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Abstract— In the field of multispectral (MS) and panchromatic
image fusion (pansharpening), the impressive effectiveness of
deep neural networks has recently been employed to overcome the
drawbacks of the traditional linear models and boost the fusion
accuracy. However, the existing methods are mainly based on sim-
ple and flat networks with relatively shallow architectures, which
severely limits their performance. In this letter, the concept of
residual learning is introduced to form a very deep convolutional
neural network to make the full use of the high nonlinearity of
the deep learning models. Through both quantitative and visual
assessments on a large number of high-quality MS images from
various sources, it is confirmed that the proposed model is supe-
rior to all the mainstream algorithms included in the comparison,
and achieves the highest spatial–spectral unified accuracy.

Index Terms— Convolutional neural network, data fusion,
pansharpening, remote sensing, residual learning.

I. INTRODUCTION

PANSHARPENING is a fundamental and significant task
in the field of remote-sensing data fusion, in which the

spatial details from panchromatic (PAN) images and rich spec-
tral information from multispectral (MS) or hyperspectral (HS)
images are fused to yield imagery with a high resolution in
both the spatial and spectral domains. In this letter, we focus
on the fusion of PAN and MS images.

Traditional pan-sharpening algorithms can be divided into
three major branches: 1) component substitution [1], [2];
2) detail injection [3], [4]; and 3) regularization-model-based
methods [5], [6]. In the former two branches, although the
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spatial details are impressively sharpened, obvious distortions
are easily caused in the spectral domain, which severely
degrades the quality of the fused image. The branch of
regularization-model-based methods describe the whole
fusion process as linear functions with strict constraints,
which are usually based on prior knowledge or reasonable
assumptions of the images included in the fusion process, such
as Laplacian prior [5] and sparse coding [6]. Recently, linear
regression methods based on geostatistics theory are also
proposed for image fusion [7], [8]. However, the performance
of such models is limited by their linearity, which cannot
accurately describe a fusion process that contains complex
transformations in both the spatial and spectral domains.
Furthermore, the reliance on prior constraints can also cause
severe quality degradation in cases where the prior knowledge
does not fit the problem.

In this letter, inspired by the impressive performance of
deep learning in the field of computer vision, we propose
the deep residual pan-sharpening neural network (DRPNN) to
overcome the drawbacks of the previously proposed methods
and perform high-quality fusion of PAN and MS images. The
prototype of the DRPNN is introduced from a deep residual
network for image super-resolution [9], and we make a specific
improvement of its architecture to fit it to the task of image
pansharpening. Supported by the residual learning architec-
ture, an extremely deep convolutional filtering framework is
formed to improve the accuracy of the fusion, while the
learning process of the filtering parameters is also guaranteed
to converge quickly.

The rest of this letter is organized as follows. Background
knowledge about pansharpening and the superiority of deep
learning is provided in Section II. A detailed description of
the proposed method is given in Section III. The results of the
experiments are provided and discussed in Section IV. Finally,
the conclusion is drawn in Section V.

II. BACKGROUND

A. Multispectral Image Pansharpening

We denote the PAN image as gPAN (size: H × W ) and the
MS image with S spectral bands as gMS (size: H/scale ×
W/scale × S). The aim of pansharpening is to yield an image
with high resolution in both spatial and spectral domains, and
we denote it as f MS (size: H × W × S). The fusion process
can be regarded as a guided super-resolution problem, which
means that the ill-posed property of the inverse prediction
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Fig. 1. Framework of pansharpening based on learning a deep neural network F = T (G; {W, b}).

problem is reduced with gPAN included, compared to the tra-
ditional single-image super-resolution problem [9]. The main
difficulty of pansharpening comes from the spectral domain,
as the bandwidths covered by the PAN and MS channels are
not guaranteed to fully overlap among the various types of sen-
sor, e.g., WorldView-2 (PAN: 400–1040 nm; MS: continuously
covering 450–800 nm) and IKONOS (PAN: 526–929 nm;
MS: discretely covering 445–853 nm). Thus, to preserve
the spectral fidelity of images fused from such observations,
the fusion process in the spectral domain is very complex and
needs to be simulated using highly nonlinear functions.

B. Pansharpening Based on Deep Learning

To break the limitation of the linear models discussed above,
deep neural networks have recently been employed to perform
prediction and yield images with state-of-the-art accuracy,
relying on the nonlinearity of the mapping process through
the deep networks. Similar to the successful applications for
the single-image super-resolution problem [9], [10], deep
learning models have also been introduced to the field of image
fusion [11], [12]. By using bicubic interpolation to coarsely
up-sample gMS to GMS(H × W × S), we obtain an initialized
input G = {GMS, gPAN}(H × W × (S + 1)) for the
pan-sharpening task. The high-resolution MS image can
be reconstructed by extracting the low-frequency features
from GMS and the high-frequency features from gPAN, and
then merging them to form the final estimation. Thus, from
the perspective of deep learning, we can summarize the
whole process as a filtering function with high nonlinearity.
In addition, the requirements can be met well by the nature
of the deep neural network, in which multiple linear filtering
layers are stacked to form a highly nonlinear transformation,
and the optimal allocations for all the parameters can be
automatically searched for to minimize the prediction loss
between the output of the network F = T(G) and the ground
truth f MS. The flowchart of learning a deep network for the
pan-sharpening process is shown in Fig. 1.

III. METHODOLOGY

A. Convolutional Neural Networks

CNNs are one of the most impressive branches of deep
learning models in the field of computer vision. In an

end-to-end image restoration task, a CNN built with multiple
stacked convolutional layers is expressed as f ≈ F =
C N N(G) to estimate the high-quality image f from the
degraded observation G. To train a randomly initialized CNN
for pansharpening, down-sampled MS and PAN images are
input as G, and then an image F with the same size as the
original MS image f MS is produced [12]. In a CNN with
L layers, the fusion process is performed via forward passing

F0 = G, Fl =max(0, W l ◦ Fl−1+bl), l =1, . . . , L−1 (1)

F = W L ◦ FL−1 + bL (2)

where W stands for the 3-D convolutional filters and
b represents the bias vectors. With stochastic gradient descent
and backpropagation (BP), all the parameters {W, b} in
the network can be iteratively learned to reach an optimal
allocation. The learning process can be summarized as follows:

δθ t = {δW t , δbt } =
{

∂
(|| f MS − Ft ||22

)
∂W t ,

∂
(|| f MS − Ft ||22

)
∂bt

}

(3)

θ t+1 = θ t + �θ t = θ t + μ · �θ t−1 − ε · δθ t . (4)

B. Deep Residual Learning for Pansharpening

It has been noted that a deeper CNN with more filtering
layers tends to extract more abstract and representative
features, and thus higher prediction accuracy can be expected.
However, due to the gradient vanishing problem, the gradients
of the prediction loss to parameters in the shallow layers
cannot be smoothly passed via BP [9], [10], [12], which
prevents the deep network from being fully learned.

Deep residual learning [13] is an advanced method for solv-
ing this problem, in which the transformation f ≈ C N N(G)
is replaced with f -G ≈ R ES(G) by setting a skip connection
between the disconnected layers. It is reasonable to assume
that most pixel values in the residual image f -G are very close
to zero, and the spatial distribution of the residual features
should be very sparse. Thus, searching for an allocation that is
very close to the optimal for {W, b} becomes much faster and
easier, which allows us to add more layers to the network and
boost its performance. However, in the pan-sharpening task,
it should be noted that the size of the final output F(H×W×S)
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Fig. 2. Flowchart of passing low-resolution MS and PAN images through
the DRPNN.

is not the same as the size of the input G(H × W × (S + 1));
thus, instead of directly predicting the residual image as
in [9] and [14], the process through the DRPNN with L layers
is divided into two stages.

Stage 1: The first to the (L − 1)th layers are stacked
under a skip connection to estimate the residual between
G and FStage 1 (size: H × W × (S + 1)). The convolutional
filtering process in each layer is the same as described in (1).
The residual output from the (L − 1)th layer is then added to
G to yield FStage 1

FStage 1 = G + FL−1. (5)

Stage 2: The Lth layer of the DRPNN is set to reduce the
spectral dimensionality from (S + 1) bands to S bands via the
last 3-D convolutional filtering process in the model, yielding
a final estimation FStage 2 (H × W × S)

F = FStage 2 = W L ◦ FStage 1 + bL . (6)

The complete architecture of the DRPNN is illustrated
in Fig. 2.

IV. EXPERIMENTS AND DISCUSSION

Data Sets: For the training and simulated experiments
with the DRPNN, two data sets were collected from
QuickBird (51 648 training patches and 160 test patches) and
WorldView-2 images (59 840 training patches and 80 test
patches). Two networks were then separately learned for
MS images with different values of S: one was set with
S = 4 (QuickBird), and the other was set with S = 8
(WorldView-2). In the real-data experiments, for the network
with S = 4, we collected another data set from a group of
high-quality IKONOS images, while the other network was
tested on a smaller part of the WorldView-2 data set to yield
full-resolution MS images. The huge number of tested images
in our collected data sets makes the quantitative results much
more convincing.

A. Hyperparameters and Training

The DRPNN proposed in this letter contains L = 11 layers,
the lth layer of which is filled with Cl groups of filters
W l,k(hl × wl × Cl−1), where k = 1, . . . , Cl , and one bias
vector bl(1 × Cl). According to the aimed task, C0 = S + 1
and C11 = S should first be provided and, similar to the

Fig. 3. Q and SAM values of the DRPNN with different filter sizes. The
quantitative assessments were undertaken on the data set of 160 QuickBird
images.

prototype [9], Cl for the other layers is empirically set to 64.
For the spatial size hl × wl of the filters, we compared the
performances of several values, as shown in Fig. 3. From the
results of the comparison, the filter size was set to 7×7 through
the whole network.

The training process of each network costs 300 epochs.
As the classic momentum algorithm [15] was also applied
to accelerate the decrease of the prediction loss, the learning
rate ε in (4) was initialized as 0.05 for the first ten layers with
the skip connection, and as 0.005 for the last layer, while the
momentum μ was fixed at 0.95 for the whole network. After
every 60 epochs, the learning rate was multiplied by a descent
factor γ = 0.5. The implementation of the CNN was supported
by two deep learning frameworks: Caffe [16] for training and
MatConvNet [17] for testing.

B. Quantitative Assessments

The MS and PAN images were down-sampled to
simulate a relatively degenerated input G. Four metrics—the
Q metric, the relative dimensionless global error in synthesis,
the spectral angle mapper (SAM), and the spatial correlation
coefficient (SCC)—were employed to quantify the accuracy
in the spatial and spectral domains, with the original MS
image as the ground truth. The performance of the DRPNN
was compared with five algorithms from different branches:
Gram–Schmidt (GS) pansharpening [1], the generalized
Laplacian pyramid with modulation transfer function matched
filter (MTF-GLP) [3], smoothing filter-based intensity
modulation (SFIM) [4], the adaptive wavelet luminance
proportion (AWLP) method [18], and the two-step sparse
coding model (TSSC) [6]. In addition to these traditional
algorithms, the PNN[12], a flat CNN without residual learning
and skip connection, was also included in the comparison.
The quantitative results are listed in Table I, where the
comparison of the metrics indicates that the DRPNN yields
images with the best spatial–spectral unified accuracy.

C. Visual Assessment

Considering that the numeric metrics are mainly employed
to quantify the overall accuracy of a predicted image, visual
inspection is also required to find any noticeable distortion,
which may not be shown in the quantitative assessment.
For each value of band number S, one group of simulated
fusion results are selected to be displayed as true-color images
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TABLE I

QUANTITATIVE RESULTS OF THE SIMULATED EXPERIMENTS

Fig. 4. Simulated fusion results from the QuickBird imagery, Yichang, 2015.
(a) Low-resolution MS image simulated by down-sampling. (b) Ground truth.
(c) SFIM. (d) GS. (e) MTF-GLP. (f) AWLP. (g) TSSC. (h) PNN. (i) DRPNN.

in Figs. 4 and 5, while some of the results from the real-data
experiments are shown in Figs. 6 and 7. By comparing the
results, it can be observed that by methods that are not
based on deep learning models, sharpened spatial features
are achieved, but with severe spectral distortions, such as the
industrial area shown in Fig. 4(c)–(g) and the textures of the

Fig. 5. Simulated fusion results from the WorldView-2 imagery,
San Francisco, 2011. (a) Low-resolution MS image simulated by down-
sampling. (b) Ground truth. (c) SFIM. (d) GS. (e) MTF-GLP. (f) AWLP.
(g) TSSC. (h) PNN. (i) DRPNN.

Fig. 6. Full-resolution fusion results from the IKONOS imagery, Wuhan.
(a) Up-sampled MS image. (b) PAN. (c) SFIM. (d) GS. (e) MTF-GLP.
(f) AWLP. (g) TSSC. (h) PNN. (i) DRPNN.

urban vegetation shown in Fig. 5(c)–(g). Meanwhile, results
of the two deep learning-based models are the closest to the
ground truth, both in the fusion of the spatial details and in
the preservation of spectral fidelity, even for some specific
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Fig. 7. Full-resolution fusion results from the WorldView-2 imagery,
San Francisco, 2011. (a) Up-sampled MS image. (b) PAN. (c) SFIM.
(d) GS. (e) MTF-GLP. (f) AWLP. (g) TSSC. (h) PNN. (i) DRPNN.

spectral curves that can be easily distorted, such as the bare
soil in the top middle of Fig. 5(h) and (i).

For the two CNN-based methods, the high-quality results
are difficult to tell apart, but by investigating the preservation
of ground objects with small sizes, it can be confirmed
that the deeper architecture of the DRPNN helps to more
appropriately sharpen the small edges, such as the edges of
the industrial buildings in the bottom left of Fig. 4(h) and (i).
The same tendency is also seen in the full-resolution results
of the real-data experiments displayed in Figs. 6 and 7.

V. CONCLUSION

In this letter, we have proposed the DRPNN to perform
high-quality fusion of MS and PAN images. The DRPNN
employs the high nonlinearity of a CNN to achieve a better
performance. Furthermore, to make adequate use of the
advantages of deep learning, the residual learning architecture
is applied to allow the network to go deeper and boost its
performance. The superiority of the proposed network was
supported by the results of experiments on a large number of
images covering various complex ground scenes.

The successful implementation of the DRPNN has
motivated us to apply the framework to further studies in the
field of multisource remote-sensing data fusion. Inspired by
other recently published works based on deep learning, our
strategy of learning a deep residual network for feature repre-
sentation is expected to be further expanded for other tasks of
image restoration and high-level content interpretation, includ-
ing spatial–temporal unified fusion [19], multidomain unified
quality improvement [20], [21], aerial scene classification [22],
and saliency detection [23], [24].
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