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Abstract— The tradeoff in remote sensing instruments that
balances the spatial resolution and temporal frequency limits our
capacity to monitor spatial and temporal dynamics effectively.
The spatiotemporal data fusion technique is considered as a cost-
effective way to obtain remote sensing data with both high spatial
resolution and high temporal frequency, by blending observations
from multiple sensors with different advantages or charac-
teristics. In this paper, we develop the spatial and temporal
nonlocal filter-based fusion model (STNLFFM) to enhance the
prediction capacity and accuracy, especially for complex changed
landscapes. The STNLFFM method provides a new transforma-
tion relationship between the fine-resolution reflectance images
acquired from the same sensor at different dates with the help of
coarse-resolution reflectance data, and makes full use of the high
degree of spatiotemporal redundancy in the remote sensing image
sequence to produce the final prediction. The proposed method
was tested over both the Coleambally Irrigation Area study site
and the Lower Gwydir Catchment study site. The results show
that the proposed method can provide a more accurate and
robust prediction, especially for heterogeneous landscapes and
temporally dynamic areas.

Index Terms— Data fusion, nonlocal, reflectance prediction,
similarity information, spatiotemporal.

I. INTRODUCTION

CAPTURING spatial and temporal dynamics is a signif-
icant issue for many remote sensing-based monitoring

systems (e.g., the monitoring of land-cover change, intrasea-
sonal ecosystem variations, and atmospheric environment
dynamics). However, due to the technical limitations, remote
sensor designs have a tradeoff between the spatial resolution
and the revisit cycle [1], [2], which limits our capacity to
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acquire remote sensing data with both high spatial resolution
and high temporal resolution. For example, the data acquired
from the Landsat Thematic Mapper (TM) or Enhanced TM
Plus (ETM+) sensors and the SPOT High Resolution Vis-
ible (HRV) sensor with a 10–30 m spatial resolution are
commonly applied for land-use mapping and biophysical
parameter estimation [3]–[6]. However, such data cannot be
used to capture rapid surface changes, such as crop growth
and natural disasters due to their long revisit cycles (Landsat
TM/ETM+: 16 days; SPOT HRV: 26 days) and frequent
cloud contamination. In contrast, the Terra/Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) and National
Oceanic and Atmospheric Administration Advanced Very
High Resolution Radiometer sensors can provide high tem-
poral resolution (daily) observations, and are often applied for
monitoring at global scales [7], [8]. However, data from these
sensors cannot be used for research at heterogeneous local
scales because of their coarse spatial resolution (250–1000 m).
Therefore, combining the advantages of the different sensors
by spatiotemporal data fusion methods is considered as a cost-
effective way to solve the “spatial–temporal contradiction”
problem [9]–[11], thereby enhancing the capability of remote
sensing for monitoring land-surface dynamics, especially in
rapidly changing areas.

Gao et al. [12] developed the spatial and temporal adaptive
reflectance fusion model (STARFM) algorithm, which is a
spatiotemporal filter-based algorithm that generates the fusion
data by the use of a filtering model with the weighted sum of
the spectrally similar neighboring information from the high
spatial resolution images and the high temporal frequency
images. The STARFM can be used to blend Landsat and
MODIS data to produce daily surface reflectance at Land-
sat spatial resolution and MODIS temporal frequency. The
STARFM algorithm has been shown to be a relatively reliable
spatiotemporal data fusion approach, and has been widely
applied to the investigation of vegetation dynamics [13], the
generation of gross primary productivity [14], the analysis of
dryland forest phenology [15], the estimation of daily evapo-
transpiration [16], the examination of virus dissemination [17],
and the monitoring of urban heat islands [18].

Furthermore, some improved spatiotemporal filter-based
algorithms have since been developed. Hilker et al. [19]
proposed the spatial temporal adaptive algorithm for mapping
reflectance change to identify highly detailed spatial and tem-
poral patterns in land-cover changes. Zhu et al. [20] developed
an enhanced STARFM (ESTARFM) model to enhance the
prediction of the reflectance of heterogeneous landscapes by
assigning different conversion coefficients for homogeneous
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and heterogeneous pixels. Fu et al. [21] modified the pro-
cedure of similar pixel selection for the ESTARFM model
with an optimal window size and additional ancillary data.
Shen et al. [22] improved the step of weight calculation
for the original STARFM model by considering the sensor
observation differences for varied land-cover types. However,
this approach requires a prior unsupervised classification for
the fine spatial resolution data. Wu et al. [23] developed a
spatiotemporal integrated temperature fusion model to expand
the traditional two-sensor fusion approach into the fusion of
data from an arbitrary number of sensors with a unified model.

In other frameworks, Hansen et al. [24] used regression
trees to integrate Landsat and MODIS data on a 16-day repeat
cycle to monitor forest cover change in the Congo Basin. This
method demands a single “best” image to map forest cover
status for a given year or decade. Zurita-Milla et al. [25]
developed an unmixing-based fusion framework to produce
Landsat-like images having the spectral and temporal resolu-
tion provided by the Medium Resolution Imaging Spectrom-
eter. However, this unmixing-based fusion approach requires
a prior unsupervised classification for the input fine spatial
resolution images, or a high spatial resolution land-use data-
base as auxiliary material for the pixel unmixing. Learning-
based spatiotemporal fusion frameworks have been developed
in recent years [26], [27], which are generally based on
sparse representation and compressive sensing. This approach
can predict both the phenology change and the land-cover
type change during an observation period, in a unified way.
Nonetheless, the practicability of the learning-based fusion
methods needs to be further verified. Moreover, image super-
resolution [28]–[30] can be considered as a different kind of
technique to improve the spatial resolution for low spatial
resolution but high temporal frequency images.

Generally speaking, the spatiotemporal filter-based fusion
framework has been the most popular category of spatiotem-
poral fusion approach so far. Although it has been improved
in many different ways, the spatiotemporal filter-based fusion
framework still has some shortcomings that need to be
improved, including the complex change prediction ability and
the robustness of the prediction model. In this paper, a spatial
and temporal nonlocal filter-based fusion model (STNLFFM)
is presented. The proposed STNLFFM method provides a new
transformation relationship between the multitemporal fine-
resolution reflectance images with the help of multitempo-
ral coarse-resolution reflectance data, and then makes full
use of the high degree of spatiotemporal redundancy in the
remote sensing image sequence to produce the final prediction.
Moreover, some effective treatments are also proposed in the
calculation procedure of the STNLFFM method.

II. METHOD

A. Theoretical Basis of the STNLFFM Method

For convenience, we refer to the image with low spa-
tial resolution but high temporal frequency as the “coarse-
resolution” image, while the image with high spatial resolution
but low temporal frequency is called the “fine-resolution”
image. For a homogeneous coarse-resolution pixel, neglecting

the differences in atmospheric correction, we suppose that
the changes of reflectance from date tk to t0 are linear. This
assumption is reasonable over a short time period [20]. Thus,
the reflectance of the homogeneous coarse-resolution pixel at
t0 can be described by the reflectance at tk as

C(x, y, B, t0) = a(x, y, B,�t) × C(x, y, B, tk)

+ b(x, y, B,�t) (1)

where C denotes the coarse-resolution reflectance, (x, y) is a
given pixel location for both coarse-resolution images at two
different dates, B is a given band, �t = t0−tk , and a and b are
the coefficients of the linear regression model to describe the
reflectance changes in the coarse-resolution images at dates
t0 and tk . In this paper, we refer to coefficient a as the gain
coefficient, and coefficient b as the bias coefficient.

We assume that the coarse-resolution sensor has similar
spectral bands to the fine-resolution sensor. We also sup-
pose that the coarse-resolution image has been upsampled
to the same spatial resolution, size, and coverage as the
fine-resolution image. Neglecting the geolocation errors and
differences in atmospheric correction, the linear relationship
between the coarse-resolution reflectance images, as in (1), can
also apply to the fine-resolution reflectance images at dates
t0 and tk . The fine-resolution reflectance at date t0 is then
calculated as

F(x, y, B, t0) = a(x, y, B,�t) × F(x, y, B, tk)

+ b(x, y, B,�t) (2)

where F denotes the fine-resolution reflectance. Here, the
coefficients a and b are determined by the reflectance changes
from date tk to date t0. It is notable that a and b may vary
with location due to the complexity of the land cover, and thus
they are derived locally rather than using global coefficients.

In reality, the land cover may undergo significant and
complex changes during the prediction period, and the coarse-
resolution observation may not be a homogeneous pixel but
includes mixed land-cover types. In order to make the pre-
diction more accurate, some additional information needs to
be introduced. We take advantage of the same-class pixels
(similar pixels) within the image by considering the same-
class pixels with similar reflectance changes over time. As we
all know, remote sensing images are often used for generating
a wide range of surface information, so there will always be a
lot of similar information within an image. This similar infor-
mation not only includes the local neighborhood similarity,
but also includes the nonlocal similarity [31]–[35], such as
some repeated ground information, or long edge structures.
Moreover, the temporal correlation between remote sensing
image sequences makes the similar information (redundancy)
even greater, as shown in Fig. 1. These observations prompted
us to introduce the idea of nonlocal filtering [33], [34], which
attempts to make full use of the high degree of redundant
information in the image restoration.

B. Nonlocal Filter

The nonlocal filter is an effective image denoising algo-
rithm [33]–[35]. Its basic idea is to estimate an unknown
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Fig. 1. Spatial and temporal nonlocal similarity in remote sensing imagery.

pixel with image redundancy. More precisely, given a noisy
image f , � is its pixel domain. The restored value f̂ for
pixel (x, y) in image f is

f̂ (x, y) =
∑

(xi ,y j )∈�

w f (xi , y j ) × f (xi , y j ) (3)

where

w f (xi , y j ) = 1

C(x, y)
exp

{
− G ∗ ‖ f (P(xi ,y j ))− f (P(x,y))‖2

h2

}

(4)

where C(x, y) is a normalizing factor, G is a Gaussian kernel,
h is a parameter, which is positively related to the noise
intensity of the image f , and P(xi ,y j ) is a patch centered at
point (xi , y j ). Following (3), the current pixel is restored by
averaging the other similar pixels in the image.

C. Prediction Model of STNLFFM

As noted earlier, the similar information in the image can be
used to enhance the reflectance prediction, so we employ the
idea of the nonlocal filter. Moreover, in order to take advantage
of the redundant information that exists in both the spatial
and temporal directions, we propose the STNLFFM (5), which
integrates the image’s spatial and temporal redundancy into the
fine-resolution reflectance calculation

F(x, y, B, tp) =
M∑

k=1

N∑

i=1

W (xi , yi , B, tk) × [a(xi, yi , B,�tk)

× F(xi , yi , B, tk)+ b(xi , yi , B,�tk)] (5)

where F(x, y, B, tp) is the fine-resolution reflectance of the
target (predicted) pixel (x, y) at prediction date tp; M is the
number of base (reference) dates; and N is the number of sim-
ilar pixels (with the same land-cover type as the target pixel)
within the image, including the target pixel itself. (xi , yi ) is
the location of the i th similar pixel, and W (xi , yi , B, tk) is the
weight of the i th similar pixel of the fine-resolution reflectance
image at base date tk . A way to more effectively exploit the
image redundancy is by searching for similar pixels [35], so we
select similar pixels to estimate the target pixel (5), instead of
taking all the image pixels to estimate the target pixel as in
the original nonlocal filtering model (3).

1) Similar Pixel Selection: As mentioned before, the pixels
with the same land-cover type as the target pixel are the
similar pixels. Selecting the similar pixels ensures that the
appropriate reflectance information is used for the production
of the target fine-resolution pixel, which can avoid trivial
calculation and improve the prediction accuracy. Since the

Fig. 2. Similar pixel selection.

similar pixels have close reflectances and changes, we use two
constraints (spectral consistency and change consistency) to
pick them out. A good candidate pixel (xi , y j ) should satisfy
the following conditions for the reflectance of all the bands:

|F(xi , y j , B, tk) − F(x, y, B, tk)| ≤ d × 2F(x,y,B,tk) (6)

||C(xi , y j , B, tk) − C(xi , y j , B, tp)|
− |C(x, y, B, tk) − C(x, y, B, tp)|| < σCC (7)

where d is a free parameter [22]. Parameter d may be slightly
different for different sensors, and in this paper, it is set as
0.01 for the ETM+ case. σCC is the uncertainty of the tem-
poral difference between the two coarse-resolution reflectance
images, which is mainly caused by the bias in the atmospheric
correction. In our experiments, the uncertainty of the MODIS
surface reflectance was set to 0.005 for the visible band and
the near infrared band, as in the research of Gao et al. [12].
Equation (6) is the spectral consistency condition to ensure
that the reflectance between a similar pixel and the target
pixel is close. It is noteworthy that (7) is the temporal
change consistency condition, which means that a pixel whose
temporal change between date tk and prediction date tp is close
to that of the target pixel is more likely to be selected as a
similar pixel. As for the STARFM method [12], it regards
a pixel whose temporal change between dates tk and tp is
smaller than that of the target pixel as a candidate similar pixel.
However, this results in significant error when the predicted
target pixel shows land-cover type change, because, in this
case, a similar pixel would also show considerable reflectance
change. As shown in Fig. 2, the target pixel (x, y) shows
significant change between reference date tk and prediction
date tp . We assume that pixels (x1, y1) and (x2, y2) are two
candidate similar pixels that satisfy (6). However, we can see
that pixel (x1, y1) shows a small temporal change between
dates tk and tp , but this change is not consistent with target
pixel (x, y), so pixel (x1, y1) should not be chosen as a similar
pixel. The temporal change of pixel (x2, y2) is close to that
of the target pixel, and thus pixel (x2, y2) is more likely to be
a similar pixel. There are also some other papers [13], [22] in
which the temporal difference measurement is excluded in the
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procedure of selecting similar pixels, for the sake of avoiding
the error mentioned above. Here, we use (7) to effectively
solve the problem of temporal difference measurement and
improve the accuracy of selecting similar pixels, especially
for the target pixels with land-cover type changes. In practice,
we use a search window of size 51 × 51 centered at the target
pixel, as in [34], since searching for similar pixels over the
whole image domain is very expensive.

2) Weight Calculation: The weight W decides the con-
tribution of each similar pixel to predict the fine-resolution
reflectance of the target pixel. According to the nonlocal filter-
ing framework, the weight W is determined by the reflectance
similarity between the similar pixel and the target pixel. Since
the fine-resolution reflectance of the target pixel at prediction
date tp is unknown, we use the coarse-resolution reflectance
difference between the similar pixel and the target pixel to
measure the reflectance similarity, and we then propose a
nonlocal filter-based individual weight Windividual as follows:
Windividual(xi , y j , B, tk)

= exp

(
− G ∗ ‖C(P(xi , y j , B, tk)) − C(P(x, y, B, tp))‖

h2

)

(8)

where h is a parameter positively related to the noise level
of the coarse-resolution images input. Since the coarse-
resolution (MODIS) reflectance images used in our exper-
iments contained a low level of noise, parameter h was
set as 0.15 in the experiments. G is a Gaussian kernel,
and C(P(xi , y j , B, tk)) is the coarse-resolution reflectance
of patch P centered at pixel (xi , y j ). The size of patch P
is related to the spatial resolution difference between the
coarse- and fine-resolution data input. If the spatial resolution
difference is large, it is better to set a small size for patch P ,
since the ground structures in the upsampled coarse-resolution
data may not be that clear and would not benefit the similarity
identification. In contrast, if the spatial resolution difference
is small, we can set a relatively large size for patch P as
the structure information in the upsampled coarse-resolution
data would benefit the similarity identification. The nonlocal
weight Windividual determines the weight of the individual
pixel. Furthermore, considering that fine-resolution data closer
in date to the prediction date should provide more reliable
reflectance information, it is reasonable, in this case, to set a
larger weight for the fine-resolution data input. Thus, we intro-
duce the whole weight Wwhole, which is calculated according
to the change magnitude detected by the coarse-resolution
reflectance between reference date tk and prediction date tp ,
and this weight Wwhole is applied within each local window
w×w (9), to decide which fine-resolution image input provides
more reliable information in the local window

Wwhole

= 1/
∑w

i=1
∑w

j=1 (|C(xi , y j , B, tk) − C(xi , y j , B, tp)|)∑
k(1/

∑w
i=1

∑w
j=1 (|C(xi , y j , B, tk)−C(xi , y j , B, tp)|)) .

(9)

A larger value of Wwhole means that the fine-resolution
reflectance at date tk should be given a higher weight.

Then, synthesizing the two weights Windividual and Wwhole,
the final weight of the similar pixel (xi , y j ) in the fine-
resolution reflectance image at reference date tk is

W (xi , y j , B, tk) = Windividual(xi , y j , B, tk) × Wwhole. (10)

3) Regression Coefficients Calculation: The regression
coefficients a and b for each similar pixel in the fine-resolution
reflectance images can be calculated from the available coarse-
resolution reflectance images. Since the similar pixels have
the same reflectance change as the target pixel, they should
have the same regression coefficients. Thus, it is feasible to
make use of the information from similar pixels to compute
the regression coefficients. In the case of the coarse-resolution
reflectance at dates tk and tp being perfectly correlated, i.e., the
gain coefficient a is equal to 1, we have

C(x, y, B, tp) = C(x, y, B, tk) + b(x, y, B,�t). (11)

The predicted fine-resolution reflectance is then

F(x, y, B, tp) = F(x, y, B, tk) + C(x, y, B, tp)

− C(x, y, B, tk). (12)

Therefore, we can see that the STARFM model is a special
case of the STNLFFM model. In reality, due to the complexity
of the land cover, the gain coefficient a may not be equal to 1,
but varies in the vicinity of 1. Therefore, we apply a restricted
least-squares model to the coarse-resolution reflectance of the
similar pixels to obtain the regression coefficients a and b for
the target pixel

set A =
(

a
b

)
, I = (1, 0)

arg min f (A) = 1

2

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

Cp1
Cp2

...
Cpn

⎞

⎟⎟⎟⎠ −

⎛

⎜⎜⎜⎝

Ck1 1
Ck2 1
...

...
Ckn 1

⎞

⎟⎟⎟⎠ × A

⎤

⎥⎥⎥⎦

2

+ 1

2
γ [I × A − 1]2 (13)

where Cpn and Ckn are the coarse-resolution reflectance of
the nth similar pixel at dates tp and tk , respectively. The
first item on the right-hand side of (13) is the least-squares
term, and the second item is the regularization term, which
gives a prior constraint of the regression coefficients. γ is a
regularization parameter, which controls the tradeoff between
the least-squares term and the regularization term. The value
of γ was set as 1 in the experiments.

D. Implementation Process of STNLFFM

In practice, we use at least two pairs of fine- and coarse-
resolution images acquired at the reference dates (tm and tn)
and a coarse-resolution image acquired at the prediction
date (tp) to predict the desired fine-resolution image. The
STNLFFM algorithm implementation includes three main
steps: 1) for each pixel in the reference fine-resolution images,
we search for pixels similar to it in the image; 2) the weights
W of all the similar pixels are calculated; and 3) the regression
coefficients a and b for each similar pixel are calculated from
the available coarse-resolution reflectance images. Finally,
as in (5), the weights and regression coefficients are applied
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Fig. 3. Flowchart of the STNLFFM algorithm.

to the two fine-resolution reflectance images acquired at the
reference dates to produce the fine-resolution reflectance at the
desired prediction date. All of the steps are discussed in detail
in the following. The flowchart of the STNLFFM method is
shown in Fig. 3.

E. Differences Between the STNLFFM Method and the
STARFM/ESTARFM Methods

Although they all belong to the filter-based fusion frame-
work, the proposed STNLFFM method and the conventional
STARFM or ESTARFM methods have big differences, includ-
ing the fundamental assumptions, the form of the prediction
models, the method of weight calculation, and the procedure
of searching for similar pixels.

1) Differences in the Starting Points and Fundamental
Assumptions: Notably, the starting points and fundamental
assumptions of the proposed STNLFFM method and the
conventional STARFM/ESTARFM methods are different. For
the STARFM and ESTARFM methods, their starting point is
the transformation relationship between the fine-resolution and
coarse-resolution reflectance images, and their fundamental
assumption is that the transformation relationship between the
fine-resolution and coarse-resolution reflectance is constant at
different dates. However, for the proposed STNLFFM method,
the starting point is the transformation relationship between
the multitemporal reflectance images, and the fundamental
assumption is that the transformation relationship between
the multitemporal reflectance is constant for different sensors.
These differences can be seen in the initial prediction models
of the three methods.

2) Differences in the Prediction Models: Due to the dif-
ferences in the starting points and fundamental assumptions,
the prediction models are also different. In the prediction
model of STNLFFM, the regression coefficients a and b are
introduced to describe the reflectance changes between the
predicted and reference high-resolution reflectance images.
For the STARFM and ESTARFM models, they both take the
reflectance changes between the predicted and reference high-
resolution reflectance images as being perfectly linear with the
gain coefficient a equal to 1. As noted before, the STARFM
model is a special case of the proposed STNLFFM model with

the gain coefficient a equal to 1. However, this assumption
may not be appropriate for complex changed landscapes.
Moreover, the proposed STNLFFM model calculates the
regression coefficients a and b from the available multitempo-
ral coarse-resolution reflectance images. As for the ESTARFM
method, it calculates a conversion coefficient v from the
available fine-resolution and coarse-resolution image pairs.
That is to say, the method of calculation of the prediction
models is also different. Overall, the proposed STNLFFM
model pays more attention to the reflectance changes in the
multitemporal images, and it employs the gain coefficient
a and bias coefficient b to more accurately describe the
reflectance changes over time, thereby improving the predic-
tion accuracy, especially for complex changed landscapes.

Moreover, in the prediction model, STNLFFM employs the
idea of nonlocal filtering to take advantage of the redundant
information in the remote sensing image sequence. Both the
local neighborhood similarity information and the nonlocal
similarity information are used to jointly produce the unknown
pixels. As for some ground objects with small areas or edge
structures, the number of neighborhood similar pixels may be
small and not enough to provide an accurate prediction. Thus,
the nonlocal similarity can be used to solve this problem, and
provide a more robust prediction.

3) Differences in the Weight Calculation: The weight cal-
culation is also an important step in the fusion methods.
STNLFFM separates the weight calculation into individual
weight and whole weight calculations. The individual weight
is used to measure which similar pixels within a fine-resolution
image provide more reliable information; the whole weight is
used to measure which fine-resolution image input provides
more reliable information. For the individual weight calcula-
tion, the original STARFM algorithm takes the spectral differ-
ence, the temporal difference, and the location distance into
consideration. However, the many terms make the weight cal-
culation complex. According to the nonlocal filtering method,
the STNLFFM algorithm only uses the reflectance similarity of
patches in the multitemporal images to calculate the individual
weight, which avoids introducing extra error, improves the
calculation efficiency, and can reduce the interference of image
noise.

Furthermore, in the procedure of selecting similar pixels,
the STNLFFM algorithm resolves the problem of temporal
difference measurement. Compared with the STARFM algo-
rithm, which takes a pixel whose temporal change between the
reference date tk and the prediction date tp is smaller than that
of the target pixel as a candidate similar pixel, the proposed
STNLFFM algorithm selects a pixel whose temporal change
between dates tk and tp is closer to that of the target pixel
as a candidate similar pixel, which is more reasonable. This
approach can significantly improve the accuracy of selecting
similar pixels, especially for the target pixels with land-cover
type changes.

III. EXPERIMENTS

A. Study Sites and Data

The study sites and data tested in this paper are the same
as those used in the research of Emelyanova et al. [36].
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The first study site is the Coleambally Irrigation Area (CIA)
located in southern New South Wales, for which 17 cloud-free
Landsat-MODIS pairs are available for the 2001–2002 austral
summer growing season. The other study site is the Lower
Gwydir Catchment (LGC) located in northern New South
Wales, for which 14 cloud-free Landsat-MODIS pairs are
available from April 2004 to April 2005. All the Landsat
images were atmospherically corrected in the same way as
the research of Emelyanova et al. [36]: the CIA images were
atmospherically corrected using MODTRAN4 [37], and the
LGC images were atmospherically corrected using Li et al.’s
algorithm [38]. For both study sites, the latest MODIS Terra
MOD09GA Collection 6 data were used. These data were
upsampled to the same spatial resolution (25 m) as the Landsat
data using a cubic convolution algorithm.

The CIA has an overall area of 2193 km2

(1720 × 2040 pixels in Landsat images). The irrigation
area, which is scattered over the whole study site, exhibits
temporal dynamics associated with crop phenology over a
single growing season. However, the surrounding agricultural
and woodland areas vary less over time. Due to the small
field sizes and sporadic distribution of the irrigation area,
the CIA can be considered a spatially heterogeneous
site. The LGC site has an overall area of 5440 km2

(3200 × 2720 pixels in Landsat images). The temporal extent
of the LGC data is approximately one year. A large flood
occurred in mid-December 2004, which caused inundation
over large areas (about 44%). Due to the flooding event
leading to different spatial and temporal variations, the LGC
is considered a temporally dynamic site. Some of the temporal
data from the two sites are shown in Fig. 5.

B. Quantitative Evaluation Indices

A Landsat-like image on a certain date is predicted using
two Landsat-MODIS pairs on other dates and an MODIS
image on the prediction date, as shown in detail in the
following. The predicted Landsat image is compared with the
real observed Landsat image acquired at the prediction date.
(The real observed Landsat images at the prediction date are
not used as input, and are only used for the validation.) Several
statistical indices are used to give a quantitative assessment.
The first index is the root-mean-square error (RMSE), which
is used to give a global depiction of the radiometric difference
between the predicted image and the real observed image. It is
defined as

RMSE =
√∑N

i=1 (Pi − Oi )2

N
(14)

where N is the total number of pixels in the predicted image,
and Pi and Oi are the values of the i th pixel in the predicted
image and the observed image, respectively. The smaller the
RMSE, the better the prediction.

The second index is the coefficient of determination (R2).
This metric can be used to show the degree of consistency
between the predicted and observed images. It is defined as

R2 =
⎛

⎝
∑N

i=1 (Pi − P̄)(Oi − Ō)√∑N
i=1 (Pi − P̄)2

√∑N
i=1 (Oi − Ō)2

⎞

⎠
2

(15)

where P̄ and Ō represent the mean gray values of the predicted
image and the observed image, respectively. A larger R2

indicates a closer consistency between the two groups of
pixels.

The third index is the universal image quality
index (UIQI) [39]. This indicator provides a measure of
the closeness between the predicted and observed images by
utilizing the differences in the statistical distributions

UIQI = |σPO|
σPO

· 2σP · σO

σ 2
O + σ 2

O

· 2|P̄| · |Ō|
|P̄|2 + |Ō|2 (16)

where σP and σO represent the variances of the predicted
and observed images, respectively, and σPO represents the
covariance between the predicted and observed images.

The fourth index is the structural similarity (SSIM)
index [40], which is used to show the similarity of the image
structures between the predicted and observed data. A larger
SSIM means a better result. This metric is defined as

SSIM = (2μPμO + C1)(2σPO + C2)

(μ2
P + μ2

O + C1)(σ
2
P + σ 2

O + C2)
(17)

where C1 and C2 are two constants.
The fifth index is the spectral angle mapper (SAM) [41].

This metric reflects the spectral distortion introduced by the
fusion process, which gives a quantitative assessment from the
spectral fidelity aspect. A smaller SAM means a better result.
It is defined as

SAM = 1

N

N∑

i=1

arccos

⎛

⎝
M∑

j=1

(
Pi

j Oi
j

)
/

√√√√
M∑

j=1

(
Pi

j

)2
M∑

j=1

(
Oi

j

)2

⎞

⎠

(18)

where M is the total number of bands.
The sixth index is the Q4 index [42], which is an extension

of the UIQI index. This metric is a product of the correlation,
mean bias, and contrast variation, and is suitable for assessing
the prediction images from both spatial and spectral fidelity
aspects. The ideal value for the Q4 index is 1, and it is
defined as

Q4 = |σZ1 Z2 |
σZ1 Z2

· 2σZ1 · σZ2

σ 2
Z1

+ σ 2
Z2

· 2|Z̄1| · |Z̄2|
|Z̄1|2 + |Z̄2|2 (19)

where Z1 and Z2 are defined as Z1 = P1 + i P2 + j P3 + k P4
and Z2 = O1 + i O2 + j O3 + kO4, respectively. σZ1 Z2 is the
covariance between Z1 and Z2. σz1 and σz2 are the variances
of Z1 and Z2, respectively. Z̄1 and Z̄2 are the mean values
of Z1 and Z2, respectively.

C. Experimental Results

To verify the efficacy of the STNLFFM algorithm, we con-
ducted two groups of experiments: 1) short time series fusion
experiments and 2) long time series fusion experiments.

1) Short Time Series Fusion Experiments: For both study
sites, all the Landsat-MODIS pairs were arranged in chrono-
logical order. The STNLFFM algorithm was tested by
predicting a Landsat-like image on a certain date using
two Landsat-MODIS pairs that were the nearest tempo-
ral neighbors to the predicted date, one before and one
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Fig. 4. Quantitative assessment results for all the prediction dates at the CIA site. (a) RMSE. (b) R2. (c) SSIM. (d) UIQI. (e) SAM. (f) Q4.

Fig. 5. Quantitative assessment results for all the prediction dates at the LGC site. (a) RMSE. (b) R2. (c) SSIM. (d) UIQI. (e) SAM. (f) Q4.

after, and the MODIS image on the predicted date was
also used as an input. All possible combinations of predic-
tions were processed at both study sites. For the CIA site,
Landsat-like images at 15 middle dates were predicted, and
for the LGC site, Landsat-like images at 12 middle dates were
predicted, except for the first and last dates.

To allow a comparative analysis, the STNLFFM method
was compared with two popular methods: STARFM and
ESTARFM. The quantitative assessment results for all the
prediction dates for the CIA site and the LGC site are shown
in Figs. 4 and 5, respectively. We can see from Figs. 4 and 5
that, in the vast majority of the 15 predicted results of the CIA
site and the 12 predicted results of the LGC site, the RMSE

and SAM values obtained using the STNLFFM method are
the lowest, and the R2, SSIM, UIQI, and Q4 values obtained
using the STNLFFM method are the highest. That is to
say, the proposed method is able to provide prediction data
with higher fidelity from the radiometric (gray level), spatial
structure, and spectral aspects. Furthermore, the proposed
STNLFFM method is also robust.

We also present some details of the test data and the above-
mentioned results. Fig. 6 shows the observed Landsat-MODIS
pairs on a key date and the two nearest dates at the CIA
and LGC sites, respectively. For the CIA site, the images are
presented as Landsat bands 4, 3, and 2 (MODIS 2, 1, and 4),
displayed as RGB, as shown in Fig. 6(a). We can see from
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Fig. 6. Observed Landsat-MODIS pairs on a key date and the two nearest dates at the CIA and LGC sites. (a) Observed Landsat-MODIS pairs at the CIA
site on January 5, 2002, January 12, 2002, and February 13, 2002, respectively. (b) Observed Landsat-MODIS pairs at the LGC site on November 26, 2004,
December 12, 2004, and December 28, 2004, respectively.

Fig. 6(a) that the crop in the sporadic irrigation fields begins
to turn green through January to February, but the surrounding
agricultural and woodland areas show less change during this
time. This makes the CIA area spatially heterogeneous. For the
LGC site, the large flood occurred in mid-December 2004,
causing temporal dynamics and abnormal change of the
ground surface. In order to show the ground features of the
LGC site more clearly, the LGC images are presented as

Landsat bands 5, 4, and 3 (MODIS 6, 2, and 1), displayed
as RGB, as shown in Fig. 6(b). We use the Landsat-MODIS
pair dates before and after to predict a Landsat-like image at
the middle date. The prediction results for these two groups
of data are shown in Figs. 7 and 8.

For the results of the CIA study site (Fig. 7), it can be seen
that all the three methods are generally able to predict the crop
phenological changes, and the results are satisfactory in most
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Fig. 7. Prediction results for the CIA site on January 12, 2002. (a) Observed Landsat image. (b)–(d) Landsat-like images predicted by STARFM, ESTARFM,
and the proposed STNLFFM method, respectively.

regions. However, for some special heterogeneous regions,
such as the zoomed-in-view detailed regions in Fig. 7, we can
see that, for the STARFM and ESTARFM methods, they
produce spectral distortion in their results [Fig. 7(b) and (c)],
especially for the STARFM method, which is poor at handling
spatially heterogeneous areas. For the proposed STNLFFM
method, it obtains a visually convincing result, which is closest
to the observed Landsat data, as shown in Fig. 7(d). For
the test results of the LGC study site (Fig. 8), we can see
from the zoomed-in-view detailed regions that there is some
noise arising in the edge regions for the STARFM method
[Fig. 8(b)]. For the result of the ESTARFM method [Fig. 8(c)],
obvious spectral distortion occurs in the flooded area, since
ESTARFM is less good at handling temporally dynamic
areas [36]. The proposed STNLFFM method obtains a result
[Fig. 8(d)] that is visually similar to the observed Landsat data.
The quantitative assessment results for Figs. 7 and 8 are shown
in Tables I and II, respectively. It can be seen from Table I
that, for a few bands of the CIA data, such as band 2 (green)
and band 3 (red) (Fig. 7), the ESTARFM method obtains
the best quantitative values. Meanwhile, most of the results
obtained using STNLFFM have the best quantitative values,
and the improvement is remarkable, especially for the LGC
data in Fig. 8 (Table II).

2) Long Time Series Fusion Experiments: In this part,
we analyze the influence of the time interval length on
the prediction results. The dates of the LGC image series
are irregular and have quite different time intervals, while
the dates of the CIA image series are regular and have

TABLE I

QUANTITATIVE VALUES OF THE PREDICTION RESULTS IN FIG. 7

similar time intervals. In order to make a convenient and
effective analysis, we only used the CIA image series in the
experiments. The Landsat-MODIS pairs of the CIA site were
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Fig. 8. Prediction results for the LGC site on December 12, 2004. (a) Observed Landsat image. (b)–(d) Landsat-like images predicted by STARFM,
ESTARFM, and the proposed STNLFFM method, respectively.

arranged in chronological order, as before. The middlemost
date, February 13, 2002, was treated as the prediction date.
The proposed STNLFFM algorithm was tested by predicting a
Landsat-like image on the prediction date (February 13, 2002)

using two Landsat-MODIS pairs on reference dates that were
symmetrically distributed with the prediction date, one before
and one after, as shown in Fig. 9. As the time intervals between
the prediction date and the reference dates were increased,
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TABLE II

QUANTITATIVE VALUES OF THE PREDICTION RESULTS IN FIG. 8

Fig. 9. Predicting a Landsat-like image on the middlemost date
(February 13, 2002) using two Landsat-MODIS pairs on reference dates that
are symmetrically distributed, one before and one after.

Fig. 10. RMSE values of the predicted results. The horizontal axis represents
the average time interval between the prediction date and the two reference
dates.

all possible combinations of predictions were processed.
The RMSE values of the predicted results were calculated,
as shown in Fig. 10. The horizontal axis in Fig. 10 represents
the average time interval between the prediction date and

TABLE III

MEAN COMPUTATION TIMES OF THE STARFM,
ESTARFM, AND STNLFFM METHODS

the two reference dates. From Fig. 10, we can observe the
following phenomena.

1) For all three methods, the shorter the time interval, the
better the prediction, and vice versa. When the average
time interval is longer than about 90 days, the prediction
accuracy fluctuates less.

2) From the two curves of STARFM and ESTARFM,
we can see that when the average time interval is
short (less than about 65 days), the prediction of
ESTARFM is better than that of STARFM. This is
because the spatial variability is the dominant factor
affecting the prediction when the time interval is short,
and ESTARFM is better able to deal with spatial vari-
ability than STARFM [20]; however, when the average
time interval is long (more than about 65 days), the pre-
diction of STARFM is better than that of ESTARFM.
This is because the temporal variability becomes the
dominant factor affecting the prediction when the time
interval is sufficiently long, and STARFM is better able
to deal with temporal variability than ESTARFM [36].
Moreover, we can infer that the intersection of the two
curves (STARFM and ESTARFM) is the point where
the levels of spatial and temporal variability are equal,
and this point is located at approximately 65 days (the
average time interval between the prediction date and
the two reference dates) for the CIA site.

3) For every prediction result in Fig. 10, the RMSE value of
the STNLFFM method is lower than those of the other
two methods, which suggests that, with the interference
from both the spatial variability and temporal variability,
the STNLFFM method can still obtain better prediction
results than the other two methods.

Finally, we compared the computation times of the proposed
STNLFFM method and the STARFM and ESTARFM methods
on a PC with an Intel Core i3 3.4-GHz CPU and 8 GB
of RAM. We took nine groups of image blocks with the
size of 1000 × 1000 pixels from the CIA and LGC data,
and then recorded the mean time consumption of the nine
groups of fusion experiments, as listed in Table III. It can be
seen in Table III that the STNLFFM method is slightly faster
than the STARFM method, and it is about four times faster
than the ESTARFM method. It is suggested that, although
STNLFFM expands the search space in a nonlocal manner to
select similar pixels, the effective ways of identifying similar
pixels and calculating the weights improve the computational
efficiency. However, we can see that the STNLFFM method is
still time-consuming, and should be further speeded up before
being used in large-scale applications.
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IV. CONCLUSION

In this paper, in order to obtain remote sensing data with
both high spatial resolution and high temporal frequency,
we have proposed the STNLFFM. The STNLFFM algorithm
was tested over the CIA study site and the LGC study site, and
we conducted two groups of experiments to verify the efficacy
of the STNLFFM algorithm. The experimental results show
that the STNLFFM algorithm can predict the fine-resolution
reflectance accurately and robustly, for both heterogeneous
landscapes and temporally dynamic areas.

The proposed STNLFFM algorithm makes several improve-
ments to the STARFM and ESTARFM algorithms. First, in the
prediction model, the STNLFFM algorithm uses two regres-
sion coefficients to more accurately describe the land-cover
change information, thereby enhancing the prediction capa-
bility for complex changed landscapes. Second, STNLFFM
introduces the idea of nonlocal filtering, which takes advantage
of the high degree of redundancy in the image sequence
to produce a more accurate and robust prediction. Third,
STNLFFM uses a simple method of weight calculation, which
can improve the computational efficiency and reduce the
interference of image noise. Finally, STNLFFM solves the
problem of temporal difference measurement in the procedure
of searching for similar pixels, and improves the accuracy of
similar pixel selection.

There are, however, some limitations to the STNLFFM
method. STNLFFM is based on the assumption that the
reflectance change rate is linear. However, this assumption
might not be appropriate in some situations, especially over a
long time period. In addition, although the current computation
speed of the STNLFFM algorithm is faster than that of the
STARFM and ESTARFM algorithms, the STNLFFM algo-
rithm is still time-consuming, and the calculation efficiency
needs to be further improved.
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