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A Nonlinear Guided Filter for Polarimetric
SAR Image Despeckling

Xiaoshuang Ma™, Penghai Wu

Abstract— Despeckling is a fundamental preprocessing step for
applications using polarimetric synthetic aperture radar data
in most cases. In this paper, a guided filter with nonlinear
weight kernels and adaptive filtering windows is presented for
PolSAR image despeckling, in which the guidance image is
constructed by a weighted average using the statistical traits
of the speckled image. The output result is then estimated by
another weighted average, with the aid of the fully polarimetric
information from both the guidance image and the speckled
image. In the experimental part, the filtering results obtained
with both simulated and real PolSAR images reveal the positive
performance of the proposed method in both reducing speckle
and retaining details, when compared with some of the state-of-
the-art algorithms. Furthermore, the relatively low computational
complexity is another strength of the proposed method.

Index Terms— Guided filter, polarimetric synthetic aperture
radar (PolSAR), speckle filtering, Wishart distribution.

I. INTRODUCTION

S AN advanced form of synthetic aperture radar (SAR),

polarimetric SAR systems are capable of emitting and
receiving fully polarized radar waves to characterize observed
targets, together with the all-weather, day-and-night imaging
capabilities, resulting in their wide use in many areas. How-
ever, POISAR data are inherently affected by speckle noise,
which degrades the quality of PoISAR images and complicates
the task of image interpretation. As a result, despeckling is a
fundamental preprocessing step for applications using PoISAR
data in most cases.

The studies of PolSAR filters can be traced back to the
beginning of the 1990s. During the last three decades, many
different PolSAR filtering techniques have been developed.
In [1], we made a broad view of the existing PolSAR
filters, which can be generally categorized into five classes:
1) local filters; 2) nonlocal means (NLM)-based methods;
3) partial differential equation-based methods; 4) variational
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methods; and 5) machine learning-based methods. One of the
classical PolSAR filters is the refined Lee filter [2], which
was developed based on the linear minimum mean-squared
error (LMMSE) estimator originally designed for single-
polarization SAR image despeckling [3]. The refined Lee filter
has opened up an important branch of filtering methods based
on the LMMSE estimator [4], [5]. The core issue of these
methods is to investigate means of selecting similar pixels
to ensure stationarity of the scene. Lee et al. [6] generalized
the idea of the sigma filter [7] to select similar pixels in a
local window, without the deficiencies of the original sigma
filter in underestimating and blurring strong targets; in the
meantime, the bias introduced by the original sigma range
is also compensated in the improved sigma filter. Recently,
Lee et al. [8] proposed a new algorithm to further amend
the improved sigma filter by a more sophisticated strategy
of detecting strong point targets and selecting similar pixels.
Other traditional PolSAR filters include, but are not limited
to, the segmentation-based filter [9], the bilateral filter [10],
and the speckle model-based filter [11]. In recent years,
the NLM filter [12]-[14], which was originally designed for
digital image denoising [15], has been a hot topic in PoISAR
image despeckling. Differing from the traditional methods,
the NLM filter not only searches and compares the values in a
single point in a small local window, but also the geometrical
configuration in the whole image, so that it can obtain more
robust results. Anisotropic diffusion-based filters [16], [17],
variational-based filters [18]—[20], and the simultaneous sparse
coding (SSC)-based filter [21] have also been developed in
recent years.

He et al. [22] introduced a new concept of guided filtering
for digital image denoising, which involves filtering the input
image with the aid of a guidance image. The guidance image
can be the noisy input image or an explicit one. A linear
relationship between the noisy image and guidance image
is assumed, and the guidance image guides the structure-
transferring filter operation. Recently, Ni and Gao [23] applied
the idea of the guided filter to process single-polarization
SAR images. Differing from the original linearly guided filter,
Ni and Gao [23] constructed a nonlinear weight kernel, the
expression of which is deduced within the Bayesian NLM
framework. Positive despeckling results for the SAR guided
filter have been reported when compared with some of the
other advanced methods.

Inspired by the idea of the SAR guided filter proposed
in [23], a nonlinear guided filter with adaptive filtering
windows is presented in this paper for the despeckling of fully
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polarimetric SAR images. The main idea behind the proposed
method is to guide the despeckling operation by combining
the fully polarimetric information from both the speckled
image and a guidance image, where the guidance image is
constructed by a prefiltering process using the information of
the speckled image.

The remainder of this paper is organized as follows.
Section II introduces the statistical models of PolSAR data
and the idea of the guided filter. In Section III, the proposed
PolSAR nonlinear guided filter (PNGF) is presented. Then,
in Section IV, we describe the experiments conducted on both
simulated and real PolSAR images to validate the performance
of the proposed method. Finally, the conclusion is provided in
Section V.

II. STATISTICAL MODELS OF POLSAR DATA
AND THE GUIDED FILTER

A. Statistical Models of PolSAR Data

A fully polarimetric SAR system measures the complex
scattering matrix of a medium with quad-polarizations. For the
reciprocal backscattering case, the backscattered radar signal
from each cell of the PoISAR system can be characterized by
the following scattering vector:

v = (Sun, V2Suv, Svv)’ (1)

where Spy denotes the scattering element of the vertical
transmitting and horizontal receiving polarizations, with the
combination of the amplitude |Sgy| and the phase ¢py:
Sav = |Suvle’ #HV  The other elements in the scattering matrix
are similarly defined. SAR data are frequently multilook
processed for speckle reduction and data compression by aver-
aging several neighboring single-look pixels. Multilook polari-
metric data are often represented by a polarimetric covariance
matrix, which is generated from the outer product of the
target vector with its conjugate transpose. The polarimetric
covariance matrix is a Hermitian positive definite matrix.

Most of the PolSAR filters were derived based on the
assumption of “fully developed speckle,” which has the fol-
lowing properties [24]: 1) a large number of scatterers in
a resolution cell of a homogeneous medium; 2) the range
distance is much larger than the radar wavelength; and 3) the
surface is much rougher on the scale of the radar wavelength.
It has been proven that [25], for fully developed speckle,
the L-look covariance matrix Cr follows a complex Wishart
distribution:

L4L|Cp|E~9 exp{—LTr(Z7'Cp)}

P(CLIZ) = O IZL (2)
with
q
O(L,q)=n?@ DT r@L—i+1) 3)
i=1
where Tr(-) and | - | are, respectively, the trace operator

and the determinant operator. Z is the population covariance
matrix. Parameter ¢ = 3 is the dimension of the polarimetric
covariance matrix.
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Compared with single-polarization SAR data, the speckle
model of fully PolISAR data is much more complex. Speckle
noise not only appears in the intensity image of each polar-
ization, but also in the complex cross-product terms. It has
been found that the diagonal terms of the polarimetric covari-
ance matrix can be characterized by a multiplicative noise
model, while the off-diagonal terms have the characteristics
of a combined multiplicative and additive noise model [26].
Lee et al. [2] proposed the PolSAR filtering principle, i.e., to
preserve the polarimetric properties, all the terms of the matrix
should be filtered in the same way; in other words, filtered by
the same amount.

B. Guided Filter

The guided filter [22] assumes that the relationship between
the guidance image G and the filtering result R can be
described by the following linear model:

Ri =aG; +b, VieAx 4)

where Ax is a local window centered at pixel x and a, and
b, are linear coefficients which are constant for the window
Ax and are deduced by means of linear ridge regression [27]
as follows:

ax =Y A.j(G)-Uj (5)
JjeAx

by =Y B.j(G)-U; (6)
JjeAx

where U denotes the noisy input image. It can be seen that
terms A, ;(G) and By ;(G) depend only on the guidance
image and ay and b, are computed as the weighted average of
the pixels in Ax in the input image. From (5) and (6), we can
rewrite (4) as follows:

Ri =Y [Avj(G)-Gi+ B, j(G)IU; VieAx. (7)
JjeAx
To solve the problem of multiple estimations for the same

pixel R; under different overlapping windows, all possible
values are averaged. Therefore, we can deduce (7) as follows:

Ri = IA—lxl S Y 1405(G) - G+ B j(GDIU;. ®)
ieAx jeAx
To avoid oversmoothing and ease computational burden, one
can directly use the noisy image U as the guidance image G.
Then, due to the symmetry of the box window, (8) can be
rewritten as [23]

1
Ri = 157 D> AW - Ui + B j(UDIU; (9)
! xeAi jeAx
where Ai is a local window centered at pixel i.

III. POLSAR NONLINEAR GUIDED FILTER
A. Extension of Guided Filter to PoISAR Despeckling

He et al. [22] proposed that the guided filter can be
straightforwardly applied to denoise color or multichannel
images, which is given by

R} =alU) +b) Vie Ax (10)
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where superscript y denotes the index of image channel. Then,
as (4)—(9), we can easily derive that

) 1 , , , ,
R = A > > [A(U)) - U + B (U7)]U. ()
xeAi jeAx

To simplify (11), we let the weight of pixel j in the local
window of pixel x be py j(U}) = Ay ;j(U7) - U? + By ;(U7)
and the weight of pixel x in the local window of pixel i be
qi.x = 1/|Ail, the guided filter can be finally represented as

R =" aqix| D pej(U))U]

xeAi jeAx

12)

Clearly, we can observe from (12) that for each channel of
the data, the guided filter formally consists of two weighted
averaging steps: 1) the filtering result of pixel i is, in fact,
the weighted average of the prefiltering output in its local
window Ai and 2) the prefiltering output is in turn computed
as another weighted average of the pixels in the local window
Ax for each pixel in Ai, where the weight kernel p, ;(U?) is
linear and constructed based on the guidance image (actually,
the noisy image).

The guided filter is originally designed for the filtering
of digital images which are contaminated by additive white
noise. However, if we extend this method to process fully
polarimetric SAR images, several issues are worthy of notice.

1) First of all, when filtering the color or multichannel digi-
tal images, different values of the weight term p,_; (U f)
are deployed for different channels in [22]. However, this
is not feasible for PoISAR data. As we pointed out in
Section II, a main principle of PolSAR despeckling is to
filter each term of the polarimetric covariance matrix by
the same amount to preserve the polarimetric properties.

2) The weight kernels should be derived based on the sta-
tistical trait of the speckle, rather than simply employed
the weights in the original guided filter.

To cope with the despeckling problem of single-polarization
SAR image, Ni and Gao [23] proposed to generalize the linear
guided filter into a nonlinear filter, and take both the speckled
image and the prefiltered image into account when calculating
the weights in the second averaging step.

In this paper, adhered to the above ideas and motivated
by the work in [22] and [23], a nonlinear guided filter with
adaptive filtering windows is developed for PolSAR image
despeckling. This filtering method consists of two weighted
averaging steps: 1) in the first step, a prefiltered image is
constructed by a weighted average with a nonlinear weight
kernel using the information of the original speckled image
and 2) in the second step, the output result of each pixel is
estimated by another weighted average using the information
from both the prefiltered image and the speckled image. The
proposed PNGF method is formulated as follows:

Ci= D qix(S, F)S, (13)
x€AI
with
Fi= " pej(9)S; (14)

jeAx

where S, F, and C are, respectively, the polarimetric covari-
ance matrices of the speckled image, the prefiltered image,
and the output image.

The main idea behind the PNGF method is, in the step of
calculating the prefiltered image F by (14), only the statistical
traits in the speckled image S can be used. Once the prefiltered
image is constructed, the basic estimation of each pixel x in
the local window of pixel i is obtained. To some degree, this
prefiltered image acts as the role of a guidance image. Then,
with the aid of both the speckled image and guidance image,
a refined weighted average of the pixels in the local window
is taken to estimate the final result of pixel i.

B. Construction of Nonlinear Weight Kernels

Clearly, the main issue with the proposed PNGF method is
the construction of the weight kernels in (13) and (14). In this
paper, as did in [23], we employ nonlinear weight kernels,
as follows:

2
pei=cilses)T|
t1

Px,j(S) =exp | — [

2
D(C} = C%|Si, Sy, F) a16)
2

q:',x(S9 F) = eXpqy — |:

where C* denotes the covariance matrices of the noise-free
image, f1 and 2 are two normalization parameters, and the
numerators inside the weight kernels denote the similarity
between two pixels, given the speckled image S and the
prefiltered image F. The weight kernels of the proposed
method are similar to those of the NLM filter: the more similar
the pixels, the higher they have weights.

The question of constructing the nonlinear weight kernels
now comes down to measuring the similarity of two pixels,
given the speckled image and the prefiltered image. First,
for (15), the numerator denotes the similarity between two
pixels, given only the speckled image S. In this research,
we deploy the Wishart likelihood-ratio test statistic [28] to
calculate this term. We assume that the independent 3 x 3
Hermitian positive definite matrices (covariance matrices) X
and Y are complex Wishart distributed, i.e., X € W.(3,n, ;)
with £ = 1/nX and ¥ € Wc(3,m, Xy) with £ = 1/mY,
where m = n, which is the number of looks. We consider
the null hypothesis, Hp: X, = Xy, which states that the
two matrices are equal, against the alternative hypothesis, Hi:
Xy # Xy. If Hp hypothesis is true, the Wishart likelihood-ratio
test statistic can be deduced as follows [28]:

(n+m)3(n+)n) |X|m|Y|n
|Xf+_y|m+n'

Taking the logarithm of (17) and discarding the constant terms,
the numerator of (15) can be calculated as follows:

0= (17)

n3np3m

D(C; = C3[S:,8j) =6In2+1n S| +In|S,]

—2In[S, +S;|. (18)

It can be proven that this term is nonpositive, and the more
similar the two pixels, the closer this term is to zero.
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It needs to be noted that the likelihood-ratio test in (18)
involves the matrix logarithm, which means that the involved
matrices have to be full rank (|C| # 0). However, when
the number of looks is small with respect to the dimension
of the covariance matrix (L < 3), and the resolution cell
contains a dominant scatterer (for instance, strong returns
from point targets) with one dominant scattering mechanism,
the covariance matrix C could be singular (|C| = 0), which can
produce numerical instability in the filtering process. In order
to avoid numerical problems, we employ a preprocessing step
before the filtering, as in [14]. When calculating (18), we
transform the covariance matrix to ensure that it is full rank.
Transformed matrix T is denoted by

V1, Trie1 = Crrer; Vel £ k2, Tri o =y Cripz - (19)

where k1 and k2 are the indices of the elements of the matrix
and y = min(L/3, 1). This step only rescales the off-diagonal
terms of C, and the diagonal terms are not changed (i.e.,
the intensity is not changed). It was proven in [14] that the
transformed data by (19) can still be modeled by the Wishart
distribution defined in (2), and the likelihood-ratio test is still
valid for the rescaled data.

From the aspect of probability statistics, the similarity
measure in (16) can be rewritten as

D(C; = C7|Sx, S, F) = P(C; = ij 8,85, F). (20)
Under a Bayesian framework, in the absence of any
information on P(S.,S;), and assuming that the event
P(Cy = C7}|Sx, §)) is independent of the guidance image
G, then the following relation holds:

D(Cf = C%[Si,Sx, F) = P(C; = C%|Si, Sx)
x P(CY =C%|F). (1)

Clearly, the first term of the right-hand side of the above
equation reflects the likelihood of having identical noise-free
values with respect to the observed speckled image, which
can be directly calculated by the means in (18). Meanwhile,
the second term is calculated from the guidance image and
considers its pixel values as the “true” parameters of the
noise generative model. By considering the fully polarimetric
information of both the speckle image and guidance image,
the weights in the final filtering step are refined.

For the calculation of the second term of (21), we use the
Kullback-Leibler divergence, which can characterize the dis-
crepancy between two probability distributions. For PolSAR
data, the symmetric Kullback-Leibler divergence between two
zero-mean complex circular Gaussian distributions is given
by [10]

P(C; =CiF)=u[(F) 'F,+ Fi(F,)"'1-6 (22

where P(C? = C}|F) > 0, and the more similar the two
pixels, the closer this term is to zero.

It should be pointed out here that as in the proposed
PNGF method, a two-step filtering strategy has also been
employed in the nonlocal SAR (NL-SAR) filter proposed by
Deledalle et al. [14]. However, the proposed filter has the
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following major differences and benefits with regard to the
NL-SAR filter.

1) In the prefiltering step, a strategy is employed in the
NL-SAR filter to select locally the best preprocessing
among several scales of averaging. However, the results
of a different scale of averaging are obtained mainly
using the intensity information of PolSAR data. Differ-
ing from NL-SAR, the prefiltering step of the proposed
method is simply a local weighted averaging step, but
all polarimetric information is utilized.

2) In the final filtering step, to calculate the weights of the
pixels in the searching window, only the polarimetric
information of the prefiltered data is considered in the
NL-SAR filter. A limit of such approach is that the
pre-estimation result must be good enough to make it
possible to discriminate low-contrast features; otherwise,
they will be smoothed out after the second filtering
step [14]. On the contrary, in the proposed method,
the polarimetric information of the original speckled
image is also taken into account to prevent the image
from over-smoothing in the final filtering step.

3) The NL-SAR is a patch-based filter, while the proposed
method is actually a pixel-based local filter, which leads
to the relative lower computational complexity of the
proposed method when processing the image with large
size. This is further discussed in Section IV.

C. Choice of Filtering Parameters

The partial normalization parameters f1 and 72 in the
weight kernel are important to control the filtering amount
of the proposed method. Higher normalization parameters can
result in a better performance in reducing noise, while lower
parameters can result in a better performance in retaining
details. In this paper, 1 and 72 are automatically determined
by the “noise estimator” suggested by Canny [29]: before
each weighted averaging step, a histogram of the absolute
values of the similarity between any two neighboring pixels
along a certain direction throughout the image is computed
as (18) or (21), and ¢1 or 72 is set to be equal to the 80% value
of its integral. By this means, 1 and 2 can be adaptively set
as a larger value to better reduce the speckle, if the speckle
level of the image is high, and vice versa. In practice, this
value can be fine-tuned to obtain better results.

The other two parameters that need to be tuned in the PNGF
method are, respectively, the sizes of the local filtering window
in the prefiltering step and the final estimation step. Normally,
a guided filter with a larger filtering window can better reduce
the speckle, while a filter with a smaller window can better
retain the image details. In this research, we propose an
adaptive strategy for setting the sizes of the filtering windows,
based on the local homogeneity of the image.

Before the filtering, we divide all of the 7 x 7 image
patches into three different types, namely, homogeneous
areas, moderately homogeneous areas, and heterogeneous
areas. This approach is accomplished by the method pro-
posed in [30]: a patch can be regarded as a homoge-
neous one if STM <= ((4/= —1)/L)"/2, where STM
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denotes the standard deviation to the mean of the total
intensity of the patch and L denotes the number of looks,
while a patch can be regarded as a heterogeneous one if
STM >=+/3-((4/m — 1)/L)"/?; otherwise, it is a moderately
homogeneous patch. Therefore, to better reduce the speckle
in the homogeneous areas and preserve the edges in the
heterogeneous areas, the size of Ax or Ai can be set as
9x9,7x7,o0r5 x5, according to the homogeneity of the
corresponding 7 x 7 patch when despeckling a certain pixel.

The filtering procedure of the proposed PNGF method can
be summarized as follows.

1) The standard deviation to the mean of the total intensity
of each 7 x 7 image patch is calculated.

2) Parameter 1 in the weight kernel of (15) is determined
by the aforementioned “noise estimator.”

3) For each pixel in the image, its basic estimation is
calculated by (14) and (15), where the size of Ax
is determined based on the homogeneity of its local
7 x 7 patch obtained in step 1.

4) Parameter 72 in the weight kernel of (16) is also deter-
mined by the “noise estimator.”

5) For each pixel in the image, the final estimation is
calculated by (13) and (16), where the size of Ai is
also determined based on the homogeneity of its local
7 x 7 patch obtained in step 1.

IV. EXPERIMENTAL PART

In this section, to illustrate the filtering performance of the
proposed PNGF method, the results obtained with a simulated
PolSAR image and two real PolISAR images are reported. The
source code of the proposed PNGF method can be downloaded
from the link (http://sendimage.whu.edu.cn/en/resources/).
Three state-of-the-art PoISAR filters were also implemented
for comparison purposes: the NL-SAR filter [14], the PoISAR
nonlocal total variation (NLTV) filter [19], and the PolSAR
SSC filter [21]. All of these three methods were implemented
by the source codes or tools provided by the authors of the
respective papers.

To quantitatively evaluate the filtering performances of
different methods, the equivalent number of looks (ENL),
the edge-preservation degree based on the ratio of average
(EPD-ROA) [31], and the target-to-clutter ratio (TCR) are
employed [32].

The ENL is an important indicator to assess the amount of
speckle in SAR images, and is generally computed as

ENL = 1/0/ (23)

where ¢, denotes the coefficient of variation of the intensity
inhomogeneous areas. A higher ENL value indicates a better
speckle reduction result.

The EPD-ROA indicator is given by

S Hai )/ 1ax ()]
S E51G)/ 1526)
where I;1 and I;» denote the adjacent pixel values of

the despeckled image along a certain direction, respectively.
Similarly, Iy; and Is» denote the corresponding adjacent pixel

EPD-ROA =

(24)

Fig. 1.  Filtering results for the simulated image. (a) Reference image.
(b) Speckled image. Despeckling results of (c) NL-SAR filter, (d) Pol[SAR
NLTV method, (e) PolSAR SSC method, and (f) proposed PNGF method.

values of the speckled image. An EPD-ROA value closer to
one indicates better edge-preservation ability.

The TCR indicator measures the difference in the intensity
ratios between the point targets and the surrounding areas
before and after despeckling by

maxp,(17) max , (1y)

TCR = |20log, —201logy (25)

mean, (1g) mean, (/)

where I; and I; are, respectively, the speckled intensity image
and the despeckled intensity image. Subscript p denotes the
patch containing a point target, and max, and mean, are
computed over the patch. Since the speckle model does not
hold in the presence of persistent scatterers or point targets,
a low TCR value indicates that the filter effectively preserves
their original signatures.

A. Experiments With a Simulated PolSAR Image

In this paper, a single-look simulated PolSAR
image [Fig. 1(b)], which was obtained by the procedure
based on Monte Carlo simulation [24], was used to compare
the filtering performances of different methods. The image
contains linear and nonlinear edges, and high returns from
point signatures. Table I shows the quantitative assessment
results of different methods on this image.

As can be observed in Fig. 1, at first sight, the NL-SAR filter
and the proposed PNGF show quite comparable results: the
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TABLE I

QUANTITATIVE ASSESSMENT RESULTS FOR THE SIMULATED
IMAGES FILTERED BY DIFFERENT METHODS

ENL TCR EPD-ROA
NL-SAR 354 3.83 0.82
PoISAR NLTV 15.4 5.88 0.89
PoISAR SSC 24.1 6.61 0.68
PNGF 35.7 4.04 0.83

Fig. 2. Ratio images for (a) NL-SAR filter, (b) PolSAR NLTV filter,
(c) PoISAR SSC filter, and (d) proposed method.

speckle is notably reduced and the edges are well preserved,
which can also be seen in the ENL values and EPD-ROA
values in Table I. However, one can also observe that some
dark speckle still resides on the bright areas of the image
filtered by the NL-SAR filter. For the PoISAR NLTV filter,
the high value of EPD-ROA reveals its good performance in
retaining edges. However, visually, this despeckling method
does not significantly reduce the speckle, which can also be
seen by its low ENL value. Visually, the PoISAR SSC filter
shows a good performance in suppressing speckle. However,
the filtered image [Fig. 1(e)] appears to be over-smoothed and
shows a partial halo effect.

To further validate the capability of different techniques in
retaining edges, we show the ratio images in Fig. 2 between
the noisy intensity image and the despeckled intensity images.
Theoretically, for an ideal filter, the ratio image should be
pure speckle. It can be seen that the ratio images for the
NL-SAR filter, the PoISAR NLTV filter, and the proposed
PNGF method have the appearance of random noise, while the
edges are notably retained in the ratio image for the PolSAR
SSC filter, which indicates that PoOISAR SSC is not very good
in retaining edges and is consistent with the conclusion one
can draw from the EPD-ROA values.

B. Experiments With Two Real PolSAR Images

Two real PolSAR images were used to validate the
effectiveness of the proposed despeckling method. Both of the
images were acquired by the AIRSAR project of the National
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TABLE II

QUANTITATIVE ASSESSMENT RESULTS FOR THE REAL POLSAR DATA
SETS FILTERED BY DIFFERENT METHODS

Kyoto image San Francisco image
ENL | TCR | EPD-ROA | ENL TCR | EPD-ROA
NL-SAR 74.0 | 5.03 0.725 60.2 2.88 0.819
PolSAR NLTV| 333 4.04 0.814 21.2 3.30 0.824
PolSAR SSC | 669 | 9.12 0.730 59.1 2.12 0.805
PNGF 423 | 3.69 0.788 347 | 222 0.760

Aeronautics and Space Administration/Jet Propulsion Labora-
tory, and were processed by the European Space Agency as
four-look data sets.

1) Experiments on the Kyoto Image: The first real POISAR
image used for the comparison was a C-band AIRSAR
image acquired in Kyoto, Japan [Fig. 3(a)]. At first sight,
the NL-SAR filter and the PolSAR SSC filter show the
over-smoothing problem, especially in the forest and urban
areas. In contrast, the POISAR NLTV method and the PNGF
method effectively retain most of the details exhibited in these
areas. The above observations can also be confirmed by the
EPD-ROA and TCR values listed in Table II, although the
ENL values reveal that the NLM filter and the SSC filter
reduce the speckle to much larger extents. To further reveal
the over-smoothing problem of the NL-SAR filter and the
PolSAR SSC filter, we display the ratio images of different
filters on this data set in Fig. 4. Clearly, compared with the
PolSAR NLTYV filter and the PNGF filter, the other two filters,
especially the NL-SAR filter, filter out much more details from
the original image.

Some other phenomena can also be observed in Fig. 3. First,
the PoISAR NLTV method seems to distort the polarimet-
ric scattering mechanisms of the image, which changes the
color of the Pauli RGB composite image to some degree.
In fact, the radiometric distortion problem of this method
was also reported in [1]. Second, some artifacts can be
found in the PolISAR SSC filtered image, especially for some
strong returns in the urban areas [marked by the red arrow
in Fig. 3(1)]

PolSAR image despeckling is an open issue. In a sense,
choosing a proper filter is application oriented. As an impor-
tant preprocessing step before using PolSAR data to extract
land-object information, a robust despeckling algorithm should
not only effectively suppress the speckle and retain the edges,
but also enhance the differences between the classes and
preserve the polarimetric scattering mechanisms. To inspect
the general performances of different filters with regard to
the aforementioned issues, we provide scattergrams of the
Cloude polarimetric decomposition parameters (entropy H,
anisotropy A, and alpha angle ) [33] in Fig. 5 for three areas
with different land-object types, as marked in Fig. 3(a). The
polarimetric scattering entropy is an index used to describe
the degree of statistical disorder of each distinct scatter type
within the ensemble (i.e., the randomness of the scattering);
the polarimetric scattering anisotropy measures the relative
importance of the second and the third eigenvalues of the eigen
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Fig. 3.

Filtering results for the Kyoto image. (a) Pauli RGB image of the speckled data. Filtering results of (b) NL-SAR filter, (c) PoISAR NLTV method,

(d) PoISAR SSC method, and (e) PNGF method. (f)-(j) Subimages cropped from (a)-(e), respectively.

@ O

© - (d)

Fig. 4. Ratio images of the Kyoto image filtered by (a) NL-SAR filter, (b) PolSAR NLTV filter, (c) PolSAR SSC filter, and (d) proposed PNGF method.

decomposition; the alpha angle is related to underlying average
physical scattering mechanism.

First of all, the objects are much more separable for the
filtered data than for the original data, due to the suppression
of the speckle. Second, the distribution of the parameters in
the image processed by the POISAR NLTV method [Fig. 5(c)]
shows a notable shift from the speckled data, which demon-
strates the radiometric distortion problem we observed before.
It is also interesting to note that compared with the highly con-
centrated water pixels in the PNGF-filtered image, the pixels
of the other two land-object types are much more dispersed.
This is because the scattering mechanisms of forest on the
mountains and buildings in the urban areas are often very
complicated. The proposed method retains different scattering
mechanisms that these two areas intrinsically possess.

2) Experiments on the San Francisco Image: The filtering
results of different methods on the L-band San Francisco
image are shown in Fig. 6. Once again, the PolISAR NLTV
filter does not effectively suppress the speckle, although it
performs the best in preserving edges among the four methods,
which can be confirmed from both the visual observation

and quantitative indicators. The PolSAR SSC filter again
shows a partial halo effect, which slightly degrades the spatial
resolution of the image. Visually, the NL-SAR filter and the
PNGEF filter produce good balance between reducing speckle
and retaining image spatial resolution. Relative speaking, the
NL-SAR filter reduce the speckle to a larger degree, while the
PNGF filter better preserves the details.

For many applications, such as ship and man-made struc-
ture detection, maintaining the signatures of these targets is
important. Furthermore, unlike the scattering from distributed
media, the scattering from point targets comes mainly from a
few strong scatterers within a resolution cell, and it is better
to maintain their original polarimetric information. To validate
the capability of the despeckling methods in maintaining the
polarimetric traits of point targets, we chose one of the targets
on the sea, as marked in Fig. 6(a), and plotted its cross-
polarization signature (Fig. 7) for each filtered image. Clearly,
distinct disagreements arise between the signatures from the
original pixel and the pixels processed by the PoISAR NLTV
filter, while much closer agreements are reached for the targets
processed by the other three methods.
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Fig. 5. Scattergrams of the Cloude polarimetric decomposition parame-

ters for different areas in (a) speckled image, and (b)—(e) NL-SAR filter,
the PolSAR NLTV method, the PolISAR SSC method, and the PNGF method,
respectively.

C. Computational Complexity

As reviewed in [1], many newly developed PolSAR
despeckling methods are nonlocal patch based or globally
collaborative algorithms, and high computational complexity
is often one of the main issues for their wide application.
Furthermore, for many of the new SAR systems, such as the
Chinese GF-3 system, their image dimensions can be higher
than 10000 x 10000 pixels. It is therefore a challenge to
develop a PolSAR filtering algorithm which can balance the
computational efficiency and the despeckling effectiveness.
Although it is difficult to directly compare the computational
times of the method presented in this paper and the other
three state-of-the-art methods, since they were implemented on
different platforms, we can qualitatively analyze and compare
their computational complexity.

We assume that the size of the image is m x n and,
in the three state-of-the-art methods, the search window size is
w1 x w1 (often larger than 11 x 11) and the target patch size
1S wa X w>.

1) We let the similarity measure between two pixels be one
step, and it can thus be concluded that the complexity
of the NL-SAR filter is about O (mnw?w3).

2) For the PolSAR NLTV filter, as per the deduction in
[19], the complexity is about O(mnw%w% + mnlr),
where [ is the iteration times of the filter and r is the
number of selected nearest neighbors in the search area.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6.
of the speckled data. Filtering results of (b) NL-SAR filter, (c) PolSAR
NLTV method, (d) PoOISAR SSC method, and (e) PNGF method, respectively.
(f)—() Subimages cropped from (a)—(e), respectively.

Filtering results for the San Francisco image. (a) Pauli RGB image

3) For the PolSAR SSC filter, it has been deduced [1] that
its total computational complexity is slightly lower than
that of the NLM filter if the sliding step in the patch
ordering procedure is set as two.

4) For the proposed PNGF method, there are two filtering
steps—the prefiltering step and the final filtering step—
for which the averaging window sizes are both nearly
7 x 7 for most images. We have also found that the
computational time of the similarity measure between
two pixels in the final step is about two times that
in the prefiltering step. Therefore, based on the fact
that the similarity measure in the first step can be
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Fig. 7. Cross-polarization signatures of a point target in different
images. (a) Original cross-polarization signature of the target. (b)—(e) Cross-
polarization signature of the target in the images filtered by the NL-SAR filter,
the PolISAR NLTV method, the PoISAR SSC method, and the PNGF method,
respectively.

directly employed in the final step, we can con-
clude that the computational complexity of the pro-
posed method is nearly O(2 x 7% x mn). To sum
up, we can conclude from the above analyses that the
PNGF method is much more computationally efficient
than the three state-of-the-art methods compared in this

paper.

V. CONCLUSION

Despeckling is a fundamental preprocessing step for appli-
cations using PolSAR data in most cases. Recent years have
shown a rapid development in the designing of PolSAR
filtering algorithms, especially those nonlocal patch-based
filters. Although most of these filters can obtain good results
in many cases, the high computational burden may hamper
their practical application, particularly for the newly launched
space-borne PoISAR systems with large image sizes. It is
a challenge to develop a PolSAR filtering algorithm which
can balance the computational efficiency and the despeckling
effectiveness.

In this paper, we have presented a guided filter with
nonlinear weight kernels and adaptive filtering windows for
PolSAR image despeckling. The PNGF consists of two main
steps: 1) in the first step, a guidance image with a relatively
low level of speckle is constructed by a local weighted
average using the statistical trait of the speckled data and
2) in the second step, the final output image is obtained
with the aid of the fully polarimetric traits from both the
guidance image and the speckled image. Experiments con-
ducted on both simulated and real PoISAR data sets confirm
the promising performance of the proposed method, both in
reducing speckle and retaining image details. In addition,

the low computational complexity is another strength of
the proposed method when compared with some of the
nonlocal patch based or globally collaborative despeckling
algorithms.
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