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Stripe Noise Separation and Removal in Remote
Sensing Images by Consideration of the Global
Sparsity and Local Variational Properties
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Abstract—Remote sensing images are often contaminated by
varying degrees of stripes, which severely affects the visual quality
and subsequent application of the data. Unlike with conventional
methods, we achieve the destriping by separating the stripe com-
ponent based on a full analysis of the various stripe properties.
Under an optimization framework, an £°-norm-based regulariza-
tion is used to characterize the global sparse distribution of the
stripes. In addition, difference-based constraints are adopted to
describe the local smoothness and discontinuity in the along-stripe
and across-stripe directions, respectively. The alternating direc-
tion method of multipliers is applied to solve and accelerate the
model optimization. Experiments with both simulated and real
data demonstrate the effectiveness of the proposed model, in terms
of both qualitative and quantitative perspectives.

Index Terms—Alternating direction method of multipliers
(ADMM), destriping, optimization-based model, remote sensing
image, sparsity.

1. INTRODUCTION

TRIPING effects are a common degrading phenomenon in
spaceborne and airborne remote sensing imaging systems,
from whiskbroom sensors [1], [2] to pushbroom scanners [3],
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[4]. Mainly because of the inconsistent responses between
different detectors [2], the stripe noise can badly influence not
only the visual appearance of the data but also the potential
subsequent applications, such as classification, target detection,
quantitative applications, and so on. In order to further improve
the quality of remote sensing images, it is crucial to remove the
stripe noise, while maintaining the original information of the
healthy pixels.

To date, a large number of destriping algorithms have been
proposed. In general, these methods can be categorized into
several main groups. The first family of destriping approaches
relies on the statistical properties of the data [4]-[10]. These
methods assume similarity within the signal and then examine
the distribution differences between each sensor for the purpose
of adjusting the target distribution to the reference one. As
typical examples, histogram modification [5], [6] and moment
matching [7] are relatively early methods in the destriping field.
Although these methods work with high efficiency, their perfor-
mance is always unstable when the stripes are nonlinear and/or
irregular. To address this problem, Shen et al. [10] proposed a
piecewise approach based on local statistics, and Sun et al. [4]
proposed a spectral moment method for hyperspectral images.

Filtering-based techniques, such as the Fourier domain filter
[1], [2], [11], wavelet analysis [12], [13], and the combined
wavelet-Fourier filter [14], [15], constitute another type of de-
striping method. These methods work by analyzing and truncat-
ing the specific stripe component in a transformed domain and
can effectively handle the oblique stripes in georectified images.
Since the periodic property of stripes can be easily identified
in a power spectrum analysis and extracted from signals in a
transformed domain, these filtering-based methods generally
output better results for periodic stripe noise. Limited by the
truncating step, more information than stripe noise is often
filtered by the conventional methods [1], [2], [12], which can
result in excessive destriping results with significant blurring or
ringing artifacts, particularly when some stripelike details also
exist in the observed data. To conquer this drawback, research
has been undertaken [14], [15] to truncate stripe information
more accurately in a transformed domain.

Recently, optimization-based models have attracted the at-
tention of scholars and have become a popular group of de-
striping methods. Regarding the destriping issue as an ill-posed
problem [16]-[20], these approaches make use of prior infor-
mation to estimate the true image by minimizing the energy
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function under a constraint term. For instance, Shen and
Zhang [16] utilized a maximum a posteriori framework to solve
the destriping and inpainting problem, supposing that normal
pixels conform to the law of a Huber—-Markov distribution. In
[17], a more sophisticated algorithm was designed by taking
the directional structural information of the stripe noise into
account. Aiming at the simultaneous removal of random and
stripe noise, a joint model combining unidirectional total vari-
ation and sparse representation was proposed in [18]. More
recently, low-rank matrix recovery has been used to remove
stripes in hyperspectral images [20]. Due to the flexibility of
the optimization framework, it is a very promising approach
with plenty of modeling space for the destriping problem.

To sum up, most of the current methods implement the
destriping by directly estimating the latent clean images. This
paper presents a different processing angle by estimating and
separating the stripe component from the original noisy data.
By analyzing and fully considering the characteristics of the
stripes, we propose a method for stripe separation and removal
under an optimization-based framework. Without the need to
obtain the specific locations of the stripes in advance, both
the global and local distributional characteristics of the stripe
noise are carefully considered and applied in the proposed
model. From the global perspective, the sparse property is
first observed and then described based on an ¢°-norm-based
functional term. As to the local level, the smoothness along the
stripes and the discontinuity across the stripes are both analyzed
and modeled in variational forms. In order to efficiently opti-
mize the proposed model, an alternating direction method of
multipliers (ADMM) approach is applied by decomposing the
complex problem into some simpler subproblems.

The remainder of this paper is organized as follows: In
Section II, the proposed model and the properties of stripe
noise are introduced. The ADMM algorithm is described in
Section III. In Section IV, the experimental results and a
comparison with other methods are provided. Finally, the con-
clusions are drawn in Section V.

II. STRIPE SEPARATION AND REMOVAL MODEL
A. Problem Formulation

Assuming that the striping effects in remote sensing images
can be considered as additive noise [17], [18], the degradation
process can be written as

foy = Uzy + Say ey

where f;,, Uz, and s; , separately denote the actual data
output from the detectors, the desired destriped data, and the
stripe component at the location of (z,y). For simplicity, a
matrix-vector form can be used to rewrite (1) as follows:

f=u+s. 2)

Here, f, u, and s represent the lexicographically ordered vectors
of fz .y, Uz,y, and s, ,, Tespectively.

Generally speaking, most destriping models aim to directly
estimate u from the given image f. However, to further explore
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Fig. 1. Frame work of the proposed method.

the properties of stripe noise and design an effective destriping
method with the ability to both remove noise and maintain
healthy details, this paper first focuses on estimating an accurate
stripe component.

Once S is estimated, the desired image can be recovered
by separating § from the observed data f, using the following
expression:

a=f-3s. 3)

The framework of the proposed method is illustrated in Fig. 1.

B. Proposed Model for Estimating the Stripe Component

Here, the key task is to explore the stripe properties, and
to describe them in appropriate constraint terms to constitute
an optimization model for the estimation of s. More specif-
ically, the global sparsity and the local variational properties
in both the along-stripe and across-stripe directions are fully
deliberated.

1) Global Sparsity: In recent years, sparse representation
and sparsity promoting models have received a lot of attention
and have been widely used in image restoration applications
such as deblurring, denoising, and superresolution [21]-[23].
Other than utilizing special techniques to obtain the inner sparse
property of images, the stripe component can be viewed as a
kind of sparse matrix with a large number of zero elements
in the stripe-free locations. This is due to the fact that the
proportions of stripe noise in many remote sensing images are
relatively low.

Considering the global sparse distributional property, it is
natural for us to take advantage of this as a prior condition.
As the ¢°-norm indicates the number of nonzero elements and
encourages the sparsity, it fits well for the stripe property of
sparse distribution. Therefore, we directly apply the /°-norm
regularizer to the stripe matrix s as follows:

Ru(s) = [sllo- @

Here, the /°-norm plays an important role in controlling the
process of noise extraction. To be more specific, the stripe
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component can be screened out avoiding extra background
information loss under this kind of constraint, and thus, the
pixels in the stripe-free areas remain relatively intact.

2) Local Smoothness in the Along-Stripe Direction: In gen-
eral, from the local perspective, the inner pixels within a single
stripe often have relatively small variations, which means that
the stripe possesses good smoothness in the along-stripe direc-
tion. Since the difference reflects the variation between adjacent
pixels, the smoothness can be effectively described by mini-
mizing the partial difference along the stripe. Moreover, when
taking the potential occurrence of nonlinear or irregular stripes
[10] into account, the segmented stripe boundaries caused by
varying degradation levels within a single stripe also need to
be effectively preserved for an accurate estimation of the stripe
component. To do this, we finally construct this term as

Ra(s) = [[Vasll, )

where V, represents the partial differential operator in the
along-stripe direction. Due to its ability to accept huge jumps
[24] in ||Vs]|,, the £!-norm regularization fits better than the
£2-norm regularization in describing the along-stripe smooth-
ness, while simultaneously preserving the segmented stripe
boundaries.

3) Local Discontinuity in the Across-Stripe Direction: In
addition to the smoothness along the stripes, the discontinuity
across the stripes is also a very important local property. For
example, the difference in the across-stripe direction often
has a large absolute value at the stripe locations and a small
value at the nonstripe locations. Although the differential values
vary a lot, it is still difficult to accurately extract stripe pixels
from the whole image using a threshold. Considering the fact
that the partial differential result of the original image can
reflect the actual across-stripe difference of each pixel, it is
natural to use this information as a reference to help determine
the discontinuity of the stripes. Accordingly, we have designed
the following expression:

Ry(s) = |V, f — Vs, ©)

where V, is the partial differential operator in the across-stripe
direction. General speaking, the £2-norm is a common choice to
ensure that Vs is similar to V,f by penalizing the variations
between V, f and Vs. However, to ensure that the differential
information across the stripe from observed data f can be more
accurately mapped to the stripe component s, the ¢'-norm is
finally chosen. Furthermore, from a different point of view, the
function of R3(s) is also equal to minimizing the across-stripe
difference of the latent image for V,f — Vs = V,u.

After fully analyzing the stripe noise from both the global
and local perspectives, we can summarize its three typical
distributional properties of sparsity, smoothness (along the
stripes), and discontinuity (across the stripes). By combining
these properties, a unified framework to solve the stripe com-
ponent can be constructed as follows:

s = argmin {[|Vas|l; + Ailsllo + A2/ Vyf = Vs } (D)

where A1 and A, are two parameters to balance the constraining
degree of the different terms.
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III. ADMM OPTIMIZATION

Due to the nondifferentiability and inseparability of the
proposed model (7), it is necessary to find an efficient solution
to tackle this nonsmooth and nonconvex optimization problem.
Recently, the ADMM algorithm, which is well suited to dis-
tributed convex optimization, has become a powerful approach
for many problems, such as ¢! minimization and total variation
(TV) minimization in image processing [25]-[27]. Since the
ADMM approach combines the benefits of the decomposability
in dual ascent and the superior convergence properties of the
method of multipliers [28]-[30], it is competitive when com-
pared to many of the state-of-the-art methods for constrained
optimization. Therefore, in this paper, we adopt the ADMM
approach to minimize the proposed destriping model in (7).

By introducing three auxiliary variables Y, H, and W, we
first convert the unconstrained minimization problem (7) into a
constrained one, as follows:

min {[[ Y|y + A1 [[HlJo + A2[W{|1 }
st.Y=V,s, H=s, W=V, f - Vys. ®)

As in the method of multipliers, we then form the augmented
Lagrangian as follows:

‘C(Yv Hv Wa Svplap27p3)
= [IY]ls + M[[Hllo + A2 W1 +p7 (Vos = Y)
+ 95 (s = H) +p§ (V,f = V,s = W) + 5| Vs - Y3
P2 P3 2

+ 5 s —HIE + T Vyf = Vys - W ©)
where p;, p2, and ps are Lagrange multipliers, and p;, p2, and
ps represent the penalty parameters, which also determine the
step sizes used to update the corresponding Lagrange multi-
pliers. Each iteration of the ADMM can be decomposed into
four simpler subproblems, and their variables are updated in an

alternating and sequential way.

1) The Y subproblem is given by
Y = argmin {||Y||1 + 97 (Vas - Y)
P1 2
+ 2 Vas - Y3} a0y

which can be solved using a soft-threshold shrinkage
operator [31] as follows:

1 pk 1
Y = §f <st’“ + 2L, —) (11)
P1 P1
where
z=T, >T
Sz, T) =<0, lZ| < T (12)
z+T, z<-=T.
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2) Similarly, the W subproblem reads

W = argmin {AgHWHl +pi(Vyf —Vys— W)

+ IVt -V,s - WG| 13)
and hence

k
WhH = g (Vyf ~V,sk + %, ﬁ) . (14

P3

3

~

The H subproblem

H = argmin {\[Ho + p] (s - H) + 2 |)s - H|3}
5)
has an explicit formula based on the hard-thresholding

operator for the 0 penalty (see [32] and [33]). We can
then update H**! as follows:

koo2a
HA = 5% (s’“ + B2 —1> (16)

P2 P2

where

x, lz|>T
Sz, T)=1{" 17
@) {0, |x| < T. (1"

4) The s subproblem

§ =argmin {plT(sz -Y)+pi(s—H)
T P1 2
+ p3 (Vyf—Vys—W)—i—?||Vgcs—Y||2

P2 P3
+ 2l H3+ 2V, - ,5- W]}
(18)

is a quadratic minimization problem. It has an explicit
formula

k
(Plvax +P2+pgvgvy) gh+1 :plvg (ch+1 _ ];_1)
1
ph ok
+ p2 (Hk+1 _ _2> +p3V§ (Vyf—Wk+1+ _3)
P2 03
(19)
which can be efficiently solved by fast Fourier transform
(EFT).

Finally, in each iteration, the Lagrange multipliers p;, p2, and
ps are updated as follows:

Pt =t 4 o (Vash YR
p12c+1 _ p§ + pQ(SkH _ Hk"H)
P57 =pE + ps(Vyf — Vst — W),

(20)
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Combining (11), (14), (16), (19), and (20), we have a one-
step iteration for the ADMM. The ADMM decomposes the
difficult minimization problem (7) into several easy subprob-
lems. Specifically, the Y and W subproblems are solved by a
soft-thresholding operator, whereas the H subproblem is solved
by a hard-thresholding operator. For the s subproblem, FFT is
utilized accordingly. In addition, the independent subproblems
Y, H, and W, along with their Lagrange multipliers p1, po,
and p3, can be computed or updated in parallel. Finally, the
proposed destriping model is summarized as Algorithm 1.

Algorithm 1: The proposed destriping algorithm

Input: data f, parameters A1, A2, p1, p2, p3-
Initialize: Sp = 0, Yo =0, Ho =0, Wo = Vyf, pP1 = 0,
p2=0,p3s=0,and e = 1074
While (||(f — s*) — (f —s*1)||/||If —s*|| > eand k <
Nmax) do
Solve YH*+1 Wkt H**1 yusing a thresholding
method by (11), (14), (16)
Solve s**1 using FFT by (19)
Update the three Lagrange multipliers pr+1
p5t" by (20)
End While
Output: uF+! = f — gh+!

k+1
ap2 I

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effectiveness of the proposed destriping meth-
od, we undertook both simulated and real data experiments.
Four state-of-the-art destriping methods that do not require
the location information of the stripes were chosen for com-
parison: 1) combined wavelet-Fourier filtering (WAFT) [14];
2) statistical linear destriping (SLD) [9]; 3) the unidirectional
total variational model (UTV) [17]; and 4) the spatially adaptive
unidirectional total variation model (SAUTV) [19]. For the
quantitative evaluation of the different methods with different
data, all the test images were normalized between [0, 1].

A. Simulated Data Experiments

In the simulated experiments, one 400 x 400 Terra MODIS
subimage [see Fig. 2(a)] from a relatively homogeneous area
and one 250 x 250 Hyperion subimage [see Fig. 3(a)] with
complicated surface conditions were selected from their cor-
responding noise-free bands. In order to demonstrate the ro-
bustness of the proposed destriping method, we used linear
degradation as the basic approach [7] and degraded the two test
images in different ways.

For the Terra MODIS data, both whole stripes and part
stripes were periodically added in the image. The width of
the stripes was two lines, as shown in Fig. 2(b). Meanwhile,
in the Hyperion data, we randomly chose 10% of the lines
to add stripes. To make the situation more complicated, the
degradation levels of the different stripes were also different
[see Fig. 3(b)].



LIU et al.: STRIPE NOISE SEPARATION AND REMOVAL IN REMOTE SENSING IMAGES BY CONSIDERATION

3053

(d)
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Fig. 2. Destriping results with the simulated Terra MODIS data: (a) original image; (b) degraded image with periodic stripes; (c) SLD; (d) WAFT; (e) UTV;

(f) SAUTYV; and (g) the proposed method.

Fig. 3. Destriping results with the simulated Hyperion data: (a) original image; (b) degraded image with random stripes; (c) SLD; (d) WAFT; (e) UTV; (f) SAUTYV;

and (g) the proposed method.

Figs. 2 and 3 show the different destriping results for the
simulated Terra MODIS and Hyperion data. As displayed in
Figs. 2(c) and 3(c), the SLD method does a relatively poor
job, with either obvious remaining stripes or some significant
overcorrection. Although the results of the WAFT method
in Figs. 2(d) and 3(d) contain fewer artifacts than SLD, its
performance is still worse than UTV, SAUTYV, and the proposed
model. Although UTV, SAUTYV, and the proposed method
obtain comparative visual results for the periodic stripes in
Fig. 2, the detail region in Fig. 3 reveals the difference. By fo-

cusing too much on smoothness, in the green mark of Fig. 3(e),
some boundaries seem to be blurred after destriping by UTV.
A similar visual result can be found in Fig. 3(f) for SAUTV.
However, the proposed method, in contrast, shows a better
visual performance in Fig. 3(g).

In order to test the abilities of the different methods to keep
healthy pixels in the destriping process, the stripe components
extracted from more complicated test data (Hyperion data) are
given in Fig. 4. When compared to the actual added stripes
in Fig. 4(a), it is clear that SLD, WAFT, and UTV all extract
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®

Fig. 4. Extracted stripe components for the Hyperion data: (a) the actual added stripes; (b) SLD; (c) WAFT; (d) UTV; (e) SAUTYV; and (f) the proposed method.

additional background information in the stripe components,
which results in significant data loss in the destriping results.
Although the result of SAUTV in Fig. 4(e) is significantly
improved, the extracted stripe component is still not as accurate
as expected. In Fig. 4(f), it can be seen that the proposed
method extracts not only the correct noise component but also
the correct degradation level. Thus, in addition to suppressing
the stripe noise successfully, the proposed method also has a
much better ability to preserve healthy information.

Because of the availability of truth data in simulated ex-
periments, both full-reference and nonreference indexes were
used to give an overall quantitative assessment: the improve-
ment factor (IF1) [34], the peak signal-to-noise ratio (PSNR),
the structural similarity index (SSIM) [35], [36], the inverse
coefficient of variation (ICV) [37], [38], and the mean rela-
tive deviation (MRD) [16]. Among them, ICV and MRD are
nonreference indexes, and the others are full-reference indexes.
IF1 was used to measure the image quality improvement after
destriping, whereas PSNR and SSIM were utilized to assess the
similarity between the reference and destriped images, which
also reflects the models’ ability to maintain useful information.
For the nonreference indexes, ICV calculated in homogeneous
regions was used to reflect the level of the remaining stripe
noise, whereas MRD computed in noise-free sharp regions was
used to evaluate the performance in retaining healthy details. In
practice, the ICV and MRD indexes were separately calculated
in homogeneous and heterogeneous regions within a 10 x 10
window. To decrease the influence of accidental factors, the
mean ICV (MICV) of five homogeneous samples and the mean
MRD (MMRD) of five heterogeneous samples were used to
give the final evaluation. Generally speaking, better destriping
results are reflected by higher IF1, PSNR, SSIM, and MICV
values and lower MMRD values.

The quantitative assessment of the simulated experiments is
shown in Table I. Here, it is clear that the proposed destriping

TABLE 1
QUANTITATIVE ASSESSMENT OF THE SIMULATED DATA EXPERIMENTS

Images Index SLD  WAFT UTV  SAUTV Proposed
IF1 7454  13.867 11.531 18.038 28.876

. PSNR 29911 33.010 34.664 38.990 42.403
M((;r];?s SSIM  0.823 0940 0990 0992  0.998
MICV  13.653 17.065 18916 18.107 18.987

MMRD (%) 5.8 6.8 6.9 2.5 0.0

IF1 4387 8433 12327 13.061 26.618

PSNR  29.635 23.687 29.699 29.840 33.595

Hyperion  SSIM  0.866 0.884 0973 0973  0.986
MICV 6030 12900 25.187 24311 26.562

MMRD (%) 6.5 12.0 3.9 3.5 0.2

method outperforms the other four approaches, in terms of all
these indexes, which is in accordance with the aforementioned
visual evaluations.

B. Real Data Experiments

To further test the performance of the proposed method, four
different kinds of real remote sensing images with different
stripe noise distributions were used: 1) Aqua MODIS; 2) Terra
MODIS; 3) Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE); and 4) Hyperion data. As typical examples
of periodic stripes, band 30 of the Aqua MODIS data and
band 28 of the Terra MODIS data (with the size of 400 x
400) extracted from their original versions were chosen as
the experimental images. These data are available from http://
ladsweb.nascom.nasa.gov. For the random stripes, both band 87
of a 200 x 200 HYDICE urban subimage and band 56 of a
250 x 400 Hyperion subimage were selected to be tested. The
original images can be downloaded online at http://www.tec.
army.mil/hypercube and http://eol.gsfc.nasa.gov, respectively.

It is shown that the MODIS data in Figs. 5(a) and 6(a) are
highly contaminated by noisy periodic stripes [8]. In addition,
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Fig. 5. Destriping results of Aqua MODIS band 30: (a) original image; (b) zoom of (a); (c) SLD; (d) WAFT; (e) UTV; (f) SAUTYV; and (g) the proposed method.

Fig. 6. Destriping results of Terra MODIS band 28: (a) original image; (b) zoom of (a); (c) SLD; (d) WAFT; (e) UTV; (f) SAUTYV; and (g) the proposed method.

the ground-truth condition in the Aqua MODIS data is more
complicated, whereas the noise level in the Terra MODIS data
is much higher. In Figs. 7(a) and 8(a), the occurrences of stripe
noise are much more irregular, with a random distribution over
the whole or part of the image, respectively. Since the stripe
noise is mainly concentrated in the left part of Fig. 8(a), this
image is particularly suitable to test the ability of the different
destriping methods to preserve healthy information.

Figs. 5-8 present the destriping results of SLD, WAFT, UTV,
SAUTYV, and the proposed method. A visual assessment of
these results clearly shows that the proposed approach can
effectively remove different types of stripe noise. According to

the destriping results of WAFT and SLD, these two methods
are not as robust as the proposed method because satisfactory
results are only obtained for certain images. Taking Fig. 6(d) as
an example, the artifacts caused by WAFT are obvious on the
homogeneous background. In addition, the residual stripes in
the SLD-recovered results, such as Figs. 6(c) and 8(c), are also
significant. Although the visual results of UTV seem plausible,
we still have to consider its oversmoothing effect. For instance,
in the MODIS data, UTV focuses too much on the smoothing
and leads to local brightness distortion, as shown in Figs. 5(e)
and 6(e). SAUTV attempts to deal with the oversmoothing
effect of UTV; however, the actual results in Figs. 5(f) and 6(f)
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(@

Fig. 8. Destriping results of Hyperion band 56: (a) original image; (b) zoom of (a); (c) SLD; (d) WAFT; (e) UTV; (f) SAUTYV; and (g) the proposed method.

reveal its limitation, since SAUTV alleviates but does not
eliminate the brightness distortion.

The stripe noise separation results of the different methods
for the different real data experiments are given in Fig. 9.
Clearly, SLD, WAFT, UTV, and SAUTV all lose different
degrees of useful information in the destriping process, whereas
the proposed method separates and removes the noise com-
ponent much more accurately. Moreover, Fig. 10 displays the
mean cross-track profiles of Hyperion band 56. As the stripe
noise in this data mostly occurs in the left part, the best mean

cross-track profile of the destriped image should be the same as
the noisy image in the other nonstripe part. However, the corre-
sponding profiles of SLD and WAFT in Fig. 10(b) and (c) differ
a lot from Fig. 10(a) in the nonstripe part. In addition, UTV
alleviates the fluctuation too much, which means that some
fine details are simultaneously smoothed during the destriping
process. A similar profile is output by SAUTYV, as shown in
Fig. 10(e). Unlike the four existing methods, the proposed
approach can process random stripes, with the least amount of
distortion, and is better able to preserve detailed information.
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Fig. 9. Stripe components in Aqua MODIS band 30, Terra MODIS band 28, HYDICE band 87, and Hyperion band 56, extracted by: (a) SLD; (b) WAFT;
(c) UTV; (d) SAUTYV; and (e) the proposed method.
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Fig. 10. Mean cross-track profiles of Hyperion band 56: (a) noisy image; (b) SLD; (¢) WAFT; (d) UTV; (e) SAUTYV; and (f) the proposed method.
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TABLE II
QUANTITATIVE ASSESSMENT OF THE REAL DATA EXPERIMENTS

Images Index SLD  WAFT UTV SAUTV Proposed
Aqua band MICV 18.511 22.153 26.054 24.164 26.417
30 MMRD (%) 2.7 42.8 44.1 12.3 0.8
Terra band MICV 16.805 47.615 47.628 43.931 49.778
28 MMRD (%) 19.6 11.0 33.20 12.7 3.3
HYDICE MICV 13.594 14.345 15.803 16.149 16.586
band 87 MMRD (%) 4.6 6.8 13.7 7.1 0.3
Hyperion MICV 6.891 8286 9.265 8.517  9.503

band 56 MMRD (%) 3.6 7.6 5.0 4.0 0.1

For the quantitative evaluation, two nonreference indexes,
i.e., MICV and MMRD, were used in the real data experiments.
The specific calculation of MICV and MMRD was the same
as in the simulated experiments, and the results are listed
in Table II. Here, it can be seen that the proposed method
simultaneously obtains the highest MICV values and the lowest
MMRD values in all the real data experiments, which confirms
the effectiveness of the proposed method. If we only used
MICYV to evaluate the performances of the different methods, it
could be inferred that UTV, SAUTY, and the proposed approach
usually obtain similar results that are better than SLD and
WAFT, which would suggest that these three methods have
comparative destriping abilities. However, when taking the
MMRD index into account, the advantage of the proposed
method stands out in effectively preserving the original noise-
free information.

C. Discussion

1) Parameter Selection: In this paper, the stripe distribu-
tional properties of sparsity, smoothness, and discontinuity are
constructed as constraint terms to estimate the stripe compo-
nent. Since the specific noise levels and proportions of stripes
vary a lot, for a more accurate estimation, the different sig-
nificances of these three properties also need to be carefully
considered, i.e., the functioning degree of the corresponding
constraint terms in model (7) need to be adjusted accordingly
through the regularization parameters \; and \o. Taking severe
stripe noise as an example, its discontinuity would clearly stand
out when compared to the other two distributional properties;
thus, a larger A2 would be more helpful in this case. In
addition, the proportion of the stripes is in close accordance
with the sparsity. Specifically, the lower the proportion, the
sparser the stripe component. Therefore, a higher A; would be
more suitable for a sparser stripe situation. Due to the different
degradation levels of the test images in our experiments, the
regularization parameters were set empirically with the range
[0.001, 0.01] for Ay and [0.1, 1] for 5. Fortunately, in practical
use, the sensor is usually a specific type, and its degradation
level is relatively stable; hence, we can determine the values
of the regularization parameters. However, at present, the reg-
ularization parameters cannot be automatically or adaptively
chosen for different sensors, which will be further researched
in our future work. For the penalty parameters, it can be seen
that the choice of penalty parameter does not greatly affect
the convergence of the ADMM algorithm [30]. To simplify
the steps of the parameter adjustment, we empirically set p; =
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TABLE III
RUNNING TIME(S) OF THE DIFFERENT METHODS
WITH TWO IMAGE SIZES

Image Size SLD WAFT UTV ~ SAUTV Proposed
250%250 0.458 0.170 11.992  11.171 1.630
400x400 0.851 0.192 54436 54.726  6.108

p2 = p3 = 100A2. As to the parameters in the four compared
methods, they were initially selected according to the authors’
advice in the related papers, and they were further adjusted until
they attained the best PSNR value in the simulated experiments
or the best visual output in the real data experiments.

2) Running Time: Owing to the use of the ADMM algo-
rithm, the independent subproblems Y, H, W and the three
Lagrange multipliers in (20) can be calculated or updated
in parallel. Moreover, to estimate the stripe component, the
efficient FFT is chosen to solve the corresponding quadratic
minimization problem in (19). Consequently, our optimization-
based approach is relatively fast. The comparison of the running
times of the different methods is given in Table III. All the ex-
periments were conducted in MATLAB on a desktop personal
computer with a 3.4-GHz CPU and 8-GB RAM.

3) Sparsity Explanation: Generally speaking, in most cases,
the proportion of stripe noise in remote sensing images is
relatively low, and the sparsity is quite significant. Under this
circumstance, since the healthy pixels can be easily discrimi-
nated, the use of sparsity to screen out the stripe component
is effective and necessary. Naturally, there will still be a few
cases where the stripes are too dense to be considered as sparse
noise. Although the sparsity has disappeared, the along-stripe
smoothness and the across-stripe discontinuity will always be
significant, and can be utilized to extract the stripe component.
Although the extraction may not be as accurate as when the
stripe noise is sparse, the result will still be acceptable for the
reason that both the stripe pixels and healthy pixels are difficult
to define in such a case. In addition, the output of the proposed
method in such a case would be very close to or even equivalent
to UTV.

V. CONCLUSION

In this paper, we have proposed a new destriping method
taking the stripe noise properties of sparsity, smoothness, and
discontinuity into full consideration. With the constraint of
these properties, the model can lock the destriping process on
noisy pixels and maintain the fine details of the original data.
For the optimization, the ADMM method is applied to solve
the corresponding optimization problem. Several simulated and
real data sets were tested in our experiments. Both the qualita-
tive and quantitative assessments confirmed that the proposed
model can output better destriping results than the other state-
of-the-art techniques of SLD, WAFT, UTV, and SAUTV. In
addition, the proposed method is quite robust to most types of
stripes, and it does not require the stripe positions in advance.
As aresult, it has good universality.

Although the proposed model works well on horizontal or
vertical stripes, there are still limitations for oblique stripes in
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georeferenced images. Thus, in the future, we will focus on the
challenging task of the identification and subsequent removal
of oblique stripes.
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