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Abstract— Striping effects are a common phenomenon in
remote-sensing imaging systems, and they can exhibit con-
siderable differences between different sensors. Such artifacts
can greatly degrade the quality of the measured data and
further limit the subsequent applications in higher level remote-
sensing products. Although a lot of destriping methods have
been proposed to date, a few of them are robust to different
types of stripes. In this paper, we conduct a thorough feature
analysis of stripe noise from a novel perspective. With regard
to the problem of striping diversity and complexity, we propose
a universal destriping framework. In the proposed destriping
procedure, a 1-D variational method is first designed and utilized
to estimate the statistical feature-based guidance. The guidance
information is then incorporated into 2-D optimization to control
the image estimation for a reliable and clean output. The itera-
tively reweighted least-squares method and alternating direction
method of multipliers are exploited in the proposed approach
to solve the minimization problems. Experiments under various
cases of simulated and real stripes confirm the effectiveness and
robustness of the proposed model in terms of the qualitative and
quantitative comparisons with other approaches.

Index Terms— Destriping, mean cross-track profile, remote-
sensing image, universal framework, variational optimization.

I. INTRODUCTION

S TWO of the most commonly employed optical imag-
ing technologies in remote-sensing systems, whiskbroom
sensors (across-track scanning) and pushbroom sensors (along-
track scanning) often acquire images that are contaminated
with stripes. The main cause of such effects is the inconsistent
responses among different sensors [1]. However, other factors,
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including imperfect relative calibration, the response variation
of the detectors, bright target saturation, and random noise,
also contribute [2], [3]. Stripes, including the possible signal-
dependent stripes [4], [5], can lead to significant uncertainties
in the primary reflectance or radiance data. Without correc-
tion, these uncertainties will be concentrated and magnified
in the higher level remote-sensing products, which would
bring further problems in the data applications. Therefore,
the correction of image stripes, which is commonly called
“image destriping,” is crucial.

Due to the various impacts of different remote-sensing
sensors, the features of stripe noise vary considerably. Here,
we summarize six features of stripes in remote-sensing data:
direction, degradation, distribution, periodicity, pattern, and
persistence (short for 3-D-3P). To give a clear description,
the detailed information is shown in Table I. All the illustra-
tions are from real remote-sensing images.

The most understandable feature is direction, which further
contains horizontal, vertical, and oblique components. As a
result of the combination of the along-track placed sensor
array and the across-track forward and reverse scanning [3],
horizontal stripes generally appear in the images acquired by
whiskbroom sensors. Some typical examples are the Multi-
spectral Scanner, Landsat Thematic Mapper, and Moderate
Resolution Imaging Spectroradiometer (MODIS). In contrast,
instruments such as the High Resolution Visible instrument
onboard the Satellite Pour I’Observation de la Terre satellite,
the Hyperion sensor onboard EO-1, and many other high-
resolution sensors adopt a pushbroom technique. In pushbroom
scanning, since every image line is recorded along the track
through an across-track placed array [1], vertical stripes are
easily generated. In general, stripes are either horizontal
or vertical in the original remote-sensing images. However,
once georectification is performed, oblique stripes can appear.

The second feature, degradation, describes how severely a
scan is contaminated. It can be classified into two categories:
warm and dead. Warm scans are those scans that are
brighter or darker than the healthy scans [6]. As a result,
information about the ground objects can still remain in these
stripes. However, dead scans, which are mainly caused by
faulty detectors with a zero or constant response, contain no
useful information as their inner pixels have no correlation
with the true scene [7].

To introduce the distribution situation of stripes in the whole
image, we use local, global, and all to detail the grades
in the distribution feature. The local grade means that the
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TABLE I
FEATURE ANALYSIS FOR STRIPE NOISE IN REAL DATA

Feature

Illustration

Direction

Degradation

Distribution

Periodicity

periodic non-periodic

Pattern

banding

Persistence

integral

stripes are concentrated in certain regional scans. Caused by
the ill responses from a part of detectors, this grade can
be found mainly in pushbroom images, since whiskbroom
sensors reflect the influence of ill responses into the whole
image through a repeating forward and reverse scanning mode.
Conversely, the global grade, which can appear in pushbroom
and even more often in whiskbroom images, describes a
distinct situation where the stripes are widely distributed in
the entire swath. Being the severest grade, all is a very
special global distribution, since, in such a case, all the scans
appear to be stripes and are difficult to distinguish as healthy
information.

Closely related to the scanning mode, periodicity is another
feature. In general, nonperiodic stripes are the most common
and can be found in sensors with different kinds of scanning
modes. In contrast, periodic stripes with much more regular
structures always appear with the whiskbroom sensors, as a
result of across-track scanning [8].
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The fifth feature is pattern. Single, as the simplest pattern,
describes stripe noise with a one-pixel width. Agminated
denotes a different situation when a group of neighboring
scans are simultaneously affected by stripes. Banding caused
by sudden change in the bias level is a special case of an
agminated pattern, with alternating bright and dark scans [3].
A typical example is the so-called mirror-side stripes in
MODIS data, since a quasi-constant offset occurs during their
forward and reverse scanning [2].

Finally, the persistence feature gives an apparent description
about whether or not the stripe extends in a whole scan line.
Even though most stripes belong to integral, partial stripes
can be found in some images. For example, in specific thermal
bands of MODIS images [2], stripes may appear with random
lengths. The main cause of these partial stripes is unstable
detectors whose sensitivity varies in a part of the scan during
the scanning process [9].

From the above analyses, it can be seen that the stripe
situation in remote-sensing images is very complicated.
Furthermore, even in a single image, a mixture of different
types of stripes is very common. Although many different
destriping methods have been developed to date, a few of
them can successfully deal with all different cases of stripes.
In this paper, we propose a universal destriping model for
remote-sensing images via joint usage of 1-D and 2-D vari-
ational methods. More specifically, a rough estimation of the
mean statistics is first obtained through a 2-D optimization
as guidance information, and is then employed to set up a
2-D destriping model. To efficiently solve the minimization
problem, the iteratively reweighted least-squares (IRLS) and
alternating direction method of multiplier (ADMM) methods
are applied in the proposed approach. Various cases of stripe
noise covering nearly all the features were tested in our
experiments to validate the robustness of the proposed method.

The remainder of this paper is organized as follows.
Section II gives a review of the previous destriping methods.
Section III introduces the proposed variational model.
The experimental results, along with a quantitative evaluation,
are given in Section I'V. Section V provides a further discussion
on the proposed approach. Finally, we make a summary
in Section VI.

II. REVIEW OF DESTRIPING METHODS

Before acquiring remote-sensing images, their inner stripes
are generally preprocessed according to the calibration coeffi-
cients computed either through the uniform light source in the
laboratory (preflight) or onboard the satellite (in-flight) [10].
However, this preprocessing does not always work due to
the imperfect calibration and/or the variability in the sensor
response. Thus, image-based destriping techniques are also
needed. In the literature, various methods have been explored
to remove stripe noise from remotely sensed images. Based
on their underlying similarity, we make a more detailed
classification of these methods.

The first family of destriping approaches is the scene-based
techniques. The main idea in this approach is to compute the
relative relations between different detectors using selected
stable scenes, or “flat-field” targets, before correcting the
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other images. For instance, Fischer et al. [10] utilized stable
scene images to obtain correction coefficients for hyperspectral
SWIR data, supposing that the sensor conformed to a linear
response; Corsini et al. [11] made use of a polynomial
model to estimate equalization curves from homogeneous or
quasi-homogeneous targets for final modular optoelectronic
scanner image correction; Bindschadler and Choi [12] drew
support from ice-sheet images to estimate the detector errors
in Hyperion data. However, since the valid coefficients can
change with the specific scene contents [10], scene-based
methods can easily produce artifacts when using a fixed set of
coefficients.

Filter-based methods, such as the Fourier domain
filter [13], [14] wavelet analysis [15], [16], and the combined
wavelet-Fourier filter [17], [18], are, to some extent, the most
direct techniques. These methods work by analyzing and
truncating the specific stripe component in a transformed
domain, and hold the advantage of being able to process the
georectified images [13], [16]. Since the periodic feature of
stripes can be easily identified in a power spectrum analysis,
the filtering-based methods are generally suitable for peri-
odic stripes. However, the useful information can sometimes
be filtered out along with the stripes if they possess the
same frequency, which further results in significant blurring
and/or ringing artifacts [13]-[15]. To overcome this limitation,
Munch et al. [17] and Pande-Chhetri and Abd-Elrahman [18]
have tried to find more accurate ways of stripe information
truncation.

Another category of destriping technique, the interpolation-
based methods, first ensures the stripe locations and then
replaces the stripe pixels with reasonable values calculated by
a designed interpolation function [9], [19]. These methods are
simple, efficient, and robust for “single” pattern stripes, espe-
cially when their degradation is “dead” [9]. However, a main
restriction of these methods is the stripe thickness [19], that
is, interpolation is not possible when the width of the stripe
noise is too large. Moreover, the stripe detection may also be
intractable when faced with complex striped images [8], [19].

Statistical-based approaches constitute another popular
destriping group. These methods examine the distribution
of the digital numbers for each sensor and then adjust the
target distribution to the reference one [3], [20]. Equalization
methods [21], histogram modification [22], [23], and moment
matching (MM) [20] are typical examples. Relatively speak-
ing, the statistical-based approaches are the most widely uti-
lized, because they have a better balance between efficacy and
efficiency. However, their limitation is also nonneglectable,
since these models simply consider that the response of
each detector is invariable in the whole striping line, which
is not always true in a real case. To improve the robust-
ness, Rakwatin et al. [3] combined histogram matching with
a facet filter for stripe noise reduction in MODIS data, and
Shen et al. [24] proposed a piecewise approach based on local
statistics. Nevertheless, the universality is still a problem.

Recently, optimization-based models have attracted
much attention. Shen and Zhang [6] first proposed the
Huber—-Markov variational algorithm for the destriping
problem. Carfantan and Idier [1] designed a calibration-related

model, which utilizes a maximum a posteriori framework
to estimate the stripe multiplicative component, assuming
that the additive component can be eliminated easily
onboard. Unlike the detector response degradation model
requiring an invariable calibration coefficient along the
whole striping line, Bouali and Ladjal [2] employed a
more flexible assumption by directly regarding stripes as
additive noise (with different values in different pixels),
and proposed a sophisticated algorithm after analyzing and
modeling the directional structural information of the stripe
noise. Subsequently, Chang et al. [25] further incorporated
the sparse representation theory for the joint denoising
and destriping problem. Paying special attention to the
noise distribution, Liu er al. [26] designed a stripe noise
separation model based on the latent sparsity of stripes in
data. Furthermore, for highly dense stripes, Liu et al. [27]
also proposed a variational model based on the statistical
properties of the stripes. Optimization-based models are very
promising because they produce good results in terms of both
quantitative and qualitative evaluations. However, in addition
to the efficiency problem, the optimization-based methods
also have much room to improve their estimation when faced
with different types of stripes.

Considering the high spectral correlation among different
bands [28]-[30], there have also been some special methods
developed for hyperspectral data. Sun et al. [31] proposed a
spectral moment method for hyperspectral images by fully
using the abundant spectral information. Acito et al. [4]
exploited the orthogonal subspace approach to estimate the
striping component and then remove it from the image.
By using low-rank representation, Lu ef al. [32] applied this
framework to the hyperspectral image destriping problem,
while Zhang et al. [33] focused on mixed noise removal.
Driven by the unmixing theory [34], [35], Cerra et al. [36]
designed an unmixing-based method for hyperspectral destrip-
ing and inpainting. Although some of these methods have the
ability to simultaneously process other types of noise, when
processing images with just a few more spectral bands, the
computation time can greatly increase.

III. DESTRIPING MODEL
A. Problem Formulation
Assuming that we have a clean true remote-sensing
image and the striping effects are considered to be addi-
tive noise [2], [8], [25], then the degradation model can be
described as

Y=X+S (1)

where Y is the observed image and X is the latent true image.
The term S denotes different kinds of stripe noise and minor
random noise. Since the destriping task in this paper is to
estimate the latent true image from the observation, the key
becomes further exploring appropriate prior information to
tackle this typical inverse problem. Although other degradation
models may involve the specific response of the detectors,
the more general assumption for stripe noise in (1) can be
a much better fit for the complicated cases, enhancing the
flexibility of the relevant destriping framework.
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Fig. 1.  Mean cross-track profiles in (a) normal image, (b) stripe-added

image with “single” pattern stripes, and (c) stripe-added image with “banding”
pattern stripes.

B. One-Dimensional Variational Optimization for the
Desired Mean Cross-Track Profile

Stripe noise possesses a remarkable structural characteristic,
which reflects in an obvious difference between striping lines
and nonstriping lines in their along-stripe statistics. Taking a
mean cross-track profile [13], [20], [24] as an example, the
profile in the normal noise-free image is relatively smooth,
as shown in Fig. 1(a). However, after adding the simulated
structural stripes to the image, the profiles of both “single”
pattern stripes and “banding” pattern stripes can become much
more turbulent, as shown in Fig. 1(b) and (c). In general,
in a real destriping case, the only known profile is the one
with stripes. At this time, if the stripe-free desired mean
cross-track profile is also available, then the calibration of the
striping lines can be wholly controlled using this information
as guidance. Hence, for an accurate destriping solution, the
acquisition of the guided profile is very useful. Inspired by
the above idea, we put guidance estimation in the first place
and realize it via 1-D optimization of the mean cross-track
profile.

Since the desired profile is much smoother but has a similar
tendency to the stripe-affected one, by using the known noisy
profile as the input, we can regard the estimation of the desired
profile as a typical 1-D denoising problem [37]-[40]. As in
the common variational methods, our data fidelity term is
constructed to minimize the differences between the real and
the desired profiles, while the regularization term is designed
to ensure the smoothness of the estimated output. For the
convenience of description, we assume that only horizontal
stripes are displayed in Y € R”*" (m rows and n columns).
However, for the vertical stripes, they can also be processed
through a first rotation of the image matrix by 90°. The
proposed model is defined as

) (1 b A
g = argmin ;Ilg—YfIIerEIIDgIIz )
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where p € (0,2], f € R"™! is a column vector whose
elements are equivalent to 1/n, g € R™*! represents the
filtered result, A tunes the smoothness of the estimated profile,
and D is a regularization matrix. Here, we choose D as a blur
matrix corresponding to the blur kernel [I —2 1]7. Tt can be
easily seen that Yf calculates the original noisy mean cross-
track profile in Y. In addition, the choice of the £ norm is
aimed at treating different profiles in varying striping cases.
For example, when stripe noise just occurs in several image
lines, p = 1 will fit better than p = 2. Due to the fact
that the Hodrick—Prescott filter (HP filter, commonly used in
economics) [37], [38] is a fixed p = 2 model, which belongs
to a special case of (2), our variational method can also be
considered to be an enhanced generic HP filter.

Given that p € (0, 2] in (2) is an arbitrary value, we employ
the IRLS method [1], [41], [42] to solve the problem. For
each iteration, one needs to solve a weighted least-squares
minimization

. (1 )
5* D — arg min {EHW(k)l/Z(g —-YD)3 + 5||Dg||§} 3)

where
W = diag(T (g® - YI)) “)
and
Ix|P72, if |x| > «
T(x) = 5
(x) {ap_z, £ 1] < a 3)

for a small positive a.
Therefore, f;(kH) has a closed-form solution as

g0+D — (W® 1 pTp) "' WhYE, (©6)

C. 2-D Variational Optimization for the Destriped Image

As a typical inverse problem, destriping needs prior knowl-
edge to constrain its solution space for a more accurate
estimation. Therefore, after obtaining the filtered profile as the
solution of (2), denoted by g(Y) hereafter, we introduce this
destriping guidance in our model and construct the constraint
term as

G(X) = [18(Y) — XfJI3. (7

By penalizing the differences between the filtered profile and
the profile in the desired data through an ¢? norm, G (X) can
effectively keep the consistency in the recovered data from
the guidance information, and functions to further control the
destriping process for a reliable output.

To smooth the image noise under an optimization-
based framework, the effectiveness of total variation (TV)-
based techniques has been proved in many applications
[2], [6], [8], [43]-[45]. In [6], we successfully removed the
stripe noise by employing the isotropic finite second-order dif-
ferences. However, considering the obvious directional char-
acteristics of the stripe noise, an unsymmetrical regularization
would be more adaptive. As a consequence, anisotropic TV
regularization [2] is thus chosen

RX) = IViX = Vi Y[ + 21 Vo X[ )
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Fig. 2. Flowchart of the proposed universal destriping framework.

where V, and V, separately denote the partial differential
operator in the along-stripe and across-stripe directions and
A1 is the parameter controlling the functioning degree of
these two terms. In R(X), ||V, X — V., Y||; maps the along-
stripe gradients from the observed Y to the desired X, aiming
at maintaining the stripe-unaffected gradients in X, while
IV, X1 acts as the key term to suppress the stripe noise via
minimizing the across-stripe gradients in the desired image.

Finally, a unified destriping framework is proposed by
combining the statistical feature-based guidance G(X) with
the anisotropic regularization R(X) as follows:

X'= arg min E (X) )
where

A
EX) = RX) + EZG(X) = (IVaX = Vi Yll1 + 4lIVoXl)

M
+ IR —Xf15 - (10)

where A, is the parameter used to balance the anisotropic
regularization and the statistical feature-based guidance. In the
proposed model, the calculation of the guidance never needs
extra information from other data, so it can be self-estimated
for all the images as long as their stripes extend horizon-
tally or vertically. In addition, all the stripes must meet the
anisotropic property. Therefore, the proposed model holds
good universality and can be expected to work in all hori-
zontally and vertically striped images. The framework of the
proposed method is illustrated in Fig. 2.

The difficulty in solving the proposed model (10) mainly
lies in the nondifferentiability and inseparability of the
¢'-norm terms. Since the ADMM approach can decouple
the nonsmooth ¢! term from the smooth loss term, which is
computationally efficient [46], it is a great choice to tackle this
problem. We therefore apply the ADMM principle to minimize
this cost function. By introducing two auxiliary variables
H and V, the unconstrained minimization problem (10) can

be converted into a constrained one

. A2 .
min {||H||1 + IVl + S IEY) - Xf||%}

st. H=V,X - V,Y, V=V,X. (11)

As in the method of multipliers, the augmented Lagrangian is
formed as follows:

LH,V,X, p1, p2)
= [Hll + 4 VI + %HQ(Y) — Xf|3
+pl (VX = Vi)Y —H) + p] (V,X = V)
+2viX = ViY —HI3 + 219X - VI3 (12)

where p; and p, are Lagrange multipliers and p; and p;
denote the penalty parameters, which also control the step
sizes for the update of their corresponding Lagrange multi-
pliers. To solve (12), an alternating scheme is utilized, which
decomposes the original problem into H, V, and X, three
simpler subproblems.

Note that both the H-related and V-related subproblems are
decoupled, so their optimal values can be explicitly computed
using a shrinkage operator [47]. We simply compute

k
1
H! = shrink <vhxk —vy+ A —) (13)

P1 Pl
k1 k Plzc A1
VA = shrink | V, XF + 22, == (14)
P2 P2
where shrink is the soft-shrinkage operator
shrink(r, &) = max(r — &, 0) * ﬁ (15)
r

The X-related subproblem is a quadratic minimization prob-
lem and equivalent to the linear system

plvg‘vhxk-l—l _’_pzvgvvxk-i-l _ /12Xk+1ffT

P P
= VI (VY +HF - ZL ) g vl VR 22
p1 p2

— g’ (16)

which can be efficiently solved by the fast Fourier trans-
form (FFT) due to its block-circulant structure [48].
In each iteration, the Lagrange multipliers p; and p; are
finally updated by
Pt =pl X v Y R
p12€+1 — p12< +p2(vvxk+1 _ Vk+1).
Combining (13), (14), (16), and (17), we have a one-step
iteration for the ADMM. The optimization procedure of the
proposed destriping model is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

Both simulated and real-data experiments were conducted
to demonstrate the effectiveness of the generic destrip-
ing framework. The four comparative methods were as
follows:
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(g) Proposed method.

Algorithm 1 Proposed Destriping Algorithm

Input: data Y, filtered profile g(Y), and parameters
A, 22, P15 P2.
Initialize: Xo =Y,Hy =0,Vo =V, Y, p1 =0, p» =0,
and ¢ = 1073

While (|X¥ — X¥1)1/IXK|| > & and k < Npax) do
Solve H*! V¥*1 ysing a thresholding method
by(13), (14)

Compute X**!; the solution of (16) using FFT

Update the two Lagrange multipliers p!, p4*!
by (17)
End While

Output: X !

1) MM [20];

2) combined wavelet-Fourier filtering (WAFT) [17];

3) the unidirectional TV model (UTV) [2];

4) the striping sparsity considered model (SSC) [26].
To allow a fair quantitative evaluation, all the test images were
normalized between [0, 1].

5]

Destriping results for simulated case 1. (a) Clean observation. (b) Degraded image. (c) MM. (d) WAFT. (e) UTV. (f) SSC. (g) Proposed method.

(d) )

Close-ups of the yellow rectangle marked region in Fig. 3. (a) Clean observation. (b) Degraded image. (c) MM. (d) WAFT. (e) UTV. (f) SSC.
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A. Simulated Data Experiments

As simulations, two very different striping cases were simu-
lated by adding distinct stripe noise to the clean observations.
The observation extracted from a heterogeneous area of Terra
MODIS data with a size of 400 x 400 was utilized to simulate
case 1. In this case, nearly all the image lines had stripe noise
added, and the degradation levels among the striping lines
were random, as shown in Fig. 3(b). In case 2, the observation
was cut in a 400 x 400 homogeneous area from Aqua MODIS
data. To make this case more different and complicated, both
integral stripes and partial stripes were randomly and period-
ically simulated in the test image, respectively. In addition,
a special agminated stripe with the width of 15 lines was also
added, as shown in Fig. 5(b).

Figs. 3 and 4 compare the performance of stripe removal in
case 1. Figs. 5 and 6 present the destriping results for simulated
case 2. From Figs. 3-6, it can be clearly seen that the proposed
destriping framework adequately alleviate the stripe noise,
no matter if it is dense or sparse, partial or integral, single
or agminated, and it can also preserve most of the detailed
information from the clean observations. The parameters of the
proposed model were set as p = 2, 2 = 125000, and 41 = 0.2
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Fig. 5.

L%

Destriping results for simulated case 2. (a) Clean Observation. (b) Degraded image. (¢) MM. (d) WAFT. (e) UTV. (f) SSC. (g) Proposed method.

(@) (b) (©)

Fig. 6.
(g) Proposed method.

for case 1, and p = 1, 4 = 220000, and 1; = 0.1 for
case 2. Unlike the results of the proposed model, the results
of MM and WAFT contain obvious unprocessed or over-
processed stripes, and these are much more obvious in the
close-ups. Although UTV can thoroughly remove the stripe
noise, the brightness distortion in Fig. 4(e) reveals its drawback
of possible oversmoothing. Based on the sparse assumption,
the SSC method is able to remove the stripes in some relatively
sparsely distributed regions, but, when faced with the dense
case or when the stripes are too wide to be thought of as dense,
its results become worse, as shown in Figs. 3(f) and 6(f).

Figs. 7 and 8 show the mean cross-track profiles in the
two simulated cases. As expected, the red profiles output by
the proposed method are much smoother than those from
the corresponding noisy images (the green profile) and, more
importantly, they are also the most similar to the blue ref-
erence profiles from the original stripe-free data. Moreover,
the profiles of the proposed method after 1-D filtering and
2-D destriping are very similar, which essentially reflects the
ability of the proposed model to adequately use the guidance
information in the destriping process.

With the access to the ground truth, four full-reference
indexes and two nonreference indexes were employed in the

(d)

Close-ups of the yellow rectangle marked region in Fig. 5. (a) Clean observation. (b) Degraded image. (c) MM. (d) WAFT. (e) UTV. (f) SSC.

(o) ®

(2

simulated data experiments to give the quantitative evaluation.
Among them, the improvement factor (IF1) [11], the peak
signal-to-noise ratio (PSNR), the structural similarity (SSIM)
index [49], [50], and the mean absolute error (MAE) are full-
reference indexes. The definitions of these four indexes are as
follows:

i o 12
— 1010&0(2, (my[j]1— mxL[j1) ) s

> (mg[j1— mx[j1)?

PSNR = 101 ( MN > (19)
= (6] —_————
SO IR - X
(2mxmg + C1)(2ogg + C2)
SSIM = (m2+m2+C)(02+02+C) 0)
X X 1)\0x X 2
X = X!
MAE = N (21)

where myl[j], mglJjls and mx[j] are the mean values of
the jth striping line in the raw, destriped, and reference
images, while mx and mg denote the mean values of the
whole images X and X. ox and 0% stand for the variances,
and oy represents the covariance between X and X. In prac-
tice, IF1 was utilized to reflect the image improvement after
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Fig. 7. Mean cross-track profiles of simulated case 1, containing

processed (red curve), noisy (green dashed line), and reference (blue curve)
profiles. (a) MM. (b) WAFT. (c) UTV. (d) SSC. (e) Proposed method after
1-D filtering. (f) Proposed method after 2-D destriping.

TABLE I

QUANTITATIVE ASSESSMENT OF THE FULL-REFERENCE INDEXES
IN THE SIMULATED DATA EXPERIMENTS

Image Index MM  WAFT UTV SSC  Proposed
IF1 1329  19.44 7.61 16.19 2141
Case 1 PSNR 2413 2627 1992 2636 27.86
SSIM 0.86 0.94 0.93 0.93 0.95
MAE (E-2) 445 3.24 7.84 3.49 2.59
IF1 6.67 7.29 5.89 5.83 22.09
PSNR 2470 2582 2636 2596 3791
Case 2
SSIM 0.92 0.94 0.99 0.96 0.99
MAE (E-2) 3.85 3.97 4.29 1.77 0.78

destriping, whereas PSNR, SSIM, and MAE were used to eval-
uate the fidelity between the reference and destriped images.
The related results are listed in Table II.

With regard to the nonreference indexes, the inverse coef-
ficient of variation (ICV) [51], [52] embodies the level of
stripe noise, and can be further used to assess the destriping
performance of a given method. Conversely, the mean relative
deviation (MRD) [6], [8] calculates the change of a noise-free
region, and thus measures the ability to retain the original
healthy information. These indexes are defined as follows:

R
Icv=-=2

N

1 IX; — Y
MNZ Y;

i

(22)

MRD = x 100%

(23)
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Fig. 8. Mean cross-track profiles of simulated case 2, containing
processed (red curve), noisy (green dashed line), and reference (blue curve)
profiles. (a) MM. (b) WAFT. (c) UTV. (d) SSC; (e) Proposed method after
1-D filtering. (f) Proposed method after 2-D destriping.

where R, and R; denote the mean and standard deviation
of a selected image region, and X; and Y; are the pixel
values in the destriped and raw images. In the simulated
experiments, the computations of the ICV and MRD indexes
were separately done in three sampled 10 x 10 homogeneous
regions and sharp noise-free regions. Due to the absence of
a 10 x 10 noise-free region in simulated case 1, the MRD
calculations were just performed in case 2, as displayed
in Table III. To give a clear comparison, the top two results
for each ICV or MRD sample are labeled in bold, and the
underlining denotes their corresponding best values. A better
destriping result is reflected by higher IF1, PSNR, SSIM, and
ICV values, and lower MAE and MRD values.

Besides being visually the best, the performance of the
proposed destriping framework is also quantitatively superior.
For example, in Table II, the proposed approach beats the other
four methods in all the full-reference evaluations. From the
nonreference assessment perspective in Table III, the proposed
model also outperforms MM, WAFT, UTV, and SSC, with
the most regions of the highest ICV values and the lowest
MRD values.

B. Real-Data Experiments

To verify the universality of the proposed method, we also
tested the proposed approach on a variety of real data
with different types of stripe noise. The test images were
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Experimental images. (a) Hyperion band 8. (b) HYDICE band 103. (c¢) Aqua MODIS band 16. (d) Aqua MODIS band 30. (e) Hyperion band 56.
(f) Terra MODIS band 27. (g) Terra MODIS band 28. (h) Terra MODIS band 30.

Fig. 9.

TABLE III

QUANTITATIVE ASSESSMENT OF THE NONREFERENCE INDEXES
IN THE SIMULATED DATA EXPERIMENTS

Image Index Noisy MM WAFT UTV ~ SSC Proposed
ICV1 147 1425 2994 2818 3057 3171

Casel ICV2 228 11.73 1759 20.83 1878  19.90
ICV3 254 1341 1655 1695 18.80  21.24
Icv1l 1237 21.10 27.01 2724 2937 30.19
ICV2 327 9.84 3400 39.05 42.96 41.54

Case 2 ICV3 675 17.01 1091 39.67 43.79  44.56
MRD 1 - 10.01 821 7.81 0.60 0.57
MRD 2 - 7.01 142 10.05  1.06 1.38
MRD 3 - 3.48 7.48 8.64 0.33 0.28

chosen from several different remote-sensing platforms: one
200 x 200 Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE) subimage, two 250 x 400 Hyperion subim-
ages, two 400 x 400 Aqua MODIS subimages, and three
400 x 400 Terra MODIS subimages. Fig. 9 provides an overall
display of the test data. It is clear that the stripe noise
in different images holds distinct features, which basically
cover all the possible striping cases introduced in Section I.
The detailed striping features in each test image are listed
in Table IV. To simplify the parameter setting of the proposed
model, p was chosen as p = 1 for a sparse striping case and
p = 2 for a dense striping case. More details of the specific
choices of parameters for different data are displayed in the
caption of Fig. 10.

Fig. 10 shows the destriping results of the proposed method
with all the experimental data, where, most importantly, the
results are visually pleasing, without visible residual effects or
local distortion. Since the striping cases in the eight test images

(d)

(2

(h)

are very different, the successful stripe noise removal clearly
demonstrates the generic processing ability of the proposed
method. Moreover, we also display two examples of the
destriping results of the five comparative methods. According
to the solutions obtained by MM in Figs. 11(b) and 12(b), its
performance can be considered to be worse than all the other
methods, with significant remaining stripes. As MM tends to
be strongly reliant on the constant linear calibration along one
stripe, when faced with more complicated striping cases, like
partial stripes, failure becomes inevitable. WAFT, when com-
pared with MM, outputs better destriping results. However,
in the magnifications, the residual noise is still nonnegligible,
as can be seen in the green rectangle region in Fig. 12(c).
The result in Fig. 12(d) indicates that UTV can effectively
remove the stripe noise, without apparent remains, whereas
the result in Fig. 11(d) reveals the potential oversmoothing
of UTV, as the gray “lake” in the green rectangle region is
supposed to be black. As for SSC, it can succeed in averting
unprocessed residual noise and undue distortion in these two
examples, due to the striping sparsity of the test images, which
exactly meets its basic modeling assumption. Hence, SSC and
the proposed model yield the two best visual performances
among the five different methods.

We then drew the mean cross-track profiles of the test data
and showed two examples of the results in Figs. 13 and 14.
Generally speaking, the mean cross-track profile of an ideal
destriping result should be much smoother, but hold a similar
curve trend to the profile in the observed image. On the
basis of these criteria, MM does a good job in keeping
the correct curve trend from the original profile; however,
it does not effectively relieve the disturbances. Fig. 14(b) is
a typical example. Conversely, UTV gives much smoother
profiles in all the results; however, its oversmoothing tendency
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TABLE IV
ILLUSTRATION OF THE STRIPING FEATURES IN THE TEST DATA

Image Direction  Degradation Distribution  Periodicity Pattern Persistence
Hyperion band 8 vertical ~ warm & dead local non-periodic  agminated integral
HYDICE band 103 vertical warm non-periodic single integral
Aqua band 16 horizontal warm periodic banding integral
Aqua band 30 horizontal warm global periodic single integral & partial
Hyperion band 56  vertical ~ warm & dead local non-periodic single integral
Terra band 27 horizontal warm & dead  global non-periodic agminated integral & partial
Terra band 28 horizontal warm global periodic single integral
Terra band 30 horizontal warm & dead  global non-periodic single integral & partial

© 0

Fig. 10. Destriping results of the proposed method. (a) Hyperion band 8 (p = 2, 4 = 2000, and A1 = 0.1). (b) HYDICE band 103 (p = 1, 4 = 800, and
A1 = 0.15). (¢) Aqua MODIS band 16 (p = 2, 2 = 5000, and 41 = 0.2). (d) Aqua MODIS band 30 (p = 1, 2 = 5000, and 4} = 0.15). (e) Hyperion
band 56 (p =1, 2 = 2000, and 11 = 0.2). (f) Terra MODIS band 27 (p =2, 2 = 1000, and 1 = 0.2). (g) Terra MODIS band 28 (p = 2, 1 = 1000, and
A1 = 0.3). (h) Terra MODIS band 30 (p = 1, 4 = 2000, and 41 = 0.3).

significantly decreases the gaps between the maximum and
minimum values in some profiles, as shown in Fig. 13(d).
Even though the profiles of WAFT in Fig. 14(c) are satisfac-
tory, the unwanted distortion in Fig. 13(c) indicates that the
destriping ability of WAFT is unstable. Under the constraint
of the sparse assumption, SSC can only alter the stripe-related
fluctuations in the mean cross-track profiles as long as they are
sparse. Although the sparse constraint is a good fit for sparsely
striped data, images with very dense stripe noise can coexist
simultaneously. Taking Fig. 9(c) as an example, when “all” the
scanning lines are contaminated by stripes, the wrong choice
of the first few lines as nonstriping lines adversely affects the
destriping performance of SSC, as can be seen in Fig. 14(e).
Differing from the above four methods, the proposed model
can steadily output reliable and smooth profiles with the
correct curve trends. This advantage is remarkable not only
for the dense striping [see Fig. 14(f)] but also for the sparse
striping cases [see Fig. 13(f)].

For the quantitative assessment in the real-data experiments,
two nonreference indexes, ICV and MRD, were used due to
the absence of true reference data. Since half of the test images

(@) (h)

were affected by random noise (Hyperion band 8, Hyperion
band 56, and Terra MODIS band 30) or continuous stripe
noise (Aqua MODIS band 16), i.e., their corresponding noise-
free regions were almost inexistent, we only computed MRD
in the other four images.

Based on the ICV results in Table V, it is apparent that the
proposed method obtains the highest values in most of the test
regions. Even when the proposed method does not achieve
the best ICV value, it almost always obtains the second-best
result, with only minor differences. This embodies the
stable and superior destriping performance of the proposed
model. Only slightly inferior to the proposed framework,
UTV and SSC obtain the highest and second-highest ICV
values in nearly half of the samples, which means that their
destriping capabilities are still competitive. In contrast to
the above-mentioned methods, MM and WAFT do not yield
satisfactory ICV values in Table V, which is consistent with
the visual evaluation in Figs. 11 and 12.

In Table VI, SSC obtains more favorable MRD
results (maintaining performance), especially when the
stripe noise is sparsely distributed (Aqua MODIS band 30).
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Fig. 11.

Destriping results for Aqua MODIS band 30. (a) Original image.
(b) MM. (c) WAFT. (d) UTV. (e) SSC. (f) Proposed method.

Nevertheless, with the increasing proportion of the stripe
noise in the data (HYDICE band 103 and Terra band 28),
this advantage decreases significantly, and in Terra MODIS
band 27, its superiority is exceeded by the proposed model.
Although the proposed approach does not always obtain the
best MRD values, the overall results, which outperform MM,
WAFT, and UTYV, are still remarkable and, most importantly,
stable for different kinds of stripes. Since we achieve
information maintenance through statistical feature-based
guidance, the strength of the proposed approach becomes
distinct when processing data with very dense stripes. In such
a case, instead of finding the uncertain “healthy pixels” to
keep intact, as in SSC, a more rational approach is to first
estimate the local statistical features of the latent clean image,
and then use them to ensure a reliable destriping process,
as in the proposed model.

V. DISCUSSION
A. Parameter Selection

In the first step of profile estimation [see (2)], we use A
to control the smoothness of the curve and p to adapt to

Fig. 12.  Destriping results for Terra MODIS band 28. (a) Original image.
(b) MM. (c) WAFT. (d) UTV. (e) SSC. (f) Proposed method.

the actual density of stripe distribution. The filtered profile
converges to the original data as 4 — 0 and to the best
affine fit as 1 — oo. For p, a close-to-zero value is the-
oretically appropriate for an extremely sparse striping case,
whereas p = 2 can better help in a dense case. Subsequently,
in the destriping framework (10), another two parameters
exist, 41 and A,. As the inner parameter in the anisotropic
regularization, parameter 1; depends on the actual difference
between the across-stripe and along-stripe gradients caused
by the stripe noise (which is mainly related to the distribution
and pattern). Since the stripe noise can greatly influence the
across-stripe gradients, but not the along-stripe gradients in
striped images [2], [25], the more severely the stripes damage
the across-stripe gradients in Y, the more helpful a large value
of A1 will be. Furthermore, parameter 1, works to measure the
contribution of the statistical feature-based guidance in (10),
and a higher 4, can introduce more constraint from G (X).
To allow us to give useful guidance for the choice of
parameters, we conducted sensitivity analyses of the proposed
destriping procedure by taking case 1 and case 2 from the
simulated data experiments as examples. Fig. 15 analyzes
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(b) MM. (c) WAFT. (d) UTV. (e) SSC. (f) Proposed method.

TABLE V
QUANTITATIVE EVALUATION RESULTS USING THE ICV INDEX
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image. (b) MM. (c) WAFT.

(d) UTV. (e) SSC. (f) Proposed method.

Image Area  Original MM WAFT UTV  SSC Proposed
. Samplel 3.78 7.80 798 7.80 7.85 8.05
Hg’ é’:;‘gn Sample2 257 421 414 400 435 451
Sample3 4.08 549 560 581 548  5.61
Sample 1 1171 1678 1743 1805 18.28 18.34
IJ;?I]%E Sample2 10.80 1556 1548 16.01 1577  16.29
Sample3 1199 1816 1869 1891 19.42  19.35
Sample 1 134  3.10 346 478 443  4.68
Aq“? ;a“d Sample2 3.95 17.99 1509 1438 1673  20.78
Sample3 3.83 622 752 679 958 9.4
Sample 1 5.50 845 836 828 881  9.03
Aq“;é’a“d Sample2 7.16 1845 19.74 21.89 21.84  23.40
Sample3  6.62 2231 2443 2120 2494  26.56
. Sample I 329  7.50 8.95 7.85 9.35 9.97
%Zﬂzns‘;“ Sample2 3.09 578 734 675 899  9.32
Sample3 690 9.00 816 9.04 8.60 873
Sample 1 1222 42.84 5546 6554 6625 72.93
Te“g;’a“d Sample2 847 13.63 1846 1650 16.19  18.44
Sample3 422 552 9.65 10.00 10.04  9.73
Sample 1 1125 31.17 7553 94.00 8588  95.12
Temaband gomple2  13.00 40.62 79.59 15710 13383 15436
Sample3 1445 6276 54.65 67.82 6657 7182
Sample I 532 2532 20.05 2609 2747  29.62
Te“_;“’é’a“d Sample2 424 3618 3405 3748 40.10  40.70
Sample3  5.66 19.84 23.06 28.63 26.65  32.38

the effects of p and 4 on the correlation coefficient values
between the estimated and reference profile [model (2)].
Ideally, the correlation coefficient should be equal to 1. It is

Correlation Coefficients
Correlation Coefficients

(b)

Fig. 15. Sensitivity analysis between parameters p and A in model (2) using
correlation coefficients. (a) Simulated case 1 (dense stripes). (b) Simulated
case 2 (sparse stripes).

06 1.6
A(ES)

1 016

(b)

Fig. 16. Sensitivity analysis between parameters A1 and A, in model (10)
using the PSNR. (a) Simulated case 1 (dense stripes). (b) Simulated case 2
(sparse stripes).

clear that the changes of p only make tiny differences, as can
be seen in the relatively high values of 4 in the dense striping
case when 1 < p < 2 [see Fig. 15(a)] and in the sparse
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Fig. 17.  Sensitivity analysis between parameters A and A1 in the whole
destriping process using the PSNR. (a) Simulated case 1 (dense stripes).
(b) Simulated case 2 (sparse stripes).

TABLE VI
QUANTITATIVE EVALUATION RESULTS USING THE MRD INDEX (%)

Image MM WAFT  UTV SSC  Proposed
HYDICE band 103 3.25 1.53 9.43 0.37 0.67
Aqua band 30 7.66 7.09 6.36 0.05 6.24
Terra band 27 2.76 4.12 8.34 2.08 2.00
Terra band 28 8.75 9.38 10.80 3.55 3.80

striping case when 0 < p < 1 [see Fig. 15(b)]. Therefore,
p should be greater than 1 for a dense case and less than
1 for a sparse case. Considering that the cost function of
model (2) is nonconvex for p < 1 and the performance of
p is stable in the suitable interval, we finally let p become
a “binary” parameter, with p = 1 for a sparse striping case
and p = 2 for a dense striping case. Similarly, Fig. 16 shows
the result of the PSNR varying with 4; and A, [model (10)].
Although the PSNR changes obviously with different values
of 11 in Fig. 16, the robustness of 1, is very satisfying. Since
(A2/2)118(Y) — Xf||% is closely related to the length of the
guided profile (image rows m), to keep the consistency of the
image scale, we should also consider the image columns 7.
Thus, in all our implementations, we fixed the most insensitive
parameter A as A = 1000 x n to simplify the parameter set-
ting. As we set p a “binary” parameter and fix 1, = 1000 x n
in the proposed destriping model, the only parameters to tune
are A and 1. Fig. 17 then displays the effects of different
values with respect to these two parameters on the whole
destriping performance. Although the best parameter ranges to
obtain the satisfying results may be different in different cases,
the relatively stable PSNR performance in the certain order
of magnitude of 4 and A; will make the parameter selection
much easier and more convenient. Empirically, 4 and 4
were separately chosen from the range of [500, 500000]
and [0.1, 1].

For the parameters in the mathematical solutions, a in IRLS
was fixed as 107 and the penalty parameters p; and p; in
ADMM were also fixed as p; = p» = 5. For the parameters
in the other four comparative methods, their selection in
all the experiments was based on the recommendations of
the corresponding publications. However, for the purpose of
attaining the best visual performance in the real implementa-
tions, we did some further adjustments.
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TABLE VII

RUNNING TIMES (S) OF DIFFERENT METHODS
WITH DIFFERENT IMAGE SIZES

Image size MM WAFT UTVvV SSC Proposed
200%200 0.06 0.19 4.58 0.95 0.94
400x400 0.10 0.23 42.10 5.94 5.88

2030x1354 0.77 1.29 369.45 98.35 99.78

B. Running Time

In the proposed destriping procedure, the guidance g(Y)
can be efficiently estimated within a second through the IRLS
method for p = 1 in model (2). For p = 2, the estimation is
even easier, since, in this case, the solution of g(Y) becomes a
linear system, which can be directly solved by the least-squares
method. In practice, all the IRLS implementations will stop
when the relative change in §(Y) becomes less than 107, or
when the calculation reaches the maximum iteration number
as 50. Concerning the relatively complex destriping model
in (10), it can be split into three simpler subproblems through
the ADMM framework. The H and V subproblems are solved
via a fast shrinkage operator in parallel, while the quadratic
minimization problem of X in (16) is accelerated by the
extremely efficient FFT. The updating of the two Lagrange
multipliers p; and p> in (17) is also undertaken in parallel,
which further eases the calculation load of the proposed
method. The running times of the five methods are compared
in Table VII. Although UTYV, SSC, and the proposed method
are all solved by the ADMM framework in our test, the lack
of help from FFT clearly increases the computation time
of UTV. To verify the usability of the proposed method for
large-swath remote-sensing images, a real MODIS image of
2030 x 1354 was also tested. Without any large-swath data
based acceleration strategy, the whole running time of about
1.5 min for the proposed model is still acceptable for real
applications. On the condition that all the experiments were
conducted in MATLAB on a desktop personal computer with a
3.4-GHz CPU and 8-GB RAM, the proposed method could be
further accelerated using optimized C or the block processing
technique.

C. Guided Profile Acquisition

To attain the best profile g(Y), we designed a robust but
an effective filter that can not only estimate an accurate curve
trend from a noisy data series, but is also adept in adaptively
controlling the processing degree for different striping cases.
Under the assumption that the locations of the striping lines
in the test data are unknown, when filtering the original mean
cross-track profiles, we do not consider the question as to
whether or not the fluctuations in the 1-D consecutive noisy
signal match the natural disturbances or striping occurrences.
However, if the locations of the stripe noise are available
in advance, for an accurate estimation, a theoretically more
suitable approach is to first mark the stripe-related fluctua-
tions, and then alleviate them without changing the natural
disturbances. Of course, this is another task, which is beyond
the scope of this paper. Since the acquisition of stripe location
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information is challenging and meaningful, we will consider
this issue in our future research work.

VI. CONCLUSION

In this paper, we have proposed a generic destriping model
using the 1-D statistical property to guide and control the
2-D estimation of clean images. To ensure the accuracy of the
guidance information, a 1-D variational model (modified HP
filter) is proposed. The efficient IRLS method and ADMM are
both applied in the proposed destriping procedure to solve and
accelerate the minimization problems. Data covering nearly
all different striping features were tested in the experiments.
Both the qualitative and quantitative results confirmed the
excellent universality and stability of the proposed model when
compared with the other four approaches of MM, WAFT, UTV,
and SSC.

Although the proposed destriping framework is robust to
most of the stripe types that exist in remote-sensing images
without georectification, potential oblique stripe noise is still
a challenge. In order to further upgrade the universality of
the proposed destriping model, we will attempt to consider
the specific direction of the stripe noise and incorporate this
information in the stripe removal in our future work.
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