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Abstract Fusing satellite observations and station measurements to estimate ground-level PM2.5 is
promising for monitoring PM2.5 pollution. A geo-intelligent approach, which incorporates geographical
correlation into an intelligent deep learning architecture, is developed to estimate PM2.5. Specifically, it
considers geographical distance and spatiotemporally correlated PM2.5 in a deep belief network (denoted as
Geoi-DBN). Geoi-DBN can capture the essential features associated with PM2.5 from latent factors. It was
trained and tested with data from China in 2015. The results show that Geoi-DBN performs significantly better
than the traditional neural network. The out-of-sample cross-validation R2 increases from 0.42 to 0.88, and
RMSE decreases from 29.96 to 13.03 μg/m3. On the basis of the derived PM2.5 distribution, it is predicted that
over 80% of the Chinese population live in areas with an annual mean PM2.5 of greater than 35 μg/m3. This
study provides a new perspective for air pollution monitoring in large geographic regions.

1. Introduction

PM2.5 (particulatematter), with an aerodynamic diameter of less than 2.5 μm, is associated withmany adverse
health effects, such as respiratory problems and cardiovascular disease (Bartell et al., 2013; Brauer et al., 2012;
Crouse et al., 2012). Previous studies (Chen et al., 2013) have shown that a 3 year reduction in average life
expectancy and a 14% increase in overall mortality would result from a 100 μg/m3 increase in the concentra-
tion of respirable particulate matter. As a result, PM2.5 pollution has attracted widespread attention in recent
years and has become the focal point of international air pollution research (Engel-Cox et al., 2013).

With the launch of satellites and the continuous improvements in data retrieval technology, estimating
ground-level PM2.5 using satellite remote sensing has become a promising approach for the monitoring of
PM2.5 pollution (Engel-Cox, Hoff, et al., 2004; Hoff & Christopher, 2009; Liu, Chen, et al., 2009; Martin, 2008).
Three main kinds of methods have been applied to estimate PM2.5 using satellite-derived aerosol optical
depth (AOD): chemical simulation models (Liu et al., 2004; van Donkelaar et al., 2010), statistical models
(Liu, Paciorek, & et al., 2009; Song et al., 2014), and semiempirical models (Lin et al., 2015). Among them,
the statistical models are much easier to implement and can obtain a competitive accuracy in PM2.5 estima-
tion (Liu, 2014). As a result, many different statistical models have been developed to explore the quantitative
relationship between satellite-derived AOD and ground-measured PM2.5 (the AOD-PM2.5 relationship) (Liu
et al., 2007, 2008). For example, the linear regression model establishes a simple linear relationship between
AOD and PM2.5 (Zhang et al., 2009). Considering more meteorological parameters, the multiple linear regres-
sion model was developed by Gupta and Christopher (2009b). To account for the spatial heterogeneity of the
AOD-PM2.5 relationship, a geographically weighted regression model was introduced (Hu et al., 2013).
Moreover, somemore complex mixed-effect models (Lee et al., 2011) and generalized additive mixedmodels
(Kloog et al., 2011; Liu et al., 2012) have also been developed to estimate ground-level PM2.5. All these statis-
tical models are used to represent the relationship between PM2.5 and the latent factors.

However, the levels of PM2.5 concentration are related to many factors (Hystad et al., 2011; Paciorek et al.,
2008; van Donkelaar et al., 2006; Weber et al., 2010), such as meteorological conditions (e.g., temperature,
wind speed, and relative humidity), land use type, population, road networks, and so on. This situation has
increased the difficulty of using the traditional statistical models to estimate PM2.5. Unlike the traditional
methods, nonlinear and nonparametric machine learning algorithms may have the potential to address
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this problem (Lary et al., 2014). For example, Gupta and Christopher (2009a) used a back-propagation neural
network (BPNN) to estimate surface-level PM2.5 in the southeastern United States; an artificial neural network
algorithm was trained with Bayesian regularization to estimate PM2.5 in eastern China (Wu et al., 2012), and a
generalized regression neural network (GRNN) was reported to outperform the traditional models at national
scale in China (Li et al., 2017). These neural network models show great advantages in estimating ground-
level PM2.5.

Deep learning, which is considered to be the second generation of neural network, may be a potential way to
address this situation (Hinton & Salakhutdinov, 2006). However, to date, deep learning has seldom been
applied in the estimation of ground-level PM2.5; only a few attempts (Ong et al., 2015) have been made to
predict time series PM2.5 over monitoring stations. On the other hand, intelligent algorithms are commonly
used to describe numerical relationships, but they neglect the geographical correlation of environmental
variables. Meanwhile, it has been reported that PM2.5 concentrations show significant autocorrelation in time
and space (Wu et al., 2015). The nearby PM2.5 from neighboring stations and the PM2.5 observations from
nearby days for the same station are informative for estimating PM2.5. It is therefore important to incorporate
this geographical correlation relationship into the intelligent algorithms.

Consequently, the objective of this study is to develop a geo-intelligent deep learning model to estimate
ground-level PM2.5. This model is established and evaluated based on satellite observations, meteorological
parameters, and ground-level PM2.5 measurements from China, which is suffering from serious PM2.5 pollu-
tion (Peng et al., 2016). This study will provide a new perspective to investigate the spatiotemporal character-
istics of air pollution in a large geographic region.

2. Materials and Methods
2.1. Study Region and Data

The study region is China (see Figure S1 in the supporting information). The study period is from 1 January
2015 to 31 December 2015.

The data include five main parts. (1) Ground-level PM2.5: hourly PM2.5 for 2015 was obtained from the China
National Environmental Monitoring Center (CNEMC) Web site (http://www.cnemc.cn). The number of stations
was ~1,500 by the end of 2015. We averaged hourly PM2.5 to daily mean PM2.5 for the estimation of PM2.5. (2)
Moderate Resolution Imaging Spectroradiometer (MODIS) AOD: both Terra and Aqua MODIS AOD products
were downloaded from the Level 1 and Atmosphere Archive and Distribution System (LAADS, https://lads-
web.modaps.eosdis.nasa.gov/). We adopted Collection 6 10 km AOD products, which are retrieved by com-
bining dark target and deep blue algorithms (Levy et al., 2013). The average of the Terra and Aqua AOD
products was employed to estimate daily average PM2.5. (3) Meteorological parameters: we extracted relative
humidity (RH, %), air temperature at a 2 m height (TMP, K), wind speed at 10 m above ground (WS, m/s),
surface pressure (PS, kPa), and planetary boundary layer height (PBL, m) fromMERRA-2 meteorological reana-
lysis data, whichwere downloaded from the NASAWeb site (http://gmao.gsfc.nasa.gov/GMAO_products/). (4)
MODIS normalized difference vegetation index (NDVI): MODIS NDVI products (MOD13) were downloaded
from the LAADS Web site. (5) Population and road data: these data were obtained from the Socioeconomic
Data and Applications Center (SEDAC, http://sedac.ciesin.columbia.edu/data/collection/gpw-v4) and the
National Geomatics Center of China (NGCC, http://ngcc.sbsm.gov.cn/), respectively.

Additional information and integration of the input data are provided in Text S1 in the
supporting information.

2.2. The Deep Belief Network (DBN) Model for the Estimation of PM2.5

The deep belief network (DBN) model, which is one of themost typical deep learningmodels, was introduced
in 2006 (Hinton et al., 2006). A DBN consists of multiple restricted Boltzmann machine (RBM) layers and a
back-propagation (BP) layer and can be used for classification or prediction problems. For example, the struc-
ture of a DBN with two RBM layers is shown in Figure 1a.

An RBM consists of a visible layer and a hidden layer, where the hidden layer of the prior RBM is the visible
layer of the next RBM. Taking the first RBM as an example, from the visible layer (v) to the hidden layer (h1),
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h1i ¼
1; f W0;ixþ bi
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≥ μ

0; f W0;ixþ bi
� �

< μ

(
μ∼U 0; 1ð Þ (1)

where i refers to the number of the ith neuron and bi denotes the bias for neuron i. f(�) indicates the transfer
function, f xð Þ ¼ 1

1þe�x. It is the same for the calculation of the visible layer from the hidden layer. The contras-
tive divergence algorithm is usually used for training an RBM (Hinton & Salakhutdinov, 2006). The weights are
updated in the nth iteration as

Wnþ1
0 ¼ Wn

0 þ ε� h1
1

� �T
x� h1

2

� �T
v1

� �
(2)

where ε is the learning rate, v1 denotes the reconstruction from hidden layer (h1
1), and h1

1;h
1
2 are generated

from x, v1 using equation (1), respectively. The RBMs are pretrained one by one, without supervision, and the
trained weights are used to initialize the multilayer neural network. The DBN model then works as a feed-
forward neural network (Yue et al., 2017), whereas the error reduction using the BP algorithm is referred to
here as “fine-tuning.”

Specifically, in our case, the schematics of the geo-intelligent DBN (Geoi-DBN) used to estimate ground-
level PM2.5 are presented in Figure 1b. The input variables are the satellite-derived AOD, meteorological
parameters, NDVI, and spatiotemporally informative terms. Because of the autocorrelation, the nearby n
grids of PM2.5 measurements and the PM2.5 observations from the m prior days for the same grid are
informative for estimating PM2.5. The nearer observations are more informative than further ones
(Tobler, 1970; Yuan et al., 2012). For a specific grid, the spatiotemporally informative terms are
represented as

Figure 1. The structure of a DBN and the specific schematics (Geoi-DBN) used to estimate PM2.5.
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DIS ¼ min
1
dsi

� �
i ¼ 1; 2;…; n (5)

where ds, dt refer to the spatial and temporal distances, respectively.m, n are 3 and 10, respectively (Table S1
in the supporting information). The geographical distance (DIS) is used to reflect the heterogeneity of uneven
station distribution. Two hidden layers (two RBMs) are then used, and the number of neurons in each hidden
layer is 15 (Text S2). The RBM layers are stacked one by one to transfer the input signals to the higher layer.
The output layer is a BP layer, which has only one node (PM2.5 measurements).

The relationship PM2.5 = f(AOD, RH,WS, TMP, PBL, PS, NDVI, S - PM2.5, T - PM2.5, DIS) is wished to learn from the
data records. The process can be divided into three steps:

1. Pretraining. Using the collected data records, the RBMs are trained layer by layer, without supervision. This
unsupervised training can extract the essential features associated with PM2.5, and they are transferred
from the prior RBM to the next RBM layer. Therefore, the higher layer can extract the deeper features
related to PM2.5.

2. Fine-tuning. Through the prior pretraining step, the initial weights of Geoi-DBN are generated and we can
obtain the calculated PM2.5. Compared with in situ PM2.5 measurements, an estimation error can be
obtained, and it is sent back to the Geoi-DBN model to fine-tune the weight coefficients using the BP
algorithm.

3. Prediction. This step evaluates the performance of the Geoi-DBN model established on the input data
records and predicts the PM2.5 values for those locations with no ground stations. Thus, spatially contin-
uous PM2.5 data can be reconstructed.

To evaluate the model performance, a sample-based 10-fold cross-validation technique (Rodriguez et al.,
2010) was applied to test the model overfitting and predictive power. Furthermore, spatial hold-out cross-
validation strategies, that is, site-based cross-validation and leave one province out cross-validation, were
used to assess the spatial performance. Details of the model validation are provided in Text S3. We adopted
the statistical indicators (Text S4) of the coefficient of determination (R2), the root-mean-square error (RMSE,
μg/m3), the mean prediction error (MPE, μg/m3), and the relative prediction error (RPE, %) to evaluate the
model performance.

3. Results and Discussion
3.1. Evaluation of the Model Performance

To evaluate the deep learning model, we compared the DBN model with BPNN (Gupta & Christopher, 2009a)
and GRNN (Li et al., 2017). BPNN, GRNN, and DBN are all data-driven learning models. However, BPNN has a
relatively simple structure with three layers; GRNN uses plenty of neurons in the hidden layer to fully approx-
imate functions, and DBN has amore complicated structure and initializes itself by the unsupervised pretrain-
ing. As presented in Table 1, when the geographical correlation is not incorporated into the models (original
models), Ori-GRNN obtains the best performance (sample-based and site-based cross-validation R2 of 0.60
and 0.58, respectively), while Ori-BPNN performs the worst. The Ori-DBN model, which has a more compli-
cated structure, is expected to achieve a better performance; however, it obtains a relatively poor result. A
possible reason could be that the AOD-PM2.5 relationship is not complicated enough for deep learning.
From the original models to the geo-intelligent models, the performance is greatly improved. Among these
models, the Geoi-DBN model performs the best, whereas the Geoi-GRNN model performs the worst. This
differs from the results of the original models. A possible reason is that the spatiotemporally informative
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terms greatly increase the complexity of the AOD-PM2.5 relationship.
Benefiting from layer-by-layer pretraining, the more complicated rela-
tionship between PM2.5 and the predictors is better learned in
Geoi-DBN than in Geoi-GRNN. Therefore, the Geoi-DBN model
achieves the best performance, with out-of-sample cross-validation
R2 and RMSE values of 0.88 and 13.03 μg/m3, respectively.
Furthermore, the spatial hold-out cross-validation results also show
that Geoi-DBN has a satisfactory spatial predictive power (Tables 1
and S3). These results demonstrate that the Geoi-DBN model is a
promising approach for the estimation of PM2.5.

Figure 2 shows the scatterplots for the cross-validation of the Ori-DBN
and Geoi-DBN models. For the Ori-DBN model, the sample-based cross-validation R2 and RMSE values are
0.54 and 25.86 μg/m3, respectively. The R2 and RMSE values of the model fitting are 0.59 and 24.53 μg/m3

(Table S4), respectively. When considering the geographical correlation, the spatiotemporal characteristics
of atmospheric PM2.5 are better described in the AOD-PM2.5 modeling. The model performance is therefore
significantly improved. On the other hand, the out-of-sample cross-validation slope for the Geoi-DBN model
is 0.88, with an intercept of 6.39 μg/m3. These findings indicate that the Geoi-DBN model tends to underes-
timate when the ground-level PM2.5 is greater than ~60 μg/m3. Therefore, the higher PM2.5 concentrations
may not be sufficiently explained. This issue is further discussed in section 3.4. However, it should be noted
that the cross-validation slope of the Geoi-DBN model (0.88) is much greater than that of the Ori-DBN model
(0.55). This means that the Geoi-DBN model shows a much lower extent of underestimation than the
Ori-DBN model.

The seasonal and spatial performances of the Geoi-DBN model were also evaluated. The out-of-sample R2

values are 0.84, 0.82, 0.87, and 0.90 for spring, summer, autumn, and winter, respectively. The spatial

Table 1
The Cross-Validation Performance of the Models

Model

Sample-based cross-validation Site-based cross-validation

R2 RMSE MPE RPE (%) R2 RMSE MPE RPE (%)

Ori-BPNN 0.42 29.96 21.10 54.74 0.39 29.71 20.80 53.95
Ori-GRNN 0.60 24.22 16.81 44.26 0.58 24.79 17.22 45.01
Ori-DBN 0.54 25.86 18.10 47.24 0.52 26.67 18.52 48.43
Geoi-BPNN 0.84 15.23 10.34 27.75 0.78 17.89 12.09 32.48
Geoi-GRNN 0.82 16.93 12.34 30.83 0.75 19.43 13.88 35.28
Geoi-DBN 0.88 13.03 8.54 23.73 0.82 16.42 10.71 29.82

Figure 2. Scatter plots of the cross-validation results: (a and c) sample-based cross-validation results of the Ori-DBN and Geoi-DBNmodels; (b and d) site-based cross-
validation results of the Ori-DBN and Geoi-DBN models.

Geophysical Research Letters 10.1002/2017GL075710

LI ET AL. DEEP LEARNING FOR PM2.5 ESTIMATION 5



distribution of R2 (Figure S3) shows that higher values of R2 are found over the areas (e.g., East China) with
denser monitoring stations.

3.2. Mapping of PM2.5 Concentrations

The annual and seasonal mean distributions of PM2.5 in China are mapped in Figures 3a and S4, using our
previous mapping strategy (Li et al., 2017). The annual distribution has a similar spatial distribution to the
ground-measured PM2.5, which is presented in Figure 3b. We also compared our results with previous
satellite-derived PM2.5 data (van Donkelaar et al., 2016). The results are shown in Figure S5. In our results,
the levels of PM2.5 are higher in the northern regions than in the southern regions. Meanwhile, a heavily
polluted region is identified in the North China Plain. As reported in a previous study (Chen et al., 2008),
the climate of this region is characterized by stagnant weather, with weak wind and a relatively low boundary
layer height, which results in the atmospheric conditions for the accumulation, formation, and processing of
aerosols. This is one of the main reasons for the serious PM2.5 pollution in this area. Additionally, the PM2.5

concentrations are generally higher in the inland regions (e.g., Hunan, Hubei, and Hunan) and lower in the
coastal regions (e.g., Guangdong and Fujian). The regions with the least PM2.5 pollution are in Hainan and
Yunnan provinces, which benefit from the low levels of anthropogenic emissions and favorable meteorolo-
gical conditions for atmospheric dispersion. Last but not least, a very high level of PM2.5 pollution is found
in the northwest, especially the Xinjiang Autonomous Region. A possible reason is that the dust particles
in this desert region make a significant contribution to the accumulation of PM2.5 (Fang et al., 2016).

3.3. Exposure Analysis Over China

The distribution of population in China in 2015 is presented in Figure S6. The World Health Organization
(WHO) interim target (IT)-1 and IT-3 for annual mean PM2.5 are 35 and 15 μg/m3, respectively (WHO, 2006).
As shown in Figure 4, the population-weighted estimated annual mean PM2.5 is 53.34 μg/m3, which greatly
exceeds the WHO IT-1 standard. Almost all regions of China (except for the northwest) show population-
weighted averages that are greater than the spatial averages. These findings indicate that more people are
living in more polluted regions. Figure 4 also shows that over 80% of the Chinese population live in areas that
exceed theWHO IT-1 standard. Spatially, South China has the highest percentage of population living in areas
meeting the WHO IT-1 standard, whereas Central and North China have the lowest.

3.4. Discussion

PM2.5 assessment by fusing satellite and station observations involves lots of different factors, which inher-
ently results in big data. In this situation, a deep learning model may better estimate PM2.5. Therefore, we
made efforts to incorporate urban big data (i.e., population data and road network) into the deep learning
model. The results show that these predictors have almost no positive (or even passive) effect on model
performance (Table S5). The possible reason could be that these predictors are not real time and cannot
reflect the temporal variation of the AOD-PM2.5 relationship. Moreover, they have too coarse spatial resolu-
tions to provide additional information. It is possible that the model performance would be greatly improved
if fine-scale and real-time data (e.g., daily street-level traffic flow) could be obtained.

Figure 3. Annual mean distribution of (a) derived PM2.5 and (b) ground-measured PM2.5 in China.
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The Geoi-DBN cross-validation slope of observed PM2.5 versus estimation is 0.88, indicating some evidence of
bias. However, it should be noted that the national-scale estimates of PM2.5 in China (Fang et al., 2016; Lin
et al., 2015; Ma et al., 2016; You et al., 2016) are mostly underestimated (slopes of 0.79–0.83) when ground-
level PM2.5 is greater than 60 μg/m3. This underestimation may be down to several reasons, including the
possibility of mixed types and layers of aerosols in the atmosphere (Guo et al., 2016) and the hygroscopicity
of urban aerosols (Gupta & Christopher, 2009a). Another possible reason is that we used point-based moni-
toring data and a spatially averaged modeling framework. The sampling distribution of monitors may not
give a great estimation of the spatially averaged concentration for that grid. Therefore, this underestimation
is probably a systematic error related to the complicated aerosols in China and the modeling framework.

We summarize the previous studies using machine learning for PM2.5 in China in Table S6. Compared with
these studies, this study has three main advantages. First, we estimate the spatial PM2.5 concentrations using
machine learning by incorporating satellite data, while previous study predicted PM2.5 over stations (Li et al.,
2016). Differing from the traditional machine learning methods (Yao & Lu, 2014), a more advanced deep
learning architecture is then utilized for the satellite-based PM2.5 estimation. Lastly, while previous studies
have used machine learning to simulate the AOD-PM2.5 relationship (Wu et al., 2012), this study further con-
siders the geographical correlation to greatly improve model performance.

In this study, a deep learning architecture has been established to estimate ground-level PM2.5, achieving a
satisfactory performance. However, it should be noted that we applied only one type of deep learning model
(i.e., DBN) to model the AOD-PM2.5 relationship. Would any other deep learning model work better with this
problem? Deep learning has more hidden layers to better represent complex nonlinear relationships, so
whether or not we can estimate PM2.5 using original satellite reflectance rather than satellite-derived AOD
to avoid intermediate error deserves further study. Deep learning is a promising approach for AOD-PM2.5

modeling, but there is still room for improvement.

4. Conclusions

Despite the potential application of satellite-based AOD for air quality studies (Engel-Cox, Holloman, et al.,
2004; Wang & Christopher, 2003), the estimation of PM2.5 involves a large number of factors (Zheng et al.,

Figure 4. Exposure to PM2.5 over China in 2015. Spatial PM2.5: spatial mean PM2.5. Pop PM2.5: population-weighted mean PM2.5. The curves represent the percen-
tage of population exposed to PM2.5, and the black dashed curve denotes national exposure to PM2.5.
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2017). We therefore developed a geo-intelligent deep learningmodel to better represent the AOD-PM2.5 rela-
tionship. This study introduced the layer-by-layer pretraining technique to the satellite remote sensing
assessment of PM2.5. In addition, the geographical correlation was adopted to significantly improve the
estimation accuracy. The deep learning-based AOD-PM2.5 modeling of China accurately estimated PM2.5,
with out-of-sample cross-validation R2 and RMSE values of 0.88 and 13.03 μg/m3, respectively. It is predicted
that over 80% of the Chinese population live in areas with an annual mean PM2.5 greater than the WHO IT-1
standard in 2015. Overall, we can say that the proposed approach is promising for air pollution monitoring in
large geographical regions.
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