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Abstract—Filling missing information or removing special 

objects is often required in the applications of high spatial 

resolution images. A novel single-image reconstruction method is 

presented in this letter to solve this task, without the use of any 

complementary data. Firstly, the spatial pattern of the image is 

obtained by the statistics of similar patch offsets in the known 

regions, which provide reliable information for reconstructing 

the image. The missing regions are then filled by combining a 

series of shifted pixels via global optimization. The proposed 

method was tested on a cloudy image for cloud removal and on a 

public image for military object concealment. The experimental 

results show that the proposed method can produce visually 

convincing and coherent reconstructed images, and the accuracy 

of the reconstruction is better than the existing 

non-complementation methods. 

 

Index Terms—Image reconstruction, missing information, 

single image, high spatial resolution, global optimization. 

I. INTRODUCTION 

During remote sensing data acquisition, sensor failure often 

results in dead pixels [1] in images, and thick cloud cover is 

often present in passive data. Furthermore, we sometimes need 

to remove particular objects from remote sensing images, in 

applications such as military object concealment. In all the 

above cases, the remote sensing data suffer from the loss of 

information. In the last few years, a number of different 

approaches have been presented to reconstruct the missing 

information of remote sensing images. However, most of the 

existing approaches are based on the prerequisite that there are 

other complementary data at hand, such as multi-temporal 

images [2]–[4] or other spectral bands [5], which can provide 

auxiliary information for the reconstruction. However, the 

need for complementary data is sometimes a fatal limitation. 

Another strategy is reconstructing the missing information 

using only the damaged image itself, which is also called the 

non-complementation approach [6]. The most common 

method in this category is interpolation, such as the 

interpolation methods [7-8] which are useful in remote sensing 

data processing. The second category of methods is the 

propagated diffusion methods, which propagate the local 

information from the exterior to the interior of the missing 

regions, using partial differential equations (PDEs). An 

example of such an approach is the recent work in [9]. The 

third classic approach is the variation-based methods, which 

take the information reconstruction as solving an ill-posed 

inverse problem, and use a regularization technique to make it 

well posed. An example of such an approach is the method 

proposed in [10]. Generally speaking, a common feature of the 

three approaches mentioned above is that they work well for 

recovering simple ground features or filling small regions, but 

they are not suitable for reconstructing large areas and textures, 

in which they lead to oversmoothing and blurring. 

In the non-complementation category, another 

representative approach is the exemplar-based methods, which 

are aimed at recovering large missing regions and texture 

information [11]. However, these methods have been 

intensively studied in the field of digital image processing, but 

have rarely been applied to remote sensing images. More 

recently, He et al. [12] developed an advanced global 

optimization method for this category of digital image 

completion, which yields better results than the existing 

state-of-the-art methods. A similar idea could be applied to 

reconstruct large missing regions for remote sensing images 

with a high spatial resolution. However, as the structural 

patterns of remote sensing images are more complex than 

natural images, an improvement to the method of He et al. is 

proposed in this letter for the reconstruction of remote sensing 

images. The proposed method strengthens the maintenance of 

image structures and can achieve spatially coherent 

reconstructions for high spatial resolution images. 

II. METHOD 

A. Basic Idea 

The basic idea of the proposed method is to fill each 

missing pixel by copying a known pixel. In order to select an 

appropriate known pixel and fill the missing area with reliable 

information, we should first analyze the spatial patterns of the 

structure and texture in the image. He et al. [12] found that 

when matching similar patches in an image, the statistics of 

the offsets (relative locations) of the similar patches are 

sparsely distributed, i.e., a majority of the patches have similar 
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offsets, forming several prominent peaks in the 2-D histogram 

statistics. Such dominant offsets indicate the essential features 

of the image, such as linear edges, textures, and repeated 

objects. Therefore, the dominant offsets can provide clues for 

reconstructing the missing regions. With a few dominant 

offsets, we can build a global optimization model to jointly 

assign each missing pixel a known pixel, from which it copies 

the content, thereby achieving the image reconstruction. 

B. He et al.’s Algorithm 

This letter proposes an algorithm taking its origins from the 

previous method developed by He et al. [12], which is 

considered one of the state-of-the-art image completion 

algorithms. Their original algorithm has three steps as follows. 

1) Matching Similar Patches. We suppose that ( )P x
 

is an 

image patch centered at pixel ( , )x yx . For each patch P in 

a known region, we find another known patch which is the 

most similar to P, and calculate its relative position s: 
2

( ) arg min ( ) ( ) . .P P s t    
s

s x x s x s  (1) 

where ( , )u vs is the 2-D coordinates of the offset, which 

represent the distance vector of a patch and its most similar 

patch. The similarity is measured by the sum of squared 

differences between two patches. Parameter   is used to 

ignore the nearby patches which are likely to be similar but do 

not contribute to the repetitive patterns in the image. 

2) Computing the Offset Statistics. After obtaining all the 

offsets s  for all the known pixels, their 2-D histogram 

statistics ( , )H u v
 

are computed: 

( , ) ( ( ) ( , ))H u v u v 
x

s x  (2) 

where ( )   is equal to 1 if the argument is true, and 0 

otherwise. ( )H s  gives the amount of patches having the 

offset of s . The K highest peaks of the histogram are then 

picked out. These peaks correspond to the K dominant offsets 

and describe how the similar features appear in the image. 

3) Filling the Missing Regions by the Optimization Model. 

Within the specified K dominant offsets, each missing pixel is 

assigned an offset: the relative location (pixel) from where it 

copies the content. The missing region is then filled by 

combining a series of shifted pixels corresponding to these 

offsets. Therefore, the goal is to calculate a suitable offset map 

( ) iL x s  for all the pixels in the missing regions. The 

optimal offset map minimizes the following Markov random 

field (MRF) energy function: 

( , )| ,

( ) ( ( )) ( ( ), ( ))d sE L E L E L L
   

  
x x x x x

x x x  
(3) 

where   is the missing region; ( )x x, are the 4-connected 

neighbors; ( )L x  means the label assigned to the missing 

pixel x ; and the label represents the pre-selected offsets 

 
1

K

i i
s . ( ) iL x s  means that the pixel x  is filled by 

copying the pixel at ix +s . 

The first term dE  in (3) is a data term. dE  is 0 if the 

label is valid (i.e., ( , )x yx s y s  is a known pixel); otherwise, 

it is  . The second term sE  is a smoothness term for 

penalizing the incoherent seams. He et al. [12] used image 

brightness continuity as the smoothness constraint, and 

presented a smoothness term as follows: 
2

2

( ( ), ( )) ( ( )) ( ( ))

( ( )) ( ( ))

sE L L I L I L

I L I L

     

    

x x x x x x

x x x x
 (4) 

where ( )I x  is the RGB color of pixel x . Note that a seam 

would appear between x  and x  in the reconstructed image 

if their offsets are discontinuous. Thus, this smoothness term 

penalizes such a seam to ensure that the neighboring pixels in 

the reconstructed image are compatible. 

C. The Improved Algorithm 

It can be seen that the most significant step of He et al.’s 

algorithm is step 3, which determines how the missing region 

is filled and which known pixel is used to replace the missing 

pixel. As we all know, the structural patterns of remote sensing 

images are more complex than natural images, so the spatial 

and spectral continuity is a great challenge for the 

reconstruction of remote sensing images. Therefore, the 

smoothness term of the optimization model is crucial for 

remote sensing image reconstruction. However, in the 

optimization model of He et al.’s algorithm, the smoothness 

term (4) only stresses the continuity of the image brightness, 

but the continuity of the spatial structures is weak, which 

means that the edge structures may often not be well 

maintained, especially for curved edges in the images. In order 

to alleviate this limitation, we propose to combine the 

brightness continuity and the gradient continuity as the 

constraint to strengthen the maintenance of spatial structures 

for remote sensing images. We thus present the following 

smoothness term: 

 
 

2 2

2 2

( ( ), ( )) (5)

( ( )) ( ( )) ( ( )) ( ( )) +

( ( )) ( ( )) ( ( )) ( ( ))

sE L L

I L I L I L I L

I L I L I L I L

 

         

           

x x

x x x x x x x x

x x x x x x x x

 
where ( )I x  is the magnitude of the image gradient at 

location x , and   is a weight parameter. Since the mean 

value of the image gradient is generally lower than the mean 

value of the image brightness, we used 2   to balance the 

brightness and gradient terms in most of the experiments. As 

both the brightness continuity and the gradient continuity are 

used for the smoothness, the structure is better preserved in 

the reconstructed image. 

We optimize the energy function (3) by multi-label graph 

cuts [13]. The code of the multi-label graph cuts can be 

downloaded from http://vision.csd.uwo.ca/code/. A flowchart 

of the proposed method is presented in Fig. 1. 

 

 
Fig. 1. The flowchart of the proposed reconstruction method. 
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III. EXPERIMENTS 

We undertook one simulated data experiment and two real 

data experiments to test and verify the efficacy of the 

proposed method. The reconstruction results were 

quantitatively evaluated by several statistical indices. The 

coherence index (
coherenced ) [11] was used to measure the 

coherence between the filled region and the remaining region, 

which gives an assessment of the results from the visual 

quality aspect. The peak signal-to-noise ratio (PSNR) index 

was used to measure the consistency between the 

reconstructed image and the true intact image, which gives an 

assessment of the results from the pixel value fidelity aspect. 

The definitions of these evaluation indices are as follows: 

2

coherence

1
min
Q

P

d P Q
N 



   (6) 

2 2

10

1

10log 255 ( )
N

Oj Rj

j

PSNR N I I


 
   

 


 

(7) 

where   represents the missing region.   represents the 

remaining region. P  is the patch in the missing region. Q  

is the patch in the remaining region. N  is the total number of 

pixels in the missing region. OjI  and RjI  are the original 

and reconstructed values of the jth missing pixel, respectively. 

The smaller the coherenced value is, the better the visual effect of 

the reconstruction. A higher PSNR value means that the 

reconstructed image is closer to the true intact image. 

A. Simulated Data Experiment 

This experiment was performed on an IKONOS image with 

a resolution of 0.82 m, as shown in Fig. 2(a). This color image 

is a data fusion product blending panchromatic and 

multispectral data, provided by the IKONOS satellite. In the 

original test image, we simulated a missing region with pixel 

values of zero. The simulated image is shown in Fig. 2(b). The 

proposed method was compared with He et al.’s method [11], 

the kriging interpolation method (ordinary kriging with 

exponential variogram model) [7], and the Content-Aware Fill 

method in Adobe Photoshop. The reconstruction results of 

each method are shown in Fig. 2(c)–(f). 

From Fig. 2, it can be seen that the proposed method gives 

better reconstruction results than the other methods. In the 

result of the kriging interpolation method (Fig. 2(c)), the filled 

region suffers from serious oversmoothing and blurring. For 

the result of the Content-Aware Fill method (Fig. 2(d)), 

obvious artifacts are introduced in the reconstructed region. 

Furthermore, the road on the right is not well connected. For 

the result of the method of He et al. (Fig. 2(e)), the road on the 

left is not well recovered, and dislocation occurs in the filled 

region. This defect is mainly because the road edge is curved, 

and the method of He et al. cannot handle this curved structure 

very well. For the proposed method, the reconstruction result 

(Fig. 2(f)) is more satisfactory, with the roads well connected 

and the buildings reconstructed in an orderly manner. The 

filled region is spatially coherent with the surrounding features. 

The effectiveness of the proposed method was also evaluated 

by quantitative assessment. The coherenced and PSNR values of 

the simulated experiment results are listed in Table I. It can be 

seen that, for the result of the proposed method, the 
coherenced  

value is lower and the PSNR is higher than for the other 

methods. This indicates that the proposed method can provide 

a result with a better visual quality and higher fidelity. 

 

   
(a)                     (b) 

   
(c)                      (d) 

   
            (e)                       (f) 
Fig. 2. Simulated data experiment. (a) Original IKONOS image. (b) Simulated 

image with missing region. Reconstructed images by the following methods: 

(c) kriging interpolation method; (d) Content-Aware Fill method; (e) He et 
al.’s method; and (f) the proposed method. 

 

Table I coherenced and PSNR values of the simulated experiment results 

  
Kriging 

interpolation 

Content- 

Aware Fill 
He et al. Proposed 

Fig. 2 
coherenced  102.13 49.24 26.74 22.53 

PSNR 12.43 13.02 13.81 14.22 

 

B. Real Data Experiment 

Removing clouds and recovering the ground information 

for cloud-contaminated images is often necessary in remote 

sensing applications. The first real data experiment involved 

cloud removal for a GeoEye-1 image with a resolution of 

1.65 m. The test image is shown in Fig. 3(a), and the 

reconstruction results are shown in Fig. 3(b)–(e). 

From Fig. 3, it can be seen that the result of the kriging 

interpolation method (Fig. 3(b)) is oversmoothed. For the 

results of the Content-Aware Fill method and the method of 

He et al. (Fig. 3(c) and 3(d)), the river is not connected and 

breaks in several places, which clearly makes no sense. For 

the result of the proposed method, we can see in Fig. 3(e) that 

the river is well connected, the residential district and other 
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ground features are restored in a rational manner. Overall, the 

reconstructed image has a convincing visual quality. 

In the second real data experiment, the proposed method 

was tested for the concealment of military objects in a remote 

sensing image. With high-resolution images providing an 

abundant data source for detailed terrain observation, lots of 

important military objects can be clearly exposed in the public 

images, which can pose a severe threat to national security. 

This security threat to the military can be avoided if we are 

able to remove the military objects and reconstruct a visually 

convincing image with unnoticed modifications before the 

remote sensing images are made public. Therefore, military 

object removal (concealment) is often required for public 

images. The proposed method can be used to efficiently 

undertake this task. This experiment was performed on a 

QuickBird image with a resolution of 0.61 m, as shown in Fig. 

4(a). This color image is a data fusion product blending 

panchromatic and multispectral data, provided by the 

QuickBird satellite. We can clearly see that there are important 

military targets in the region labeled with yellow lines. This 

test involved removing the region labeled with yellow lines 

and reconstructing an image without any military targets. Fig. 

4(b)–(e) shows the reconstruction results of the four methods. 

From Fig. 4(b), it can be seen that obvious oversmoothing 

and blurring is again introduced in the result of the kriging 

interpolation method. For the Content-Aware Fill method, lots 

of chaotic artifacts occur in the filled region, as shown in Fig. 

4(c). In the result of He et al.’s method (Fig. 4(d)), a seam line 

arises between the building and the forested area, which is 

unreasonable. In the result of the proposed method (Fig. 4(e)), 

the different ground features are arranged reasonably and link 

naturally, and the filled region has a convincing visual quality. 

That is to say, the military objects are effectively removed, 

and this modification is difficult to detect. 

Finally, the reconstruction results in the two real data 

experiments were quantitatively evaluated by the 
coherenced

index, as listed in Table II. It can be seen that the 
coherenced  

values obtained using the proposed method are the lowest. It is 

therefore suggested that the proposed method can provide 

more visually convincing results than the other methods. 

 

Table II coherenced  values of the real data experiment results 

  
Kriging 

interpolation 

Content- 

Aware Fill 
He et al. Proposed 

Fig. 3 coherenced  69.36 28.94 15.74 12.61 

Fig. 4 coherenced
 

81.25 37.67 19.85 16.72 

 

     
(a) (b) (c) (d) (e) 

Fig. 3. The first real data experiment. (a) Original cloud-contaminated GeoEye-1 image. Cloud removal results by the following methods: (b) kriging 
interpolation method; (c) Content-Aware Fill method; (d) He et al.’s method; and (e) the proposed method. 

 

     
(a) (b) (c) (d) (e) 

Fig. 4. The second real data experiment. (a) Original QuickBird image. Object removal results by the following methods: (b) kriging interpolation method; (c) 

Content-Aware Fill method; (d) He et al.’s method; and (e) the proposed method 

IV. CONCLUSION 

This letter has presented a missing information 

reconstruction method for single remote sensing images. 

Based on He et al.’s method, which can predict a reliable 

spatial pattern for the missing regions and fill the missing 

pixels via global optimization, the proposed method uses an 

edge-preserving reconstruction model to strengthen the 

maintenance of image structures. The proposed method was 

applied to a cloudy image for cloud removal and to a public 

image for military object concealment, obtaining satisfactory 

results in both cases. There are, however, some limitations to 

the proposed method. For those remote sensing images with 

multiple ground features and complex spatial patterns, the 

statistics of similar patch offsets may not be able to reliably 

predict the spatial pattern of the missing regions. In such a 

case, the reconstruction accuracy may be low. This is also a 

common defect of all the non-complementation methods. 
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