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A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established
by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates
DEM generation from contours. Since contours are usually sparsely distributed and closely related in
space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial
information, another lower spatial resolution DEM from the same geographical area is introduced. In this
way, the sparse representation implements the spatial constraints in the contours and extracts the com-
plementary information from the auxiliary DEM. Furthermore, the proposed method integrates the
advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging
and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is
demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model
(GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that
the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be success-
fully used for DEM generation from contours.
© 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction

A DIGITAL elevation model (DEM) is an array representation of
squared cells (pixels), with an elevation value associated with each
pixel (Arun, 2013; Rishikeshan et al., 2014). It represents three-
dimensional information of the Earth’s surface. Additionally, DEM
can also be represented by other forms, such as triangulated irreg-
ular network (TIN) and contour maps (Shan and Aparajithan, 2005;
Ma, 2005), etc. It is well known that DEMs can help to provide solu-
tions to the theoretical and application-related problems in geo-
sciences. For example, DEMs play an important role in
hydrological modeling (Hopkinson et al., 2009; Le Coz et al,
2009; Li et al., 2017), geological studies (Yang et al., 2011;
Ricchetti, 2001), disaster analysis (Demirkesen et al., 2007; Tsai
et al., 2010), agriculture applications (Tijskens et al., 2003;
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Bishop and McBratney, 2002), and so on. There are a wide variety
of DEM products, and the typical representative examples include
the Shuttle Radar Topography Mission (SRTM) digital elevation
data and the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) global digital elevation model (GDEM).
SRTM successfully covers over 80% of the Earth’s land surface
between 60°N and 56°S with data points posted every 1 arc-
second (~30 meters) or 3 arc-second (~90 meters). The ASTER
GDEM covers more than 99% of land surfaces between 83°N and
83°S and is composed of 22,600 1°-by-1° tiles with a 1 arc-
second (30 m) grid of elevation postings. The early DEM generation
involved digitizing topographic maps, which has subsequently
been accompanied with some other approaches, such as automatic
matching of aerial photography, synthetic aperture radar (SAR)
interferometry, and laser scanning (Oky et al., 2002; Yue et al,,
2015). In other words, the generation of DEMs generally involves
data from different sources: contours, photogrammetric data, and
field data (Taud et al., 1999). Compared to the other two kinds of
data, contours are a cheap data source because, in most countries,
they cover the whole area in different scales (Oky et al., 2002).
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As a result, DEM generation with various data sources has
attracted a lot of attention in the research community (Zhou and
Zhu, 2013; Shen et al., 2016). According to Taud et al. (1999), the
main methods can be classified into two groups: analytic function
based methods and direct summation based methods. As far as the
analytic function based methods are concerned, the key is to deter-
mine the parameters of an assumed parametric surface, and then
the height of a given location is evaluated by this function. The rep-
resentative methods include high-accuracy surface modeling
(HASM) Yue et al., 2010 and the parallel projection model (Habib
et al., 2004). In contrast, the direct summation based methods do
not use a parametric surface, but the estimated elevation is
obtained by the known points within the range of influence. This
group of methods mainly consists of the various kinds of interpo-
lation methods based on spatial autocorrelation, which means that
closer points are more related than farther ones (Tobler’s first law
of geography). The direct summation based methods include
inverse distance weighting (IDW) Lu and Wong, 2008, kriging
(Guo et al., 2010), spline interpolation (Soycan and Soycan,
2009), and the radial basis function (RBF) Hofierka et al., 2002.
As mentioned above, contours are an inexpensive data source, so
generating DEMs from contours is very popular in this field.

In fact, a contour is an isoline which represents a series of points
of equal elevation. Since contours have the inherent property of
consecutive equivalence and topological property, they can be con-
sidered as suitable feature lines to generate DEMs. According to the
interpretation of the contours, DEM generation from contours can
be classified into two types: point methods and line methods (Oky
et al., 2002). The point methods utilize the discrete vertices along
the contours to obtain the elevation of unknown grids, which is
based on the point characteristics. The two most popular methods
are the TIN based method and the minimum curvature method
(Oky et al., 2002). In this way, some interpolation methods, such
as IDW, kriging, and RBF, can also be used for generating DEMs
from contours. In order to calculate the elevation of the grid points,
the line methods use all the points along the contours and make
use of the line characteristics. For example, flow lines (Maunder,
1999), skeleton lines (Gold, 1999), and intermediate contours
(Taud et al., 1999; Takagi and Shibasaki, 1996; Gousie and
Franklin, 2003) can all be used to create a DEM. On the one hand,
morphological dilation and erosion operations can also be applied
in this process (Taud et al., 1999). On the other hand, the correlated
information of the contours can also be used for DEM generation.
For example, Ardiansyah and Yokoyama (Oky et al., 2002) pro-
posed to interpolate a DEM along the steepest slope perpendicular
to a contour. Nowadays, there are a number of tools available for
creating DEMs from contours, such as ANUDEM (Hutchinson,
1989), TAPES-G (Gallant and Wilson, 1996), and TOPOG (Vertessy
et al., 1994). All these methods can create DEMs from contours,
providing results that are generally satisfactory. As we know, con-
tours are generally distributed sparsely. In order to take this trait
into consideration, we propose to generate a DEM from contours
in the framework of sparse representation.

Sparse representation is a representation that accounts for most
or all of the information of a signal by a linear combination of only
a small number of elementary signals, called atoms (Li et al., 2015).
The redundancy of the signal, which means that the key informa-
tion in a signal distributes sparsely, lays a solid foundation for
the success of sparse representation. Since its appearance in the
1980s, sparse representation can provide a powerful information
processing capability, and has been applied in many different
fields, e.g., objection recognition (Wright et al., 2009; Agarwal
et al., 2004), classification (Zhong et al., 2014; Gui et al., 2014;
lIordache et al., 2012; Peng et al., 2015; Zhou et al., 2015), missing
information reconstruction (Shen et al., 2014, 2015; Li et al., 2014),
denoising (Li et al., 2016; Elad and Aharon, 2006), and information

fusion (Li et al., 2013; Calderbank et al., 2011). To the best of our
knowledge, there are very few methods that apply sparse repre-
sentation to generate DEMs. Since sparse representation has an
advantage for signal processing with a small amount of informa-
tion, we attempt here to bring sparse representation into the field
of DEM generation.

lordache et al. (2012) imposed a total variation (TV) regulariza-
tion constraint on hyperspectral unmixing, and the result was very
satisfactory. Inspired by their novel work, we propose the sparse
spatial regularization (SSR) method to generate a DEM from con-
tours. In order to obtain a better result, this method needs an aux-
iliary low spatial resolution (LR) DEM, which becomes the same
size as the high spatial resolution (HR) DEM (to be generated) by
upsampling. Because of the sparse and parallel distribution of the
contours, the spatial constraint may not be enough. On this
account, some random unknown elevation points are initially esti-
mated by ordinary kriging. To save time, only a very small number
of points from the contours are picked as sample points for kriging.
The contours with the interpolated points and the upsampled LR
DEM are then permutated using the “image interleaved by line”
(IIL) method proposed in our previous work (Li et al., 2016). Finally,
the proposed SSR is applied to generate the unknown elevation
points. In other words, the calculated elevation points are
extracted to form the HR DEM. Generally, a DEM can be repre-
sented as a raster-based regular grid or as a vector-based TIN. In
this paper, the focus is on raster-format DEM generation.

The rest of this paper is arranged as follows. Section 2 intro-
duces the proposed kriging and sparse spatial regularization (KSSR)
method for DEM generation. Section 3 describes the experiments
undertaken to assess the effectiveness of DEM generation by the
KSSR method. The parameters of KSSR are also analyzed, which is
followed by the corresponding conclusions in Section 4.

2. Kriging and sparse spatial regularization method

As we all know, contours are a cheap data source for DEM gen-
eration, which is where our basic interest lies. In consideration of
the sparse distribution of contours and the superiority of sparse
representation, we propose to generate a DEM from the contours
by the use of the proposed KSSR method. Fig. 1 shows the flow
chart of KSSR. The HR contours are partly and randomly interpo-
lated by kriging, and subsequently combined with the resampled
LR DEM to form a new DEM. A preliminary result is obtained by
nearest neighbor interpolation, which is extracted into patches
and reconstructed by SSR. In the following, the three main steps
of the proposed KSSR method are introduced. Firstly, the prepara-
tory processing measures are introduced, which contribute to the
construction of the model. Secondly, we focus on the SSR DEM gen-
eration model. Finally, the solution algorithm is described in detail.

2.1. Preparatory processing measures

As shown in Fig. 1, given a raster-format HR contour map
x; € RM>*M with M, representing the column size and N; repre-
senting the row size (the size includes the invalid elevation points),
and a raster-format LR DEM x, € R™>*N2 with M, and N, represent-
ing the column size and row size, respectively, our target is to
obtain an HR DEM x € RM*N1 with the same spatial resolution as
x1. The contours are usually distributed in parallel, which limits
the ability of sparse representation because the randomness is
absent. Therefore, some random unknown elevation points of x;
are estimated by kriging, which is called the “best linear unbiased
estimator” (BLUE) Van der Meer, 2012. Kriging has many forms,
and ordinary kriging (OK) is taken here as an example. OK amounts
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Fig. 1. Flow chart of the proposed KSSR method.

to the weighted linear combination of the known samples, whose
mathematical expression is:

Ky
X1(Po) = >_wiX: (p;) (1)
i-1
where x;(p;) denotes the elevation value at point p; of x; , p, is the
estimated point, K; is the number of known samples, and w; is the
weight satisfying the unbiasedness condition:

Ky

Zwi =1
i=1

Additionally, w; also meets the optimality condition, that is, to
minimize the variance. By introducing a Lagrange multiplier, this
condition can be described as follows:

(2)

n

D 0P —p)+ =7 —Po), j=1.23,.n (3)
i=1

where y(p; — p;) represents the value of the semivariance between
points p; and p; , and u is the Lagrange multiplier. The semivariance
implies the spatial structure of the variables. When the semivari-
ance is known, the estimated elevation can be obtained using Eqgs.
(2) and (3). Usually, the semivariance is given by the trend analysis
plot of y(h) against the lag interval h, and this plot is also called the
“experimental semivariogram”. The experimental semivariogram
can be calculated by the following equation (Bhattacharjee et al.,
2014):

_ ) —x (i + )P

y(h) oK,

(4)

where y(h) is the semivariance for the lag interval h, p; is the start-
ing point, p; + h is the end point, and K; is the number of known
samples within the lag interval h. If y(h) is only dependent on the
length of h, but not the direction, it is isotropic. In this study, isotro-
pic kriging is used for simplicity. The experimental semivariogram
plot is used for fitting the semivariance model, and can be spherical,
exponential, linear, or Gaussian.

In order to save time, only a few points are selected as samples
for the kriging interpolation. Via the isotropic kriging interpolation,
some random points (usually 20%) are generated. At this time, x;
becomes x; (see Fig. 1), for which the red points are estimated by
kriging. The LR DEM x, is then upsampled to the same size as x;
by bilinear interpolation. For convenience of description, the
upsampled LR DEM is called x, € RM>*N1 (see Fig. 1). In order to
make use of the correlations, x; and x4, are combined into two-
dimensional data as y, € R* M The permutation law of the
two pieces of data is the “IIL” method proposed in our previous
paper (Li et al., 2016). As with most of the sparse representation
methods, the proposed method is also based on patches. The patch

extraction operator R(-) extracts a series of patches with the size of
b x b, from the upper left to the lower right, with a step size of I. At
the same time, every patch is converted to a column vector, and all
the vectors are concatenated to new two-dimensional data as

y € RMNs (see Fig. 1), where M5 = b* and N3 = 2M; — b + )
(Ny —b+1)/P . This extraction process can be mathematically
modeled as follows:

y=R1) 5)
Additionally, the inverse operator of R(-) is defined as:
»n=R"') (6)

where R™! () denotes the inverse operator of R(-), which means put-
ting the column-vectorized patches back in their original locations.

2.2. The SSR DEM generation model

For brevity, the sparse representation model of DEM generation

using the extracted y is first introduced. Let D € RY*™ be the dic-
tionary matrix; let o € R™" be the dictionary coefficients, where
n amounts to the number of extracted patches, that is, n = N3;
let ||y||; be the Frobenius norm of y, ||y||; = /trace(yy") , trace(-)
is the trace norm of the matrix, and y7 is the transpose of y ; and
let |lall;; = >0 lloull; ., where o; denotes the ith column of o ,
and | - ||; denotes the ¢; norm of a vector. Assuming that the dic-
tionary D is known, the sparse representation model can be written
as follows:

(7)

where Q means the binary label matrix of zeros and ones, with zero
representing an unknown elevation point and one representing a
known elevation point. /4 is the regularization parameter. Expres-
sion (7) has two terms, in which the first term (data fidelity term)
implies the minimum variance, and the second term (regularization
term) means the patch sparsity. As we know, y is combined by x3
(HR contours and kriging interpolation result) and x, (resampled
LR DEM), and the dictionary D can be considered as two sub-
dictionaries corresponding to x3 and x4. In fact, Expression (7) builds
up a connection between the sparse distribution of contours and the
sparsity of sparse representation. Based on this kind of priori con-
straint, we can make a better use of the intrinsic property of the
contours. In other words, the generated DEM will be better.

To impose the spatial constraint, TV is introduced, which can
promote the piecewise smooth transition of the neighboring eleva-
tion points. On the basis of (7), when the TV term is imposed, the
expression is transformed into (8):

.1
min QDo — y|7 + Allecl] 4

.1
min QDo — | + &l 1 + ZvTV(Da) ®)
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where TV(-) denotes the TV term, and Airy is its regularization
parameter. Previous studies have demonstrated that TV-based reg-
ularization term can lead to a better restoration than the traditional
¢, regularization term (Ng et al., 2007), which is our inspiration on
the point. Under this circumstance, the generated DEM benefits the
sparse constraint and the spatial constraint. As in lordache et al.
(2012), the TV term can be denoted by an operator H; hence, (8)
has the following form:

min > IIQDOPYII§+M|0<H1,1 + Zav[[HDo 4 9)

Expression (9) is the proposed SSR model for DEM generation. The
solution is described in the next section.

2.3. Solution algorithm of the proposed model

We use a method that is similar to the method proposed in
Iordache et al. (2012). For the solution of (9), we first translate
the objective function into the optimization of the equation con-
straint in (10):

min 1% P17 Jv|V
v 2” 2 =Yg + V3l g + Z1vlVall; 1

subject to V; = Do

V, =QV, (10)
Vy=uo
V4 =HV;

Then (10) can be written in the augmented Lagrangian formulation:

Lo, V1,V3,V3,Vy,Uq, U, Us, Uy)
1 ,
=5 IVa = Yllf + AlIVsllyy + 2l Vally 4

+ D IDe = vy — Ui+ SRV - Vs - U}

+ 5l = Vs = Usl + S IHV: - Ve - U

where U, , U, , Uz, and U, are the introduced variables.

The solution of (11) is obtained by decoupling the optimization
into three parts: (1) solve variables «, V;, V5, V3, and V, ; (2)
update the Lagrange multipliers U, , U, , Us , and Uy ; and (3)
update the iteration number. The following describes the details
of the solution. Supposing that the variables are all initialized,
the variables o, V; , V, , V3, and V, are first solved one after
another.

1) Taking the (k + 1)th iteration, for «, the closed-form solution
is:

a ) = (D'D+ 1) [DTVE + U + v+ U] (12)
where [ is the identity matrix.

2) For Vy, the solution is:
VI = (@ HTH 1) [0 (V0 4+ UR) + BT (V0 4 uf) 4 Da — U]

(13)

3) The optimization function for V, is:

(k+1)
vy 1+u[y+u(9v - U] (14)

4) To calculate V3, the problem is the shrinkage operator
(Goldstein and Osher, 2009), which is also called soft
thresholding:

v = soft( oc"‘)%) (15)
where
soft(z,0) = é max(jz| - 0,0) (16)

5) For V4, the solution is the soft threshold, as in (15):
Vi = soft(U —HV o ) (17)

6) After the first part is finished, the second part has the follow-
ing solutions:

U(llm) _ ng) — Dokl 4 V(1k+1>
U(2k+1) _ U;k) _ Qvgkﬂ) + V§k+1)
(k-+1) (k) k+1 (k+1) (18)
U; =Uj —OC(+)+V3
Uilkﬂ) _ U‘(1k) _ HV(]kn) i VElkH)

With Egs. (12)-(15), (17), and (18), the calculation and update of
the variables is completed in the iteration. We repeat this process
until it achieves the predetermined iteration number.

3. DEM generation experiments and analysis

In order to validate the effectiveness of the proposed KSSR
method, a series of simulation experiments was undertaken. In the
experiments, two kinds of 30 m DEM (SRTM DEM and ASTER GDEM)
were generated from their corresponding contours, with different
contour intervals. At the same time, the 90 m DEM products were
also used in the generation process. For the purpose of quantitative
evaluation, we collected the original 30 m DEMs. In other words, the
30 m DEM products were used for generating the contours and were
considered as the evaluation data. The SRTM 30 m and 90 m DEMs
were paired as one type of experiment, and the ASTER 30 m and
90 m GDEMs were paired as another type of experiment. The SRTM
90 m products were downloaded from the CGIAR-CSI (Consortium
of International Agricultural Research Centers-Consortium for Spa-
tial Information) SRTM 90 m Digital Elevation Database v4.1
(http://[www.cgiar-csi.org/data/srtm-90 m-digital-elevation-data-
base-v4-1). The SRTM 30 m products and the ASTER 30 m and 90 m
GDEM products were all downloaded from USGS EarthExplorer
(http://earthexplorer.usgs.gov/). On the one hand, the effect of the
proposed DEM generation method is compared with the results of
some other methods. On the other hand, some key factors in the
generation result of the proposed KSSR method are analyzed.

The mean absolute error (MAE), root-mean-square error
(RMSE), and mean relative error (MRE) are selected as the evalua-
tion indicators. Supposing that ¢ € R and d € R¥ are the data to be
compared, then the three indicators can be explained with c and d.
For brevity, we suppose that they are both vectors here. Firstly, the
MAE is calculated by the following expression:

<Z|cl d (19)

RMSE is defined by:

RMSE(c,d) = \/KZ (20)

Finally, d is assumed to be the reference data, so the MRE is
computed by:

MAE(c,d) =

|led|

MRE(c, d) = Z 1)
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3.1. Results

The SRTM 30 m DEM was first generated from the 30 m contour
map and the corresponding SRTM 90 m DEM. As stated previously,
the 30 m contour map was extracted from the original SRTM 30 m
DEM. The contour interval was 200 m. Two sub-regions with the
size of 12 x 12 km were cropped from the original SRTM 30 m
DEM file (s31_w070_1arc_v3), as shown in Figs. 2(a) and 3(a), as
were their contours. The latitude and longitude range of Fig. 2(a)
is 30.00°~30.11°S, 69.89°~70.00°W (located on the border of
Argentina and Chile). The latitude and longitude range of Fig. 3
(a)is 30.83°~30.94°S, 69.56°~69.67°W (Argentina). The two corre-
sponding SRTM 90 m DEMs were also cropped from the original
file “srtm_23_19". To the best of our knowledge, a sparse represen-
tation based method for generating DEMs has never previously
been reported. Therefore, in consideration of the maturity of the
classical kriging interpolation (OK), it was taken as a comparison
method. The variogram model was spherical, with a variable range
of 50. The HR DEM could be resampled from the LR DEM by bilin-
ear interpolation, which was also taken as a comparison. Addition-
ally, SSR was selected as another kind of contrasting method, in
which the random kriging interpolation is removed from KSSR. In
other words, the 30 m DEMs were generated from the 30 m con-
tours and 90 m DEM by four methods (kriging, resampling, SRR,
and KSSR) in the experiments. Without any special instructions,
the parameters of SSR and KSSR were set as follows: b = 6 (patch
size), |=2 (step size), m =256 (dictionary atom number),
D € R**2% (dictionary), u=0.001 (introduced regularization
parameter in (11)), A =0.001 (sparse regularization parameter),
Jrv = 0.005 (TV regularization parameter), the initial dictionary

was obtained by discrete cosine transform (DCT), and the iteration
number was 100. In addition, the ratio of the random kriging inter-
polation was 20% for KSSR. In the following experiments, the influ-
ence of different parameters will be evaluated.

The two groups of experiments in which the SRTM 30 m DEMs
were generated are shown in Figs. 2 and 3, respectively. As can be
seen in the contour maps [Figs. 2(b) and 3(b)], the contours are dis-
tributed very sparsely and the elevations vary greatly in the sub-
regions. From the visual effect, all four methods obtain results
which are consistent with the original SRTM 30 m DEM [Fig. 2
(a) and 3(a)]. However, after a careful comparison, it can be seen
that differences do exist. The kriging obtains a coarse DEM result,
with a large number of spatial details missing [see Figs. 2
(c) and 3(c)]. The reason for this is that the sparse contours provide
a very weak spatial constraint on the kriging interpolation. Resam-
pling by bilinear interpolation also loses many details, but the
degree is not as bad as for kriging [Figs. 2(d) and 3(d)]. Compared
to kriging and resampling, SSR obtains many more spatial features,
and it benefits from the spatial constraints of the TV regularization
and the complementary spatial information from the LR DEM [see
Figs. 2(e) and 3(e)]. Although SSR obtains a better result than krig-
ing, missing spatial details still occur. On the other hand, since the
contours usually show a regular spatial distribution, this phe-
nomenon has an adverse effect on the reconstruction ability of
sparse representation, which is more suitable for a random distri-
bution. As a result, SSR can result in some false outlines along the
contours, as can be seen in Fig. 2(e). In order to reduce the influ-
ence of the regular distribution, KSSR combines some of the ran-
dom kriging interpolation on the basis of SSR. As can be seen in
Figs. 2(f) and 3(f), KSSR improves the generation result, especially
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Fig. 2. The SRTM 30 m DEM generation results from contours, with a size of 12 x 12 km. (a) The original DEM. (b) The 30 m contour map. (c) Kriging result. (d) Resampling

result by LR DEM. (e) SSR result. (f) KSSR result.
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in Fig. 2(f). In other words, KSSR produces the best result among
the four methods.

The visual effects of the four methods are shown in Figs. 2 and 3.
For a deeper understanding, their quantitative assessments from
the aspects of MAE, RMSE, and MRE are shown in Table 1. For
the three indicators, a lower value means a better accuracy. As
we know from Figs. 2 and 3, the elevation of Fig. 2 ranges from
about 3000 m to 6000 m, and the elevation of Fig. 3 ranges from
about 1500 m to 3500 m. In addition, the contour interval is 200
m. Under the circumstances, the MAEs of the four methods are in
the range of a few tens of meters, which implies a satisfactory
DEM generation result. For the two groups of experiments, the
MAE, RMSE, and MRE decrease according to the order of kriging,
resampling/SSR, and KSSR. That is to say, KSSR obtains the best
result, which is in accordance with the visual effect. The sparse
contours bring an insufficient spatial restriction to the kriging,
and it may be that the contour interval is more than the kriging
range. Thus, kriging obtains the worst result. Direct DEM genera-

tion from another LR DEM by bilinear interpolation also cannot
achieve a satisfactory result, because the spatial information is
not enough. To this end, SSR imposes a stronger spatial restriction
and extracts more useful information from the LR DEM, which is
constructive to the result. KSSR makes an improvement on the ran-
dom distribution of the spatial restriction on the basis of SSR.
Therefore, it obtains the best DEM.

After the SRTM 30 m DEM generation experiments, we under-
took ASTER 30 m GDEM generation experiments. In these experi-
ments, ASTER 30 m GDEMs were generated from the 30m
contour map and the corresponding ASTER 90 m GDEM. Similarly,
the 30 m contour map was extracted from the original ASTER 30 m
GDEM. The contour interval was 100 m. Two sub-regions with the
size of 12 x 12 km were cropped from the original ASTER 30 m
GDEM file (n41_e110_1arc_v3 and n41_el111_1arc_v3), as shown
in Figs. 4(a) and 5(a), as were their contours. The latitude and lon-
gitude range of Fig. 4(a) is 41.00°~41.11°N, 110.38°~110.49°E
(China). The latitude and longitude range of Fig. 5(a) is

69°37'30"W

69°34'30"W

30°50'0"

30°52'30"S

30°52'30"S

69°37'30"W 69°34'30"W

(a)

@ | ©

. high: 3500

M Tow: 1500

()

Fig. 3. The SRTM 30 m DEM generation results from contours, with a size of 12 x 12 km. (a) The original DEM. (b) The 30 m contour map. (c) Kriging result. (d) Resampling

result by LR DEM. (e) SSR result. (f) KSSR result.

Table 1
Quantitative evaluation of the DEM generation results from contours (i).
Images Methods MAE RMSE MRE/%
Fig. 2 Kriging 25.9211 35.9400 0.5816
Resampling 21.3019 27.4155 0.4766
SSR 23.8115 28.2618 0.5214
KSSR 12.6037 16.1159 0.2830
Fig. 3 Kriging 36.4478 50.5111 1.6371
Resampling 22.6922 29.8660 1.0206
SSR 13.7390 16.6729 0.5929
KSSR 11.6115 14.8839 0.5206
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Fig. 4. The ASTER 30 m GDEM generation result from contours, with a size of 12 x 12 km. (a) The original DEM. (b) The 30 m contour map. (c) Kriging result. (d) Resampling
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Fig. 5. The 30 m GDEM ASTER generation result from contours, with a size of 12 x 12 km. (a) The original DEM. (b) The 30 m contour map. (c) Kriging result. (d) Resampling
result by LR DEM. (e) SSR result. (f) KSSR result.
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41.01°~41.12°N, 111.86°~111.97°E (China).The names of the orig-
inal two ASTER 90 m GDEM files were “n41_e110_3arc_v3” and
“n41_el11_3arc_v3”, and the paired sub-regions were cropped
from them. Figs. 4 and 5 show the ASTER 30 m GDEM generation
results of the two sub-regions by the same four methods. As far
as Fig. 4 is concerned, the contours distribute more sparsely than
those in Figs. 2 and 3, so kriging obtains an even poorer result, in
which almost all the details are missing [Fig. 4(c)]. Resampling
from the LR DEM only outperforms kriging by a small degree. This
kind of very sparse distribution also results in the effect of SSR
being suppressed, and a large amount of noise is introduced [see
Fig. 4(e)]. Fortunately, KSSR obtains a satisfactory visual effect
[Fig. 4(f)]. As for Fig. 5, the contours are more concentrated, and
kriging obtains a better result. KSSR [Fig. 5(f)] again outperforms
SSR [Fig. 5(e)], especially in the black ellipse region, where SSR
results in obvious errors. The objective evaluation of Figs. 4 and 5
is shown in Table 2, where KSSR again performs better than the
other methods. On the whole, these experiments confirm that

the proposed KSSR method has an advantage over the traditional
methods in terms of DEM generation.

With the help of the previous visual and objective comparisons,
the DEM generation effects of the four methods can be established.
For a further insight into their generation abilities, we also show
the spatial distribution of the generation error. The error is the dif-
ference between the original DEM and the generated DEM. In other
words, it equates to the generated DEM minus the original DEM. In
our opinion, the error contour map reflects the spatial distribution
of the error. The error contour maps of Figs. 2-5 are shown in
Figs. 6-9, respectively. In these contour maps, the same color
was rendering between the neighboring two contour lines. For
the same DEM, the same contour line is displayed in the contour
map. As can be seen in Figs. 6-9, the numerical error ranges of krig-
ing and resampling are larger than those of SSR and KSSR, indicat-
ing that kriging and resampling cause larger DEM errors. In
particular, the error contours of SSR and KSSR concentrate around
low errors, which represents a better result than kriging and

Table 2
Quantitative evaluation of the DEM generation result from contours (ii).
Images Methods MAE RMSE MRE/%
Fig. 4 Kriging 24.8591 34.0395 1.4091
Resampling 11.5703 14.1967 0.6427
SSR 10.1408 12.4219 0.5677
KSSR 7.9971 10.2635 0.4501
Fig. 5 Kriging 21.4199 27.8087 1.1954
Resampling 16.6578 20.3480 0.9359
SSR 11.2295 14.0923 0.6270
KSSR 10.1593 12.4640 0.5708
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Fig. 6. The error contour map of the SRTM DEM generation result obtained by the three methods in Fig. 2. (a) Kriging. (b) Resampling. (c) SSR. (d) KSSR.
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Fig. 7. The error contour map of the SRTM DEM generation result obtained by the three methods in Fig. 3. (a) Kriging. (b) Resampling. (c) SSR. (d) KSSR.

resampling. In addition, the error contours of KSSR are more con-
centrated than those of SSR, indicating that the errors are further
refined. In short, the error contour maps also confirm the superior-
ity of the proposed KSSR method.

3.2. Parameter analysis

The previous section validated the DEM generation effect of the
proposed KSSR method. This section focuses on the parameter
analysis of KSSR. The main parameters of KSSR are the size of the
extracted patch, the dictionary atom number, the regularization
parameters / and /rv , and the iteration number of the solution
algorithm. In the following, the parameters are analyzed one after
another. It should be explained that the control variate method
was adopted in the analysis process. While the current parameter
is discussed, the other parameters are kept the same as in
Section 3.1.

The first factor to be discussed is the patch size. As with most of
the sparse representation based methods, in which the size of the
extracted patches has an influence on the result, the patch size of
KSSR also affects the DEM generation. In order to reveal the rela-
tionship, a series of experiments was conducted with different
patch sizes. Without loss of generality, the previous four DEMs in
Figs. 2-5 were generated by KSSR, with the patch size varied from
4 x 4 to 13 x 13. The quantitative evaluation results are shown in
Table 3, with the indicators of MAE, RMSE, and MRE. For the four
groups of experiments, with the increase in the patch size, the
three indicators first decrease, then increase, and finally fluctuate.
The relationship is therefore complicated. However, they all share

the same phenomenon, in that the optimal DEM generation results
are obtained when the patch size is 6 x 6. From the four groups of
experiments, it is difficult to make the conclusion that a patch size
of 6 x 6 is the optimal for all DEM generation when KSSR is
applied. However, the results do indicate that a patch size of 6 x

6 is suitable for 30 m DEM generation from 30 m contours. Large
patches may not favor the local correlation of the DEM, and small
patches may harm the local unity. The conclusion we can make is
that the size should neither be too large nor too small, and a mod-
erate size is the best. In the experiments, the size of 6 x 6 obtained
the best result when the 30 m DEM was generated from the 30 m
contours and the 90 m DEM. As a result, 6 x 6 is usually taken as
the recommended size for this kind of DEM generation from con-
tours. The performance of our proposed method is fluctuant when
the patch size is varying. In fact, the behavior of patch size is
related to the contour distribution. With more intensive distribu-
tion of contours, the fluctuation will be less obvious. We are also
puzzled at present why the performance of patch size varies so
greatly. In the future, we will make a deep analysis about it.

In fact, the patch size determines one dimension of the dic-
tionary, and the other dimension of the dictionary is the atom
number, which is discussed in the following. In our framework,
the atom number should be a square number. To test the effect
of the atom number on DEM generation, the KSSR method was
applied to generate DEMs with different numbers of atoms. The
tested numbers included 10 square numbers, from 10? to 192
The experimental data were the DEMs in Figs. 2-5. Similarly, the
DEM generation results with different numbers of atoms are
assessed by the indices of MAE, RMSE, and MRE. The quantitative
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Fig. 8. The error contour map of the ASTER GDEM generation result obtained by the three methods in Fig. 4. (a) Kriging. (b) Resampling. (c) SSR. (d) KSSR.

evaluation results are shown in Table 4. As can be seen in Table 4,
the indicators change within a certain range when the atom num-
ber varies. Figs. 2 and 3 obtain the best result when the atom num-
ber is 196, and Figs. 4 and 5 obtain the best result when the atom
number is 256. However, when the atom number is 196 or 256, the
indicators do not show an obvious difference. Generally, when the
atom number is small, the dictionary cannot provide enough signal
bases, so that the DEM is generated with large deviations. In con-
trast, when the atom number is too high, the redundant signal
bases may interfere with each other, leading to a decrease in the
DEM accuracy. Since the results are more stable between 122 and
162, after the comprehensive consideration, 14% (1 9 6) was more
suitable as the dictionary atom number. However, 256 can also
obtain a satisfactory result, and it was selected as the dictionary
atom number in the experiments (Additionally, 256 is the most
used dictionary atom number in the research community of sparse
representation).

We now discuss how regularization parameter 4 influences the
result. From Eq. (8), it can be seen that / plays a role in controlling
the importance of the sparse coefficients. With the other parame-
ters fixed, KSSR was applied to generate DEMs, with / varying from
0.0001 to 0.01. For brevity, only one representative SRTM DEM and
one ASTER GDEM were used in the experiments: Figs. 3 and 5. To
visually view the change situation of the DEM generation, the
RMSE variation diagram with 1 is plotted in Fig. 10. As can be seen
in Fig. 10, as 4 varies, for both Figs. 3 and 5, the RMSE first
decreases, and then increases. Furthermore, the RMSE achieves
the minimum when 4 equates to 0.001. In other words, with 4
equal to 0.001, the sparse coefficients obtain an appropriate bal-
ance in the SSR model. Therefore, the DEM has the highest gener-
ation precision at this time. From Fig. 10, it is clear that 4 has an

important influence on the DEM generation. As a result, it is neces-
sary to choose the optimal . when KSSR is employed. According to
our experiments, we recommend setting / as 0.001.

The other regularization parameter, /vy , was analyzed as fol-
lows. From Eq. (8), we know that /ry makes a tradeoff between
the spatial regularization term and the data fidelity term. In order
to reveal the impact of Ary , the RMSE variation diagram with Ay is
shown in Fig. 11. The range of /v is from 0.0001 to 0.01 in Fig. 11.
It should be noted that when Ay equates to the first three values
(0.0001, 0.0005, and 0.001), KSSR cannot generate a DEM effec-
tively and obtains extremely large RMSE values. For graphical con-
venience, the RMSE is nominally replaced by 40 and 30, and the
red' dashed line and blue dashed line are used to represent the
extremely large RMSEs of Figs. 3 and 5, respectively. As can be seen
in Fig. 11, the RMSE reaches a minimum when Ay has a value of
0.002. As /1y increases, the RMSE stays the same. The experiments
demonstrate that /ry is vital to the DEM generation. Compared to
J, it is easier to determine the optimal Ay . In our experiments, /1y
was usually set to 0.005.

The next parameter to be discussed is the iteration number of
KSSR. As stated previously, the proposed KSSR method is solved
by decoupling the objective function into three parts. The opti-
mized solution is approximated by increasing the iteration num-
ber. In the experiments, we recorded the statistics of the RMSE
variation for Figs. 3 and 5 when the iteration number was
increased from 10 to 140 with an interval of 10. The variation of
RMSE is shown in the line chart in Fig. 12. As can be seen in
Fig. 12, as the iteration number increases, the RMSE of Figs. 3

! For interpretation of color in Figs. 3 and 5, the reader is referred to the web
version of this article.
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Fig. 9. The error contour map of the ASTER GDEM generation result obtained by the three methods in Fig. 5. (a) Kriging. (b) Resampling. (c) SSR. (d) KSSR.

Table 3
Quantitative evaluation of different patch sizes.
Image Indicator 4 x4 5x5 6 x 6 7x7 8 x8 9x9 10 x 10 11 x 11 12 x 12 13 x 13
Fig. 2 MAE 66.9561 13.7489 12.6037 52.4202 17.0656 17.6812 18.8946 40.8541 20.5782 22.0432
RMSE 81.5401 17.7551 16.1159 66.0834 22.0854 22.4884 24.2252 56.8420 25.5731 28.0427
MRE/% 1.4671 0.3054 0.2830 1.1773 0.3789 0.3950 0.4173 0.9146 0.4566 0.4906
Fig. 3 MAE 33.9728 13.1416 11.6115 31.3017 13.7377 14.5630 14.5979 28.9345 15.3515 16.8360
RMSE 42.4543 17.2081 14.8839 40.8460 17.4192 18.5479 18.5316 39.2414 19.3602 21.1215
MRE/% 1.4763 0.5821 0.5206 1.4089 0.6107 0.6574 0.6452 1.2773 0.6778 0.7578
Fig. 4 MAE 32.5926 8.3750 7.9971 23.0372 10.0289 10.6335 10.5608 18.1951 10.5888 13.1645
RMSE 38.6973 11.0266 10.2635 28.5195 12.6697 13.6092 13.3203 24.2201 13.3000 16.6309
MRE/% 1.8060 0.4687 0.4501 1.2752 0.5633 0.5996 0.5895 1.0208 0.5931 0.7430
Fig. 5 MAE 29.7238 10.3798 10.1593 23.6878 11.6837 11.6693 12.4298 19.9968 12.7167 13.1175
RMSE 35.4031 12.9650 12.4640 29.4184 14.3967 14.4522 15.3683 26.4699 15.7787 16.2612
MRE/% 1.6455 0.5802 0.5708 1.3085 0.6544 0.6562 0.6951 1.1263 0.7091 0.7359
Table 4
Quantitative evaluation of different dictionary atom numbers.
Image Indicator 10% 112 122 132 142 152 162 172 182 192
Fig. 2 MAE 14.9777 21.9926 12.8725 13.5069 12.5471 13.4964 12.6037 32.0235 22.4435 17.6621
RMSE 19.4898 35.2257 16.6756 17.4483 16.1019 17.3413 16.1159 45.3566 30.4903 23.1749
MRE/% 03313 0.4818 0.2870 0.2993 0.2786 0.2996 0.2830 0.6806 0.4876 0.3912
Fig. 3 MAE 12.1901 16.0416 12.0340 11.6050 11.2359 11.6060 11.6115 18.1459 15.3930 12.7136
RMSE 15.5217 22.6636 15.3744 14.8473 14.4524 14.8531 14.8839 24.2756 20.6804 16.1494
MRE/% 0.5393 0.7113 0.5370 0.5142 0.4986 0.5164 0.5206 0.7801 0.6601 0.5631
Fig. 4 MAE 9.1913 16.9574 8.0826 8.4167 8.0751 8.3538 7.9971 19.4544 12.6885 9.6340
RMSE 11.7119 28.6027 10.4110 10.7068 10.3386 10.7008 10.2635 25.1096 16.7794 12.2845
MRE/% 0.5159 0.9198 0.4516 0.4720 0.4526 0.4683 0.4501 1.0679 0.7056 0.5434
Fig. 5 MAE 10.9681 16.9833 10.5049 10.5054 10.3039 10.4320 10.1593 20.5208 14.3606 11.2641
RMSE 13.4841 25.3663 12.9858 12.9078 12.6691 12.8269 12.4640 25.5713 18.3663 13.8927

MRE/% 0.6147 0.9270 0.5883 0.5890 0.5774 0.5852 0.5708 1.1279 0.8009 0.6315
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and 5 clearly decreases. When the iteration number is larger than
100, the decreasing trend is very small and gentle. This phe-
nomenon indicates that the solution is very close to the optimal
value. In fact, more iterations means more running time. As a
result, to save time, the iteration number was usually set to 100
in the experiments.

4. Conclusions

In this paper, we have proposed the KSSR algorithm to generate
a DEM from the corresponding contours and another LR DEM. The
proposed KSSR makes use of the sparse distribution property of
the contours in the framework of sparse representation, with the
complementary information extracted from another LR DEM
source. Owing to the spatial regularization constraint, the spatial
correlation is reinforced. Additionally, some unknown random ele-
vation points are selected and interpolated by kriging, which makes
up for the defect of the parallel distribution of the contours. In other
words, sparse representation, spatial regularization, and kriging are
all utilized in the DEM generation. In the experiments, KSSR was
used to generate an SRTM 30 m DEM and an ASTER 30 m GDEM
from the 30 m contours. The experimental results confirm that
the proposed approach performs well. Compared to SSR and krig-
ing, the proposed KSSR shows obvious advantages, not only qualita-
tively, but also quantitatively, from the aspects of MAE, RMSE, and
MRE. However, KSSR is just an interesting first trial of DEM gener-
ation from contours in the framework of sparse representation. The
result is preliminary, and there is still much room for improvement.
For example, to generate a DEM with the size of 400 x 400, the time
taken is about half an hour, so the time efficiency needs to be
improved. Moreover, more kinds of DEM should be tested in exper-
iments. These issues will be addressed in our future work.
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