground heat flux, H and LE
denote sensible heat flux and latent heat flux, respectively. In day-
time, the net radiation can be written as the sum of net shortwave
and longwave radiation:

Q = Sn - Ln (14)
where S, is the net shortwave radiation and L, is the net long-

wave radiation.
Then the SEB can be rewritten as:

Sn_Ln :G+Shle (15)

where Sye is the sum of sensible heat and latent heat flux. With
all the terms in Eq. (15) being partially differentiated with respect
to T, it can be written as:

05, 0Ly 0G oS
oT, 0T, OTs = 0T,

(16)

Based on the conventional force-restore method, the ground
heat flux can be calculated by Jin (2000) and Jin and Dickinson
(2000):

Ts - Td
AZ

where k, is the thermal conductivity of the ground soil in units

W m~!K!; AZ is the depth of the subsurface layer; and Ty is the

temperature at the subsurface layer. Since the subsurface layer

temperature Tq is much less sensitive than skin temperature to sur-

face insolation (Jin, 2000), for two similar pixels, the equation can
be written as:

96 _ 0, T-T,
oT,  oT," ¢ AZ

G-k O =k, (17)

|~ (18)

Then Eq. (16) can be written as:

AT = Az (AS, — AL,

AZ
) ~ ASye) = (1-p — q)AS, (19)
g

kg

where p = AL,/AS,, q = ASpie/ASy, AS, is the difference of net
shortwave radiation between the two similar pixels. Since AL,
and ASp. are hard to obtain by remote sensing, empirical approx-
imate relationships can be used (Jin, 2000; Lu et al., 2011; Yu et al,,
2014):

Ly = Po -+ PSn (20)

Snie = qo + qSn (21)

where p is a coefficient related to surface soil properties and q is
a coefficient related to local surface cover types and soil properties.
Given that the net shortwave radiation is defined as the sum of
incoming and outgoing shortwave radiation, the net shortwave
radiation can be written as:

Si=S.-S=(1-0uS. (22)

where « is the surface albedo, S, and S_ are the incoming and out-
going shortwave radiation, respectively. Then Eq. (19) can be
rewritten as:

AT, = cA[(1 — 0)S, ] (23)

where ¢ = AZ(1 —p — q)/k,.

It can be found that parameter cis mainly determined by surface
properties. Therefore, it is reasonable to assume that the similar
pixels have close values of the parameter. For each pixel with the
LST to be reconstructed in the contaminated LST image, the corre-
sponding parametercis calculated by:

" cl Y D (T =Toy)/[(1 - a)Syi — (1

m i=1 j=i+1

= %)S4j)] (24)

where Cfnis combinations of any 2 in m similar pixels, i and j
denote the ith and jth similar pixels, respectively. Ultimately,
AT can be derived as follows:

m

ATy = % Zc[(l —0lp)S0 — (1 — 04)S44)] (25)
i-1
From Eq. (25) it is clear that the LST correction term ATq for Tso
is a function of c and albedo reflecting the impact of surface prop-
erties and S, reflecting the impact of atmospheric disturbance
(including cloud contamination) on incoming shortwave radiation
for the contaminated pixel.

2.3. Statistical metrics

To evaluate the two steps of the proposed framework, simu-
lated and real experiments were carried out, respectively. In the
simulated experiments, an invalid region was simulated in an
uncontaminated LST image, and then the reconstructed LST values
were compared with the original values. The reconstructed LST val-
ues after clear-sky correction were compared with the LST mea-
surements at SURFRAD sites in the real experiments. The
experimental results were assessed quantitatively using some sta-
tistical metrics. The first one is the Pearson correlation coefficient
used to assess the degree of consistency between estimated and
observed values. The second index used is the Average Relative
Error (ARE), which is used to evaluate the relative error of recon-
structed LST values. It can be calculated by:

ARE = ( 3 (ITs - Tri|/Tsi)>/M x 100% (26)
i=1
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where M is the total number of contaminated pixels, Tgand
T,are original and reconstructed LST of the ith contaminated pixel,
respectively. As the former two metrics are dimensionless, the
Mean Absolute Error (MAE) was also employed to assess the abso-
lute accuracy.

3. Data
3.1. Satellite data

The proposed method is universal and can be implemented on
most satellite-derived LST products. Since MODIS LST is one of
the most popular products, the MODIS datasets were used in
experiments performed in this study. The MODIS sensors onboard
the Terra and Aqua satellites have 36 spectral bands ranging from
the visible to the thermal infrared spectrum. The spatial resolution
varies from 250 m (bands 1 and 2) to 500 m (bands 3-7) and 1000
m (bands 8-36) (Shen et al., 2011). The MODIS sensors view the
entire Earth every 1 or 2 days. The daily level 3 LST product at 1
km spatial resolution (MOD11A1) was used in this study. In addi-
tion, the MODIS vegetation index product (MOD13A2), albedo pro-
duct (MCD43A3), and emissivity product (MOD11B1) were also
used. The vegetation index products provide NDVI and EVI at 1
km spatial resolution for each16-day composite period. The albedo
products provide 500 m data describing both directional hemi-
spherical reflectance (black-sky albedo) and bihemispherical
reflectance (white-sky albedo) every 16 days. The MOD11B1 prod-
ucts provide daily per-pixel temperature and emissivity values at
6 km resolution. The Global LAnd Surface Satellite (GLASS) down-
ward shortwave radiation product (Liang et al., 2013; Zhang
et al., 2014) can provide shortwave radiation at 5 km resolution.
Since the resolution of the original LST product is approximately

1 km, for the convenience of calculation, all the satellite data were
resampled (i.e., nearest neighbor resampling used in the experi-
ments) to the 0.01°x0.01° resolution in the geographic projection
and clipped into 400 x 400 pixel images.

3.2. Surface measurements
Accurate ground-measured LST in different climatic regions is

essential to evaluate the reconstruction method. In this study, SUR-
FRAD ground measurements were used. The SURFRAD network

350

— Before LOESS Filtering
— After LOESS Filtering

300+

250

Incoming Longwave Radiation (W/m?)

2005 6 12 18 24
Time of Day (UTC)

Fig. 5. SURFRAD incoming longwave radiation data acquired from the GWN site on
January 1, 2010, before and after the LOESS filtering.

Table 1

Six stations of land surface temperature measurements selected from the SURFRAD network.
Station name Latitude (°) Longitude (°) Altitude (m) State
Bondville (BON) 40.05 —88.37 213 Illinois
Fort Peck (FPK) 48.31 -105.10 634 Montana
Goodwin Creek (GWN) 34.25 —89.87 98 Mississippi
Table Mountain (TBL) 40.125 —105.237 1689 Colorado
Desert Rock (DRA) 36.624 -116.019 1007 Nevada
Sioux Falls (SXF) 43.73 —96.62 473 South Dakota
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Fig. 4. Six SURFRAD stations and the corresponding true color MODIS images: BON of February 19, DRA of September 11, FPK of July 25, GWN of May 4, SXF of May 29, TBL of
March 16, 2010. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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was established in 1993 through the support of NOAA’s Office of measurements pertaining to the surface radiation budget over
Global Programs. The primary objective of this project was to the United States (http://www.esrl.noaa.gov/gmd/grad/surfrad/
support climate research with accurate, continuous, long-term overview.html). The stations provide a set of broadband infrared
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Fig. 6. An example of the simulated experiment: (a) the original LST of the study area (GWN) acquired on May 4, 2010, the simulated LST data degraded by the invalid regions
with (b) 50, (c) 100, (d) 150, (e) 200 pixel diameter, the corresponding reconstructed LST (second column) and the error maps (third column).
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Fig. 7. (a) Correlation coefficients, (b) average relative errors, and (c) mean absolute errors of the 6 experimental regions (BON, DRA, FPK, GWN, SXF, and TBL) with different

sizes of missing areas.

surface radiation and meteorological observations every 3 min
before 2009 and every 1 min after 2009. Due to the good continuity
and high quality of the measurements, the network has been used
as the LST ground truth for satellite-derived LST validation (Li et al.,
2014; Wang and Liang, 2009). Six SURFRAD sites were used in this
study Table 1 and the corresponding true color MODIS images are
shown in Fig. 4. The surface types of BON, FPK, GWN and SXF are
mostly grasses, crops and few trees. TBL region is covered by sandy
with a mix of exposed rocks, sparse grasses, desert shrubs, and
small cactus. And the surface of DRA region is made up of fine rock
and scattered desert shrubs (Augustine et al., 2010). Therefore, the
applicability of proposed framework can be well tested.

However, since noise exists in any observations, a quality con-
trol procedure must be implemented before using SURFRAD mea-
surements. In this paper, LOcal regrESSion (LOESS) was employed
to perform a temporal filtering on SURFRAD data. LOESS is a very
flexible and ideal method to model non-linear processes or provide
a smoothing parameter value and the degree of the local polyno-
mial (Cleveland and Devlin, 1988). The basic idea is to create a
function that describes the deterministic part of the variation in
the data, by fitting simple models to localized subsets of the data
with a weight matrix w, which is calculated using a tri-cube weight
function:

3
(1-wP), ifu <1
0, ifju>1

w(u) =

where u is the normalized distance obtained from the ratio between
the actual distance of a point and the maximal distance in a subset.
With this approach, the noise in the SURFRAD observations can be
filtered. To verify the effect of the LOESS filter, an experiment was
carried out using observations from the GWN site on January 1,
2010. Fig. 5 shows a comparison on SURFRAD incoming longwave
radiation before (blue' line) and after (red line) the LOESS filtering.
Before the LOESS filtering, obvious fluctuations can be detected dur-
ing the whole day. The fluctuations, which were likely to be mea-
surement error or other factors, would reduce the reliability of the
ground truth. After the filtering, the noise was mostly removed
and the time series became much smoother.

Since only surface radiation instead of direct LST was observed
at these stations, a transformation must be implemented to con-
vert SURFRAD radiation to LST. The general way is to convert out-
going and incoming radiation into the surface temperature with
broadband emissivity and using the Stefan-Boltzmann law, which
can be expressed (Wu et al., 2013, 2015; Niclos et al., 2018):
Lo=¢g-0 T +(1-8)-L (28)
where L, is the measured outgoing longwave radiation, ¢, is broad-
band longwave surface emissivity, o is the Stefan-Boltzmann con-
stant (5.67 x 108 Wm™K™), T, is the LST, and L; is the

! For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.
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measured incoming longwave radiation. Then LST can be solved as
follows:

T, - {7L" — (;bf(fb) 'L'} - (29)

The broadband emissivity &, can be estimated from MODIS nar-
rowband emissivity products using an empirical relationship
(Wang et al., 2005):

where &9, €31, and &3, are MODIS band 29, 31 and 32 narrow-
band emissivities, respectively, from global 6 km daily land surface
temperature/emissivity data (MOD11B1).

It should also be concerned the uncertainty in comparing in-situ
estimated LST with satellite-derived LST. The MODIS sensor can
provide LSTs in 1 km resolution, which is much larger than the
scope of a land surface site. The SURFRAD sites were chosen to
be located in regions with minimal surface heterogeneity. The
error source of different scales can therefore be reduced to an
acceptable range.

4. Results and discussion
4.1. Different sizes of missing areas

First, the ability of reconstruction for the multi-temporal algo-
rithm for large areas was evaluated. With a larger missing area, less
neighborhood information was used in the method, which might
introduce more uncertainties to the results. In this experiment, a
cloud-free LST image was selected, and then degraded to a cloud-
contaminated LST image with different sizes of invalid regions.
Then the degraded LST images were reconstructed and assessed
relative to the original cloud-free image. As shown in Fig. 6, it
can be found that all the reconstructed LST images are highly con-
sistent with the original LST image. Error maps of the recon-
structed maps are also shown in Fig. 6. It is showed that as the
invalid region expands, the errors become more significant. In
Fig. 6(a), while the invalid region is only 50 pixel diameter, the
errors are less than 1 K. In Fig. 6(b), some of the errors are about
2 K with an invalid region of 100 pixel diameter. The errors are
even more obvious in Fig. 6(c) and (d) with larger invalid regions.
It should be noted that some marked patterns can be found in Fig. 6
(b)-(d), which is because the adjoining similar pixels were recon-
structed by similar coefficients. As a result, the errors appeared
in a regular shape.

To further illustrate the effect of the reconstruction algorithm
on different sizes of missing areas, all the experimental areas were
tested with cloud-free LST data. The data acquisition dates for the
BON, DRA, FPK, GWN, SXF and TBL regions were June 30, Septem-
ber 11, September 28, May 4, May 29 and March 16, 2010, respec-
tively. Quantitative evaluation is shown in Fig. 7. In most cases, the
correlation coefficients were larger than 0.7. The correlation coeffi-
cients remained generally similar with an expanding size of the
invalid region. However, for the FPK region, the correlation coeffi-
cients increased obviously with the size of the missing area. It is
because the experimental area was relatively homogeneous. As
the invalid region expanded, more surrounding pixels were
involved in the searching procedure, which made the reconstruc-
tion more stable. In Fig. 7 (b) and (c), the AREs of GWN, SXF and
TBL were less than 0.2%, and the MAEs were less than 0.5 K. It is
therefore indicated that the algorithm is reliable for these test
regions. However, for the DRA region, the AREs and MAEs obvi-
ously increased with the size of the missing area, though the ARE
was still less than 0.7 and the MAE was less than 2 K. The results
suggest that the proposed algorithm can recover reliable LST val-
ues in homogeneous or heterogeneous regions.
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Fig. 8. An example of the simulated experiment: (a) the original LST of the study
area (BON) acquired on June 30, 2010 and the simulated LST data degraded by an
invalid region with 100 pixel diameter and the reference data acquired (b) 2, (c) 55,
(d) 100, and (e) 151 days away and the corresponding error maps of reconstructed
LST data.
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4.2. Different acquisition dates of reference data

In addition to the spatial size of cloud-contaminated areas, the
temporal interval between the contaminated LST and reference LST
also has a significant impact on the reconstruction effect. To quan-
titatively assess this impact, a series of simulated experiments
using reference data acquired on different dates were imple-
mented, as an example shown in Fig. 8. Fig. 8(a) is the original
LST image acquired on June 30, 2010, and the degraded LST image
with an invalid area of 100 pixel diameter. Multiple reference LST
images were used to reconstruct the invalid region and the results
were compared. Fig. 8(b)-(e) are four reconstructed images and
corresponding error maps using reference LST images acquired
on July 2, May 6, October 8 and November 22, 2010, which are 2,
55, 100, 151 days away from the date of Fig. 8(a). It can be found
that, as the time interval increases, the errors become more obvi-
ous. In Fig. 8(b), the invalid region was reconstructed using the ref-
erence LST acquired 2 days away from the original image, which
means that the reference LST and the original LST were relatively
close. As a result, the errors were all less than 1K. As for Fig. 8
(c)-(e), the errors are much more significant than Fig. 8(b). Most
of the errors range from 2 K to 4 K. The results indicated that, with
a very close reference LST, the error of reconstructed LST may be
insignificant, whereas using a temporally relatively far reference
LST, the error may be much larger (e.g., 4 K).

To further illustrate the impact of different acquired dates on
the reconstruction algorithm, all the experimental areas were
tested with reference LST acquired on different dates, and the
results are shown in Fig. 9. In Fig. 9(a), for all the regions, the cor-
relation coefficients are higher than 0.9 with time intervals close to
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0. As time intervals increase, the correlation coefficients dramati-
cally change over most regions except DRA and TBL. In the worst
case, the correlation coefficient is only 0.4. In Fig. 9(b) and (c),
the AREs and MAEs reach the lowest values while the time interval
is close to 0. Marked changes can be found as time intervals
increase. However, the errors are particularly significant for TBL
and DRA. It is because that in the reconstruction method, the rela-
tionship between LST and NDVI is used. However, the two regions
are mainly covered by sand and rocks. Therefore, as for LST change,
the vegetation is not the primary factor in most of the year. In this
case, it was difficult to obtain accurate coefficients in Eq. (1). As a
result, the errors were large but regular, which could lead to a high
correlation coefficient and relatively high ARE and MAE. However,
the AREs were still less than 1%, and most of the MAEs were less
than 2 K. This means that the reconstruction method is still accept-
able even the reference LST has large time intervals to the target
LST image to be reconstructed.

4.3. Different vegetation indexes

In the former experiments, NDVI products were used in the
multi-temporal reconstruction procedure. However, it is unclear
whether other types of VI is effective in the method. In this part,
the Enhanced Vegetation Index (EVI) and NDVI products were
compared using data at GWN and TBL. Results are shown in
Fig. 10. Generally, the reconstructed results using different VI prod-
ucts are very close. For both sites, the curves of correlation coeffi-
cients, ARE and MAE are nearly overlapped. Only slight differences
can be found in Fig. 10(b) and (c), indicating that the NDVI has an
insignificant advantage over the EVI in this algorithm.
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Fig. 9. (a) Correlation coefficients, (b) average relative errors, and (c) mean absolute errors of the 6 experimental regions with different temporal reference data.
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4.4. Validation using SURFRAD data

In this part, to evaluate the SEB-based correction method,
satellite-derived LST and reconstructed LST were compared with
SURFRAD measured LST. In Fig. 11, scatterplots of the original
satellite-derived LST against the ground measurements from 6
SURFRAD sites in 2010 are shown. In general, most of the
satellite-based observations had excellent agreement with the
ground measurements at the 6 sites, showing R?> between 0.897
and 0.967, and the MAE between 2.213 K and 6.577 K. For the sites
of BON, SXF and TBL, the MODIS LST was relatively unbiased, while
in DRA and FPK, the MODIS LST was slightly overestimated. How-
ever, in GWN the satellite measurements were slightly underesti-
mated. It can also be found that, for all the 6 sites, more than
140 days were contaminated by cloud. In particular for the FPK
site, only 155 valid satellite observations were obtained during
2010, which means that this area was covered by cloud in more
than half a year. It also demonstrated the importance of developing
a LST reconstruction algorithm for practical applications.

Fig. 12 shows corresponding scatterplots of LST reconstructed
by the multi-temporal method against the ground measurements
at the 6 sites. However, in this experiment, not all the missing
LST gaps were filled, because some LST images were totally invalid
in the 400 by 400 pixels area. Therefore, there was no reference
information that can be found in the experimental area. In this sit-
uation, the only solution was to enlarge the experimental area until
sufficient reference pixels were included. But the extreme situation
is not common. As for the reconstructed values, all of them had
good agreement with the ground measurements. The R? ranged

e errors of the GWN and TBL region with different vegetation indices (i.e., NDVI and EVI)

between 0.719 and 0.925, and the MAE ranged between 3.648 K
and 6.692 K. Just as the experimental results shown in Figs. 7
and 9, at the sites of DRA and TBL, the accuracies were more likely
to be affected by the land cover types. So the worst R*> and MAE
appeared at these two sites. It also demonstrated that, except site
GWN, no obvious overestimation or underestimation can be found
in the other 5 sites. This is because with the reference of NDVI, the
bias in the MODIS LST can be filtered out.

In Fig. 13, scatterplots of corrected LST for cloudy conditions
against ground-based measurements from 6 SURFRAD sites of
2010 are shown. Compared with Fig. 12, the results at sites BON,
DRA, FPK and SXF were improved. All the R? increased by 0.02,
and MAE decreased by 0.03-0.17 K. However, for site GWN,
although R? increased from 0.802 to 0.807, the MAE increased from
6.692 to 6.797. This may be because the obvious underestimation
in the reconstructed results of step 1 affected the correction. After
correction, the reconstructed values decreased due to the accom-
modation of cloud cover, making the final results show more devi-
ations from the ground measurements. In addition, for site TBL, R?
remained 0.719, while the MAE increased from 5.890 to 5.915. The
reason is that, as aforementioned, the land surface types made the
algorithm difficult to search for stable similar information at this
site. As a result, more errors were introduced to Eq. (24), making
the result worse than the other sites.

It can be found that, in Figs. 12 and 13, the multi-temporal
reconstructed LSTs are not obviously higher than the corrected
and ground-measured LSTs. Since LST may be affected by many
factors (such as precipitation, cloud cover time and soil thermal
properties and moisture), the real LST under clouds may not be
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Fig. 11. Scatterplots of the ground-measured LST against the MODIS LST at 6 SURFRAD sites in 2010.

significantly lower than the clear-sky LST. The ground measure-
ments of SURFRAD were used to explore the relationship between
cloudy LSTs and clear-sky LSTs. All the ground measurements from
neighboring cloudy and clear-sky days were collected. In order to
exclude the effect of strong weather changes, the neighboring days
with more than 20K LST difference were removed. Then the
remaining measurements were plotted as shown in Fig. 14. The
cloudy LST and the clear-sky LST are rather close. The slope is
1.006 and the intercept is 0.725. It means that, compared with
clear-sky LSTs, cloudy LSTs are statistically slightly smaller.

In Fig. 15, the histogram of errors of MODIS LST against SUR-
FRAD sites measurements is shown. It can be found that the errors
at the 6 sites were not normally distributed. The modal error is
about 2 K. It means that most of the MODIS observed LST values
were slightly underestimated. However, there was also a rising
trend near —5 K, indicating that there were also a number of obvi-
ous overestimated LST values (mostly appeared over the DRA
region as shown in Fig. 11). To further illustrate the reconstruction

effect of the proposed method, errors of the two steps were calcu-
lated and shown in Fig. 16. Generally, the error distributions of the
reconstructed LST were consistent with the original MODIS error
distribution. In addition, like the original MODIS observations,
the reconstructed values were also mostly underestimated.
Fig. 16 shows that due to the correction of step 2, the overesti-
mated values were significantly reduced, indicating the effective-
ness of the SEB-based correction method.

4.5. Comparison to previous studies

The simulated experiments indicated that the proposed multi-
temporal reconstruction algorithm is reliable for all the test
regions. All the reconstructed areas were highly consistent with
the original areas. The actual experiments also illustrated that
the relationship between the reconstructed MODIS LST values
and the ground measurements were quite similar with the
relationship of observed MODIS LST values and the ground
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Fig. 12. Scatterplots of the ground-measured LST against the multi-temporal reconstructed MODIS LST at 6 SURFRAD sites in 2010.

measurements. Therefore, the proposed method can reconstruct
cloud-contaminated LST accurately under different conditions.
This new method also shows some advantages over the existing
approaches. In Jin’s paper (2000), the NP approach was tested by
a climate model and showed an accuracy of 1-2 K at monthly
mean pixel level resolution. Another NP-based case was validated
with two ground sites in Africa and had root-mean-square errors
(RMSE) of 5.55 and 5.11K for the two sites, respectively
(Lu et al.,, 2011). Yu et al. (2014) estimated cloud-contaminated
MODIS LST products in the Hehei River basin and gave RMSE of
4122 K. Compared to these published studies, the proposed
method was evaluated under a range of locations, land cover types,
and climatic conditions, showing MAEs about 3-6 K at different
sites. This suggests that the new method is quite effective and
stable in most cases.

5. Conclusion

Remote sensing LST products can offer accurate and large-scale
LST with high temporal and spatial resolutions. However, data
quality is often degraded by cloud. In this study, a two-step LST
reconstruction method is proposed. Compared to existing methods,
the new method can recover the real LST accurately without the
requirement of ground-measured parameters. The effectiveness of
the developed approach is demonstrated by a series of simulated
and real experiments in two steps. Results indicate that the
proposed method is relatively accurate and can be applied to
different areas with varying land surface properties and climates.
The usability of satellite-derived LST can therefore be significantly
improved and numerous applications would also be benefited
from this work.
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Fig. 13. Scatterplots of the ground-measured LST against the final reconstructed MODIS LST at 6 SURFRAD sites in 2010.

It should be noted that there is still room for further improving
the proposed method. The 5 km resolution downward shortwave
radiation data was resampled to 0.01°x0.01°. Since the resampling
process cannot provide detailed information, it may introduce
uncertainty to the reconstructed LST results. In addition, the cor-
rection in the second step may not be so useful for a small area,
e.g., less than 100 MODIS pixels. Although the approach is effective
and acceptable in all the experiments, we are also looking forward
to a better downward shortwave radiation product with higher
resolution in the future. The multi-temporal reconstruction
method is developed based on the relationship between LST and
NDVI. Therefore, larger errors can be found in the sandy and rocky
regions such as TBL and DRA stations. To make the multi-temporal
reconstruction method more robust, a multi-factor relationship
can be considered in further work. In addition, in the SEB-based
correction method, the net longwave radiation, sensible heat and
latent heat flux are approximated with net shortwave radiation
for simplicity, since there are no simple and reliable datasets of
those variables at the 1km resolution. As spatiotemporal
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Fig. 14. Scatter plot of neighboring cloudy and clear-sky LST from the 6 ground sites.
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Fig. 16. Histogram of errors (ground-measured LST minus the MODIS LST reconstructed by two steps, respectively) at 6 SURFRAD sites in 2010.

resolution and reliability of radiation products evolve, the
developed framework can be better applied.
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