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Abstract—Pan-sharpening is a fundamental and significant task
in the field of remote sensing imagery processing, in which high-
resolution spatial details from panchromatic images are employed
to enhance the spatial resolution of multispectral (MS) images.
As the transformation from low spatial resolution MS image to
high-resolution MS image is complex and highly nonlinear, in-
spired by the powerful representation for nonlinear relationships
of deep neural networks, we introduce multiscale feature extrac-
tion and residual learning into the basic convolutional neural
network (CNN) architecture and propose the multiscale and mul-
tidepth CNN for the pan-sharpening of remote sensing imagery.
Both the quantitative assessment results and the visual assess-
ment confirm that the proposed network yields high-resolution MS
images that are superior to the images produced by the compared
state-of-the-art methods.

Index Terms—Convolutional neural network (CNN), multiscale
feature learning, pan-sharpening, remote sensing.

1. INTRODUCTION

N REMOTE sensing images, panchromatic (PAN) images
have a very high spatial resolution with the cost of lacking
spectral band diversities. Multi-spectral (MS) images contain
rich spectral information, but the levels of their resolution are

Manuscript received July 22, 2017; revised September 29, 2017 and Novem-
ber 23, 2017; accepted January 8, 2018. This work was supported in part by
the National Key Research and Development Program of China under Grant
2016YFB0501403, in part by the National Natural Science Foundation of China
under Grant 41431175, in part by the Fundamental Research Funds for the Cen-
tral Universities under Grant 2042017kf0180, and in part by the Natural Science
Foundation of Hubei Province under Grant ZRMS201600024 1. (Corresponding
author: Huanfeng Shen.)

Q. Yuan is with the School of Geodesy and Geomatics and the Collabora-
tive Innovation Center of Geospatial Technology, Wuhan University, Wuhan
430079, China (e-mail: yqiang86 @ gmail.com).

Y. Wei is with the State Key Laboratory of Information Engineering in Survey-
ing, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
(e-mail: ycwei@whu.edu.cn).

X. Meng is with the Electrical Engineering and Computer Science, Ningbo
University, Ningbo 315211, China (e-mail: mengxiangchao@nbu.edu.cn).

H. Shen is with the School of Resource and Environmental Science and the
Collaborative Innovation Center of Geospatial Technology, Wuhan University,
‘Wuhan 430079, China (e-mail: shenhf@whu.edu.cn).

L. Zhang is with the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing and the Collaborative Innovation
Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
(e-mail: zIp62 @whu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2018.2794888

times lower than that of PAN images. However, due to the
technical limitations of sensors and other factors, remote sensing
images with both high spatial and spectral resolutions, which
are highly desirable in many remote sensing applications, are
currently unavailable. Therefore, researchers have made efforts
to fuse PAN images with MS images to produce an image with
both high spatial and spectral resolutions, which is a process
that is also called “pan-sharpening.”

To date, a variety of pan-sharpening methods have been pro-
posed, and most of them can be divided into three major cate-
gories:

A. Component Substitution (CS) Based Methods

This type of method traditionally transforms the MS image
into a suitable domain. The specific component representing the
spatial information of the MS image is then replaced by the PAN
image, and inverse transformation is performed to reconstruct
the fused image. Examples of CS-based methods are the typical
intensity-hue-saturation fusion methods [1], [2], the principal
component analysis fusion method [3], the Gram—Schmidt (GS)
fusion method [4], and adaptive component-substitution-based
satellite image fusion using partial replacement [5]. It should be
noted that, in this group of methods, analysis of the correlation
between the replaced MS component and the PAN image has a
great influence on the fusion result.

B. Multiresolution Analysis (MRA) Based Methods

Compared with the traditional CS-based methods, the MRA-
based methods generally have better spectral information preser-
vation. In general, this type of method first extract the spatial
structures from the PAN image by wavelet transform, Laplacian
pyramid, etc., and then the extracted spatial structure informa-
tion is injected into the up-sampled MS images to obtain the
fused image. Examples of this type of method are the fusion
methods based on wavelet transform [6] or curvelet transform
[7], the analysis of modulation transfer function (MTF) [8],
[9], and the smoothing filter based intensity modulation (SFIM)
method [10]. A combination of CS and MRA has also been re-
cently proposed to enhance the spatial-spectral unified fidelity
of fused images [11]. However, these types of methods gener-
ally produce spatial distortion, and there is a strict requirement
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for accurate coregistration between the PAN and up-sampled
MS images.

C. Optimization-Based (OB) Approaches

These types of methods are based on the image observation
models and regard the solution of the fused image as an ill-posed
inverse problem. Generally, the fusion images can be solved by
minimizing a loss function with the prior constraints, such as the
minimum mean square error based band-dependent spatial detail
model [12], nonlocal optimization based on k-means clustering
algorithm [13], Bayesian posterior probability [14], adaptive
regularization based on normalized Gaussian distribution [15],
total variation operators [16], [17], and sparse reconstruction
based fusion methods [18]. Recently, another group of opti-
mization based approaches using the advanced deep learning
models are also proposed, which will be specifically introduced
in the following.

Although a variety of pan-sharpening methods have been pro-
posed, the disadvantages of these three major types of methods
are hard to ignore. In the CS- and MRA-based fusion methods,
the transformation from observed images to fusion targets is not
rigorously modeled and distortion in the spectral domain is very
common. In the results of the MBO-based methods, the spectral
distortion can be reduced by better modeling of the transforma-
tion, and a much higher accuracy can be produced, but the linear
simulation from the observed and fusion image is still a limita-
tion, especially when the spectral coverages of the PAN and MS
images do not fully overlap and lead to the fusion process being
highly nonlinear. Furthermore, in the MBO-based methods, the
design of the optimal fusion energy function is heavily reliant on
prior knowledge, and on images with different distributions and
quality degeneration, these models are not robust. Furthermore,
solving the regularization models generally requires iterative
computing, which is time-consuming and may cause incidental
errors, especially for the images with a large size.

To overcome those shortcomings, advanced algorithms have
been introduced in recent years, and among them, the deep learn-
ing models are some of the most promising approaches. Deep
learning models are built with multiple transforming layers, and
in each layer, its input is linearly filtered to produce an output,
and multiple layers are stacked to form a total transformation
with high nonlinearity. The most outstanding advantage of the
deep learning models is that all the parameters included in the
model can be updated under the supervision of training sam-
ples, and thus the requirement for prior knowledge is reduced
and much higher fitting accuracies can be expected.

For both natural images and remote sensing images, in the
field of most low-level vision tasks, e.g., image denoising, de-
blurring, superresolution, inpainting, etc. [23]-[31], deep learn-
ing based methods have achieved state-of-the-art accuracies in
recent years, and their performances are continuously being
improved. However, in the field of pan-sharpening, only lim-
ited studies have been undertaken in recent years to introduce
deep learning models. Examples are the sparse deep neural net-
work [32] and the pan-sharpening neural network (PNN) [33],
the latter of which has achieved impressive performance gains.

However, as the design of the PNN is completely borrowed from
the superresolution CNN (SRCNN) proposed in [22], which is
considered a relatively simple and shallow architecture when
compared with its later derivations [23], [27], [28], [30], there
is still plenty of room for improvement. To exploit the advan-
tages of deep learning and overcome the shortcomings of the
current methods, we propose an original network that is specif-
ically designed for the pan-sharpening task, while it can also be
generalized for other types of image restoration problems. The
framework consists of a PNN and a deeper multiscale neural net-
work. The former network performs simple feature extraction,
while the latter network contains multiscale feature extraction
layers and builds a deep architecture. We believe that as the
scale of features greatly varies among different ground objects
from multiple sensors, introducing multiscale feature extraction
can help to learn more robust convolutional filters, and thus the
fusion accuracy can be advanced from the current state-of-the-
art level. This assumption is fully supported by the experimental
results, which are described in Section IV.

The rest of this paper is organized as follows. The back-
ground knowledge to pan-sharpening and the related deep learn-
ing works are introduced in Section II. The detailed architec-
ture of the proposed multiscale and multidepth convolutional
neural network (MSDCNN) is described in Section III. The re-
sults of the pan-sharpening accuracy assessment are presented in
Section IV. Finally, a discussion and the conclusion are given
in Section V.

1I. BACKGROUND
A. Pan-Sharpening Based on Linear Models

Assuming that the low-resolution MS image is considered
as a degraded observation gngs, then the PAN image gpan
that matches gngs is included to guide the prediction process
of the high-resolution spatial details in the ground truth fyrs.
The main aim of the pan-sharpening task is to preserve the
unified spatial-spectral fidelity for the fused image. For a low-
resolution MS image gnrs with S spectral bands, we denote the
pan-sharpened result as F'y;g, which is an estimation of fyg,
and then the constraint function of the MS image pan-sharpening
can be formed as

s
. 2
arg min E | Fvs) — Fusolls (1)
Fvs o
where F'yps is obtained from a fusion function

Fyis = P(gums, gpAN) 2)

In (2), P(.) represents the pan-sharpening process. In the tra-
ditional MBO approaches, both gnrs and gpa v are considered
as degraded observations of fyg in relative domains, and the
fusion process is simulated under a linear framework as

gms DH fwms Nwus
= + 3)

gPAN Rfwms Npan
where D is a down-sampling matrix in the spatial domain,
and similarly, R is the spectral response matrix of the PAN
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Fig. 1.

channel of the sensor, which down-samples the latent ground
truth along the spectrum. H is a blurring matrix, while Nprg
and Npan are the additive noise, which is assumed to be
Gaussian distributed. Therefore, (2) is linearly fitted by solving
an optimization function as

argmin{i, | DH Fys — ng||§3 + X2 |RFMs — gpANHQP

Fus

+a3p(Fus)} 4)
in which A, (i = 1, 2, 3) represents the weights that control the
contributions of the fidelity items and the constraint operator
@(FMms ), the latter of which is based on reasonable assumptions
and prior knowledge to reduce the ill-posed property of the
problem.

However, it should be noted that in the pan-sharpening pro-
cess, the bandwidths of the PAN and MS images are not guar-
anteed to fully overlap. For example, the MS bandwidth of
WorldView-2 ranges from 400 to 1040 nm and is divided into
eight bands, and its PAN bandwidth covers 450-800 nm. Thus,
if we keep simulating the transformation P(.) from a linear per-
spective, as in (4), it is difficult to merge the down-sampled spec-
tra of the PAN images into the spectra of the MS images while
preserving the fidelity of the latter. The drawbacks of such linear
models can be explained as follows. First, a satisfactory accu-
racy can rarely be achieved when linear functions are employed
to fit complex transformations, especially for ill-posed inverse
problems. Second, prior knowledge that has been artificially in-
troduced into the problem, e.g., the design of ¢ (F'\s), is not
guaranteed to be suitable for general tasks and may increase
the system error. Furthermore, for images of many complex cir-
cumstances and from different sensors, the value of A; needs
to be empirically chosen and lacks a robust solution. Thus, the
abilities of the linear optimization models are somewhat limited.

To overcome the drawbacks of the linear models, a nonlinear
function is needed to fit the fusion process, which requires us to
employ a different point of view to investigate the correlation

Coarse structures f]o“-[req:

Visual correlation between a low-resolution MS image, a PAN image,

Shared

Texture details f highfreq*

Shared

and a high-resolution MS image.

among gms, gpan, and fyrs. Therefore, the idea of deep
learning is adopted, and is introduced in the next subsection.

B. Deep Learning for Pan-Sharpening

As illustrated in Fig. 1, for the texture details contained in
gpAN, we regard them as high-frequency components of furs,
and the coarse spatial structures of G\jg are regarded as low-
frequency components. Thus, we can employ a filtering function
to extract the features fiowfreq and frighfreq, and merge them
to yield the high-resolution estimation F'ysg.

How do we obtain a set of filters that can accurately extract
complex features from various ground scenes, without causing
spectral distortion? The recently developed deep learning ap-
proach is one of the most advanced answers to this problem.
In the different deep learning networks, convolutional neural
networks (CNNs) are a branch of the deep learning models that
has impressively swept the field of computer vision and im-
age processing in recent years. In this paper, it is introduced
as a prototype of our proposed methodology. Compared with
the traditional hand-crafted extractors for features, the superior-
ity of CNNs can be explained with two concepts—"“deep” and
“learning”—which are explained in the following.

Deep: The architectures of CNNs are formed by stacking
multiple convolutional layers. Although each of these layers
functions as a linear filtering process, a whole network is
able to fit a very complex nonlinear transformation that maps
{Gwms,gpan} to fus. The nonlinearity and fitting ability of
CNNss are not limited to a certain level, as the depth of the net-
work can be infinitely expanded along the direction in which
the layers are stacked.

Learning: To extract features from Gys and gpan, the fil-
tering process in every convolutional layer of a CNN is executed
using convolutional kernels. With the supervision of fyig as a
target, the network iteratively updates all the kernels to seek an
optimal allocation, and thus it is defined as a “learning” process.
When the loss between fys and Fyg reaches a satisfactory
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Fig. 2. Flowchart of basic CNN-based pan-sharpening.
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Fig. 3. Flowchart of passing the input MS image through MSDCNN to yield a fused result.

convergence, the learning of the network is finished and an ac-
curate end-to-end function is obtained for the pan-sharpening.
The flowchart of training a deep CNN on a training dataset is
shown in Fig. 2.

Pan-sharpening with a basic CNN: As mentioned above,
Gis and gpa are fed into a CNN to directly yield a fused im-
age F'\is. In the network, the input images are passed through
L layers, and the filtering process executed in the nth layer can
be described as

&)

where F',, is the output of the nth layer. Thus, the fusion process
can be described as follows:

Fn = Pn(Fn—l)

Fy=G ={Gums.,gpan},Size : H x W x (S+1) (6)

F,=P,(F,1)=ReLUW,oF,_1+b,),
Size : HxW xCy,,n=1,...,L—1

Fas = F, =W, oF +b;,Size : Hx W x S

@)
®)

where o represents three-dimensional convolution, which is the
feature extractor in P, (F,_1), and W, contains C,, groups
of convolutional kernels, where the size of each group is h,, x
w, x C,_1,and b, is a bias vector with the sizeof 1 x 1 x C),.
Thus, for the nth layer, C,, represents the spectral dimensionality
of its output and can be artificially set. The rectified linear unit

(ReLU) is used to introduce nonlinearity in the function

ReLU (z) = max(z,0). )

III. PROPOSED NETWORK: MSDCNN

Based on the basic architecture of a CNN with three con-
volutional layers for pan-sharpening, as previously mentioned,
we introduce two concepts to improve the architecture of the
network: the multi-scale feature extraction block and skip con-
nection. The proposed MSDCNN contains two subnetworks: A
fundamental three-layer CNN with the same architecture as in
[22] and [33], and a deeper CNN with two multiscale convo-
lutional layer blocks. The whole architecture of MSDCNN is
displayed in Fig. 3.

A. Multiscale Feature Extraction Block

As mentioned before, the coarse structures and texture details
are the features that need to be extracted from ground objects and
scenes. In remote sensing imagery with a meter- or submeter-
level spatial resolution, the sizes of the ground objects vary from
very small neighborhoods to large regions containing thousands
of pixels, and a ground scene may cover many objects with
various sizes. From the feature maps displayed in Fig. 4, it
is indicated that the features with a smaller scale, such as the
short edges of buildings and the textures of vegetation, tend to
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Fig. 4. Feature maps extracted by convolutional filters with three different
sizes, which are selected from the first layer of a trained MSDCNN model.
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Fig. 5. Difference between a basic convolutional layer and a layer for mul-
tiscale feature extraction, where C stands for concatenating images along the
spectral dimension. (a) Basic convolutional layer. (b) Convolutional layer for
multiscale feature extraction.

respond to convolutional filters with a smaller size, while the
coarse structures tend to be extracted by larger filters.

To make adequate use of the rich spatial information in
high-resolution imagery and improve the robustness of the fea-
ture extraction among various and complex ground scenes,
we introduce the multiscale convolutional layer block, which
was applied to image superresolution in [30] and classification
in [35].

As illustrated in Fig. 5, in the nth layer, three sizes are set
for the convolutional kernels contained in the multiscale layer
block: 3 x 3,5 x 5 and 7 x 7. For each size,N groups of ker-
nels are employed to produce N feature maps, and they are
concatenated along the spectral dimension to form the output.

B. Skip Connection

As discussed in Section II-B, in CNNs, stacking more layers
can lead to higher nonlinearity and can help to fit complex
transformations more accurately. Visualized feature maps show
that when an image is passed through a deeper network, the
features extracted from it can be more abstract and representative

3".;" N Conv
5"5* N Conv .
TX * VCom

Fif

Size:HxW*(N*3)

‘Fn-l.
Size:Hx* ¥ (_‘VXS)

Fig. 6. Complete architecture of the proposed multiscale convolutional layer
block with a short-distance skip connection.

[36], [37]. However, there is a significant problem in that in the
training process of a deep CNN, the gradients of the loss to the
network parameters are severely diminished during the back-
propagation from output to input. Thus, in layers that are close
to the input, updating of the convolutional kernels and bias
vectors becomes too slow to reach the optimal allocation of all
parameters.

In [22] and [33], it was indicated that for the fundamental
architecture of a CNN, L = 3 is an upper limit to the depth
of the network, and adding more layers can no longer boost
the accuracy performance, while the increase in training time
also becomes unacceptable. To deal with the problem, resid-
ual learning [38] is now considered to be one of the most ef-
fective solutions for training deep CNNs, in which the con-
volutional filtering process F',, = P, (F,,_1) is replaced with
F,=F, +P,(F,_1), and thus the residual F,, — F,
becomes the target of the prediction. This simple and effec-
tive architecture is called a “skip connection.” It is assumed
that the distribution of features in the residual image is very
sparse and most of the pixel values are close to zero. Thus, the
loss-parameters surface of a residual learning function becomes
much smoother than the surface of a regular CNN, and the dis-
tances from the local minimum points to the optical minimum
are shortened.

In [27], an end-to-end skip connection F' = G + P(G) was
designed to train a very deep CNN for image superresolution,
aiming to use the whole network to directly predict the residual
image f—G from the input low-resolution image G. However,
for the pan-sharpening task, the end-to-end architecture is not
suitable due to the different sizes of G = {Gms, gpan } (size:
HxW x (S41))and frms(size: H x W x S). Thus, in the
proposed network, a connection that only skips one layer is set
for the block, as illustrated in Fig. 6.

C. Joint Learning for MSDCNN

As described in Fig. 3, the images output from the two sub-
networks of MSDCNN are summed for a final estimation

- C:’-\INshallow (Ga {Wshallow ) bshallow })
+ CNNdeep (G, {Wdeepa bdeep})

where all the parameters contained in MSDCNN are jointly
learned

(10)

argmmz HfMS (MSD(G, W, b)) E (11)
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TABLE I

DETAILS OF THE THREE DATASETS USED IN THE TRAINING AND TESTING

Sensor MS bands ~ Scenes Covered regions Training Simulated Real-data
experiments experiments
QuickBird 4 4 Nanchang, China Patches: 51648 Patches: 160 Not included
(for training) Input size: Input size:
Shenzhen, China 41 x 41 x5 250 x 250 x 5
(for training) Output size: Output size:
Wuhan, China 41 x 41 x 4 250 x 250 x 4
(for testing)
Yichang, China
(for testing)
IKONOS 4 7 ‘Wuhan, China Not included Not included Patches: 112
(all for testing) Input size:
400 x 400 x 5
Output size:
400 x 400 x 4
WorldView-2 8 4 San Francisco, Patches: 59840 Patches: 80 Patches: 28
United States Input size: Input size: Input size:
(two scenes for training, 41 x 41 x9 250 x 250 x 9 800 x 800 x 9
two scenes for testing) Output size: Output size: Output size:
41 x 41 x 8 250 x 250 x 8 800 x 800 x 8

To iteratively learn the optimal allocation of {W, b}, we let
{W' b'} represent the values of {W b} in the tth iteration
after random initialization, and F'}; 4 stands for the output from
{W' b'}. The current loss is then

12)

s
t t
Loss' =Y~ HfMS“) ~ Fius ’2
i=1
By computing the derivatives of LOSS! to {W' b'}, the
gradients are obtained as

OLOSS! ({W,b};G) ‘
d

W=W' b=b

{ow',éb'} = (13)

OLOSS' ({W,b};Q)

ob ’W:W?,b:bt

Stochastic gradient descent (SGD) is also applied as an ef-
fective way to accelerate the training process. Instead of com-
puting the gradient for a single image, a batch of input images
{G1,...,GBatchsize } are fed into the network in the ¢th itera-
tion to yield multiple outputs { Fy;g ;.. ., Fisg, .., ..+ andan
average loss is defined as

atchsize S 9

B
, 1 t
LOSS = m ; Z H.fMSb(i) - FMSb(i)

i=1

‘2'
(14)

An input image is then randomly picked from {G,...,
GBatchsize ; and used as G in (10) for computing the gradi-
ents. With {dW', 6b' } known, {W' b’} can be updated using
a classic momentum (CM) algorithm [39]. We let @ = {W, b}
represent all the parameters in the network, and then the updat-
ing of @ as follows:

A = - ABY 2. 50t
0t+1 — et +A9t

5)
(16)

where p is the momentum and € is the learning rate. During
the training process, gradient clipping is also necessary to avoid

gradient explosion. In each iteration, a summed L2-norm of all
the gradients is limited, which means that §W' and b’ are
clipped as

') W 5bt
clivped | JlgW |3 /0.17 |80t 3 /0.1

(W, (17)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Settings

1) Datasets: To simulate the fusion transformation, origi-
nal MS images with different numbers of spectral bands from
QuickBird and WorldView-2 sensors were used as the ground
truth fyrs, and we then down-sampled fyig and used bicubic
interpolation to obtain the low-resolution MS image Gys. The
PAN image was also down-sampled as gpan, and thus the ra-
tios of the scales among G'\is, gpan, and fag were kept the
same to the real situation.

For training and simulated testing of the proposed MSD-
CNN, we collected two large datasets from QuickBird and
WorldView-2 images, which were divided into smaller patches
to separately train two networks with different numbers of input
bands. Details of the datasets used in the experiments are listed
in Table I. It should be noted that the number of quantitatively
tested samples included in our datasets (two datasets for the
quantitative assessment, 240 images in total, with a spatial size
of 250 x 250) was much larger than in the referenced papers; for
instance, in [19], three datasets and three images with a spatial
size of 600 x 600 were used, and in [33], three datasets and
150 images with a spatial size of 320 x 320 were considered.

For the real-data experiments, another smaller dataset was
collected from a group of IKONOS images to test the network,
and the network was tested on the WorldView-2 dataset with
eight bands. The 112 patches in the real-data experiment for
images with four bands were collected by fully segmenting the
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TABLE II
NUMERIC ASSESSMENT OF THE SIMULATED QUICKBIRD IMAGE
PAN-SHARPENING

TABLE III
NUMERIC ASSESSMENT OF THE SIMULATED WORLDVIEW-2 IMAGE
PAN-SHARPENING

Bands Algorithm PSNR Q ERGAS SAM Q4 Bands Algorithm PSNR Q ERGAS  SAM Q8
(M M (@) (@) M M M (@) () M
4 GS [4] 34.0907 0.8305 4.5014  4.0227 0.6831 8 GS [4] 33.6506 0.8606  4.8395  6.1412 0.5781
PRACS [5] 359282  0.8397  3.7501 3.5646  0.6138 PRACS [5] 3577979 0.8631  4.5579  6.2920  0.6849
MTF-GLP [8] 34.3894  0.8227  4.4409  3.7893  0.6803 MTF-GLP [8] 34.8187 0.8788  4.3748  5.7698  0.6324
SFIM [10] 344410 0.8264  5.1491 3.7708  0.6818 SFIM [10] 34.8078 0.8756  4.3230  5.7579  0.6284
AWLP [42] 342055 0.8314  4.0463  3.6587  0.6466 AWLP [42] 35.0906 0.8769  4.4214 59263 0.6870
TSSC [19] 353860 0.8488 39773  3.7154  0.7039 TSSC [19] 36.7291  0.8951 39735  5.8269  0.6941
PNN [33] 38.5201  0.9206 27110  2.6405 0.7569 PNN [33] 37.7634 09389  3.0695  4.4757 0.7697
MSDCNN 39.2674 09303  2.5408  2.4605  0.7924 MSDCNN 38.1045 09570 29331  4.2483  0.7740

seven scenes of IKONOS images, while the 28 patches in the
real-data experiment for images with eight bands were selected
from the two test scenes of WorldView-2 images, covering re-
gions of impervious surfaces, water bodies, and urban vegeta-
tion.

2) Model Implementation: For each dataset, MSDCNN
was trained for 300 epochs (about 250 000 iterations), and
the batch size was set to 64. To apply CM with SGD, = 0.9
and € = 0.1 were used as the default settings. With the Caffe
[40] deep learning framework supported by a GPU (NVIDIA
Quadro M4000) and CUDA 7.5, the training process for each
model cost roughly 8 h.

Testing of all the convolutional networks was performed with
the support of MatConvNet [41] on a Dell Tower 7810 worksta-
tion with an Intel CPU (Xeon E5-2620 v3 @ 2.40 GHz).

3) Compared Algorithms: For the numeric and visual as-
sessment, seven traditional and state-of-the-art algorithms were
used, representing different branches of pan-sharpening meth-
ods: GS [4] and partial replacement adaptive component sub-
stitution (PRACS) [5] belonging to CS; the MTF-based gen-
eralized Laplacian pyramid (MTF-GLP) [8], SFIM [10], and
additive wavelet luminance proportion (AWLP) [42] belonging
to multiresolution analysis; two-step sparse coding (TSSC) [19]
based on regularization constraint model; and in the deep learn-
ing field, the PNN [33] based on a basic CNN containing three
layers was considered as the main competitor to the proposed
MSDCNN. We are thankful to Vivone er al. [43] for provid-
ing the toolbox that helped us to implement five of the seven
referenced algorithms, except TSSC and PNN.

B. Simulated Experiments

In these experiments, the PAN and MS images were down-
sampled to simulate the low-resolution input gys and gpanN,
while the original MS images were employed as the ground
truth fars to assess the qualities of the pan-sharpened results.
Five numeric metrics were applied to quantify the qualities of the
pan-sharpened images from the simulated experiments: the peak
signal-to-noise ratio (PSNR) [44], the universal image quality
metric (Q) [45], the Erreur Relative Globale Adimensionnelle de
Synthese (ERGAS) [46], the spectral angle mapper (SAM) [47],
and Q2": An expanded version of Q that adds spectral fidelity
into consideration [48]. The results of the simulated experiments
are listed in Tables II and II1, and in each comparison group, the
best performance is marked in bold.

From the numeric assessment results listed previously, the su-
periority of the two CNN-based algorithms compared with the
traditional methods is clear, as under all the full-reference met-
rics, the performances of PNN and MSDCNN are far ahead of
the other algorithms, while the lead status is held by MSDCNN.
For the 240 tested image patches containing various ground
objects, the impressive performance gains of the proposed net-
work helps us to confirm that the multiscale convolutional layer
blocks significantly contribute to improving the robustness of
the feature extraction and merging in all the bands along the
spectral dimension.

As numeric metrics are applied to assess the quality of fused
images from a quantifiable perspective, careful visual inspec-
tion is also needed to identify artifacts and distortions that elude
the quantitative analysis. From the results of the simulated ex-
periments, two groups of images that typically highlight the
advantages and drawbacks of the various methods are selected
and displayed in Figs. 7-8. For the purpose of displaying true-
color images, the spectral bands covering the wavelengths of
red, blue, and green light are selected according to the MS band
division of the sensor, i.e., the 3rd, 2nd, and 1st bands of Quick-
Bird, and the 5th, 3rd, and 2nd bands of WorldView-2.

By comparing the images displayed in Figs. 7 and 8, it can
be seen that the results of the CNN-based methods are the most
similar to the ground truth, both in spatial detail and spectral
fidelity. For example, the vegetation areas in the lower-right of
the group of images listed in Fig. 7. In particular, the proposed
MSDCNN performs better than PNN [33] in preserving edges
and the spectral features of ground objects with very small sizes,
such as the concrete area in the middle-left of Fig. 7(h)—(i) and
the bare soil in the upper-middle of Fig. 8(h)—(i). In some of
the other six methods, while the spatial details are impressively
sharpened and highlighted, noticeable spectral distortion is also
apparent (GS [4], AWLP [42], MTF-GLP [8], and SFIM [10]). In
contrast, better colors are obtained in the results of PRACS [5],
but the restoration of spatial information is still not satisfactory.
Fig. 7(e) shows that for the QuickBird dataset, TSSC [19] is a
well-balanced solution, but when it came to the WorldView-2
dataset, there is still a gap between the performance of the sparse
representation based model and the proposed MSDCNN.

The comparisons strongly support our statement that for re-
mote sensing images with multiple sources that do not fully
overlap in the spectral domain, nonlinear models based on deep
learning are better able to handle the fusion task. It should also
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Fig. 7. Results of the simulated experiment on an area of industrial land, which was extracted from a QuickBird image of Yichang, China, obtained in 2015.
(a) Ground truth. (b) GS [4]. (c) PRACS [5]. (d) AWLP [42]. (e) TSSC [19]. (f) MTF-GLP [8]. (g) SFIM [10]. (h) PNN [33]. (i) MSDCNN.

Fig. 8. Results of the simulated experiment on an area of city vegetation, which was extracted from a WorldView-2 image of San Francisco, United States,
obtained in 2011. (a) Ground truth. (b) GS [4]. (c) PRACS [5]. (d) AWLP [42]. (e) TSSC [19]. (f) MTF-GLP [8]. (g) SFIM [10]. (h) PNN [33]. (i) MSDCNN.

TABLE IV be noted that compared with the related PAN image and some
NUMERIC ASSESSMENT OF REAL-DATA IKONOS AND WORLDVIEW-2 IMAGE f th h d fusi Its. the slichtly “bl 2
PAN-SHARPENING of the ovetr—s arpened fusion results, the slightly “blurry” ap-
pearance is also shared by the ground truth and the result of
MSDCNN, which indicates that instead of being constrained

IKONOS [ . . .
by artificially given priors, the proposed network is able to fit
Bands  Algorithm QNR (1) Dg () Di(l) various types of transformation.
4 GS [4] 0.7661 0.1753  0.0729
PRACS [5] 0.8451 0.1183  0.0445 _ ;
MTF-GLP[8] 07434  0.1580 0.1202 C. Real-Data Experiments
SFIM [10] 0.7526  0.1601  0.1068 Original MS and PAN images were also input into the models
AWLP [42] 0.7433 0.1634  0.1148 to vield full luti Its. Th f .
TSSC [19] 08587 00997  0.0497 o yield full-resolution results. There are nonreference numeric
PNN [33] 0.8606  0.0895  0.0555 metrics that can quantify the qualities of pan-sharpened images,
MSDCNN 0.8797  0.0774  0.0469 i.e., the quality with no-reference index (QNR) [49] and the
WorldView-2 spatial and spectral components of it (Dg and D; ). We employed
Bands Algorithm QNR(]) Dg(]) D;(]) the three metrics for the quantitative assessment of the real-data
8 GS [4] 0.8403 0.1264  0.0415 experiments, and the results are listed Table IV.
PRACS [5] 08916  0.0892  0.0224 However, considering that these metrics are computed with
MTEF-GLP [8]  0.8208 0.1108  0.0797 G d f . d of th inabl
SEIM [10] 0.8380 0.1073  0.0645 Ms and gpanN as references, instead ot the unatFalna €
AWLP [42] 0.8458 0.0991  0.0635 ground truth, we should note that what can be quantified by
TSSC [19] 0.8425  0.1037  0.0617 such metrics is the similarity of certain components in the
PNN [33] 0.8725 0.0826  0.0538 fused i he 1 luti b . b h
MSDCNN 08893  0.0779 00390 used images to the low-resolution observations, but not the

real fidelity at the level of high resolution. The comparisons in
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Fig. 9.

Results of the real-data experiment on an area of industrial land, which was extracted from an IKONOS image of Wuhan, China. (a) Bicubic. (b) GS [4].

(c) PRACS [5]. (d) AWLP [42]. (e) TSSC [19]. (f) MTF-GLP [8]. (g) SFIM [10]. (h) PNN [33]. (i) MSDCNN.

Fig. 10.

Results of the real-data experiment on an area of impervious surface, which was extracted from a WorldView-2 image of San Francisco, United States,

obtained in 2011. (a) Bicubic. (b) GS [4]. (c) PRACS [5]. (d) AWLP [42]. (e) TSSC [19]. (f) MTF-GLP [8]. (g) SFIM [10]. (h) PNN [33]. (i) MSDCNN.

Table IV also support our assumption, as the results of PRACS
[5] are very similar to the related low-resolution MS images and
barely sharpened in the spatial domain, but by the similarity,
they achieved very high D, values and jointly improved their
QNR index to a state-of-the-art level.

Thus, in the following discussion, the real-data experiments
are mainly discussed based on the visual inspection, instead of
the three numeric metrics. Three ground regions were selected
from the pan-sharpened full-resolution images to be investi-
gated, as displayed in Figs. 9-11.

By comparing the images displayed in Fig. 9, we can observe
a tendency that is similar to the story told by the previous simu-
lated experiments: MSDCNN and PNN [33] return images with
the best spectral fidelity and appropriately sharpened spatial de-
tails, while the proposed network performs slightly better in
preserving details with small sizes. Among the other compared
methods, TSSC [19] remains competitive in the real-data exper-
iments, which is supported by the high quality of Fig. 9(e) and
its high similarity to the related image obtained by MSDCNN in
Fig. 9(i). However, when it comes to the WorldView-2 dataset,
as shown in Figs. 10(e) and 11(e), the performance of TSSC
becomes less robust, while MSDCNN is still able to avoid in-
troducing ringing artifacts from the up-sampled MS images and

prevents spectral distortion, for example, the impressive quality
of Fig. 11(i) shows that, though the MS image in Fig. 11(a)
is severely corrupted after interpolation, our proposed network
still performed a good fusion with the guidance from its related
PAN image.

D. Further Discussion

In this subsection, the default settings of MSDCNN used in
the experiments are compared with the alternatives. The per-
formance of the network with different settings was tested by
simulated experiments on the QuickBird dataset containing 160
images and assessed with the full-reference Q and ERGAS met-
rics.

1) Setting Hyper-Parameters for Training MSDCNN: As
mentioned above, the momentum and learning rate are ini-
tialized as ;= 0.9 and € = 0.1, and for every 60 epochs, ¢
is multiplied by v = 0.5, while p is fixed as 0.9. From the
performance-to-epoch curves in Fig. 12, we can see that the
residual learning architecture of MSDCNN helps the network
to quickly reach state-of-the-art accuracy within about 50 train-
ing epochs, while the ceiling of its performance is still far away.
Although the curves in Fig. 12 indicate that the default settings
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Fig. 11.

Results of the real-data experiment on an area of urban vegetation, which was extracted from a WorldView-2 image of San Francisco, United States,

obtained in 2011. (a) Bicubic. (b) GS [4]. (¢) PRACS [5]. (d) AWLP [42]. (¢) TSSC [19]. (f) MTE-GLP [8]. (g) SFIM [10]. (h) PNN [33]. (i) MSDCNN.
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Fig. 13.  Average Q and ERGAS of MSDCNN with different values of .

work well, we tried another two settings for the learning rate  to
confirm our understanding of the learning process. The results
of the comparison are shown in Fig. 13.

Fig. 13 helps us to confirm that the default setting of v = 0.51s
a balanced decision between error decrease in the early training
epochs and relatively smooth convergence in the later stages.
Meanwhile, setting an appropriately low value for -y can lead to
earlier convergence, but when -y is too small, the opportunity of
breaking out of local minima may be lost.

2) Connection Architecture of the Multiscale Convolutional
Layer Blocks: Inthe default architecture of MSDCNN, there is a
flat convolutional layer between two multiscale blocks to reduce
the spectral dimension from 60 to 30. To confirm its validity, two
different architectures were compared, and their connections
are illustrated in Fig. 14. In Block 2, two multiscale layers are
contained in each block. In Block 3, a further skip connection
is used, as in [27], and thus the spectral dimensionality is kept
until the image is fed into the last layer.

By comparing the curves shown in Fig. 15, we can confirm
that reducing the spectral dimensionality is necessary for the
task, as the effect of using Block 3 without the reduction layer
appears to be negative. From the comparison between Block 1

’_ﬁ
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Fig. 14. Block 1 is the architecture used in all the experiments undertaken in
this study. (a) Block 1. (b) Block 2. (c) Block 3.

ERGAS

Epoch

Fig. 15.  Average Q and ERGAS of MSDCNN with different values of + on
the QuickBird dataset.

and Block 2, we can observe that the deeper architecture needs
more training epochs to reach a convergence region with a
slightly higher accuracy, but such limited improvement is still
far away from our expectation, and we assume that the net-
work formed by Block 2 is not deep enough to fully develop
the advantages of residual learning. Possible ways to reduce the
training time cost will be studied in our future work.

V. CONCLUSION

In this paper, we have proposed a new CNN architecture
for remote sensing imagery pan-sharpening. The main inno-
vations in the model are the concepts of multiscale extraction,
multidepth sharing, and merging of features from the spatial
domain of the MS and PAN images. Compared with many of the
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traditional and state-of-the-art pan-sharpening algorithms, the
results of experiments undertaken on different datasets
strongly indicate that the proposed MSDCNN is able to yield
high-quality images with the best quantitative fidelity and
appropriate sharpness.

In our future work, as the art of designing CNNs has not yet
been fully explained from an analytical perspective instead of
empirical ideas, there is still scope for the architecture of the
proposed network to be optimized. Furthermore, our current
feature learning strategies also require much study to trans-
fer the obtained knowledge to some extended fields of remote
sensing image fusion, quality improvement, and interpretation
tasks, such as spatial-temporal unified fusion [50], hyperspec-
tral image denoising [51], [52], aerial scene classification [53],
[54], and target detection [55]. Furthermore, we also expect
to develop advanced techniques of network compression and
training data generalization, which helps to effectively process
routine tasks on an application level.
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