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The trade-off between the temporal and spatial resolutions, and/or the influence of cloud cover, makes it difficult
to obtain continuous fine-scale satellite data for surface urban heat island (SUHI) analysis. To relieve these diffi-
culties, this study employs multi-temporal and multi-sensor fusion methods for a long-term and fine-scale sum-
mer SUHI analysis of the city of Wuhan in China. By integrating several series of satellite images, we generated
26-year (1988 to 2013) high spatial resolution (Landsat-like) summer land surface temperature (LST) data.
This series of data was then used for a qualitative and quantitative analysis of the SUHI patterns, evolution char-
acteristics, and mechanisms. This study not only provides a generalized research framework for the long-term
and fine-scale analysis of the SUHI effect, but also reveals several findings about the heat distribution and SUHI
characteristics in Wuhan. Firstly, our results show that the high temperature and sub-high temperature areas
were continuously concentrated from rural to urban areas, but the high temperature area within the old city
zones showed an obvious decreasing tendency. Secondly, a more important finding is that the SUHI intensity
first increased and then decreased over the 26 years. The maximum temperature difference between the city
zone and the rural area was in 2003 (7.19 K for the old city zone, and 4.65 K for the area within the third ring
road). Finally, we confirm that the relationships between heat distribution and land cover (especially vegetation
and impervious surfaces) were interannually stable, and that the influences of industry, businesses, and residen-
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tial districts on the SUHI effect were in descending order in Wuhan.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

More than 50% of the human population lives in cities, and this pro-
portion is projected to increase to 60% by 2030 (DESA, 2002; Zhou,
Huang, & Cadenasso, 2011). Rapid urbanization results in increasing re-
placement of natural landscapes by impervious surfaces, which can alter
the surface radiation, thermal properties, and humidity over urban
areas (Wang et al., 2007). One of the environmental consequences of ur-
banization is the urban heat island (UHI) effect. This describes the phe-
nomenon of higher temperatures occurring in urban areas than in the
surrounding suburban/rural areas (Oke, 1982). The UHI effect can
alter biodiversity (Knapp, Kiihn, Stolle, & Klotz, 2010), climate (Dixon
& Mote, 2003; Kalnay & Cai, 2003; Mackey, Lee, & Smith, 2012), and
even air conditions (Grimm et al., 2008; Lo & Quattrochi, 2003); there-
fore, it can have a great influence on the quality of life and human well-
being in urban areas (Harlan, Brazel, Prashad, Stefanov, & Larsen, 2006;
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Lafortezza, Carrus, Sanesi, & Davies, 2009; Steeneveld, Koopmans,
Heusinkveld, Van Hove, & Holtslag, 2011).

The UHI effect can be evaluated by both air temperature measure-
ments and satellite LST measurements. The measurement of air temper-
ature is performed either on a traverse through a city or by comparing
temperatures from point measurements (Schwarz, Lautenbach, &
Seppelt, 2011). In general, air temperature UHI measurements have a
high temporal resolution with extensive time coverage, and can effec-
tively describe the temporal variation of the UHI effect (Li, Zhou, &
Ouyang, 2013). However, because of the sparse distribution of observa-
tion stations, a spatially continuous analysis is often difficult. To solve
these problems, many studies of the UHI effect have been based on
land surface temperature (LST) measurements from remote sensors.
The remotely sensed UHI has been termed the surface urban heat island
(SUHI) effect (Streutker, 2002; Voogt & Oke, 2003). One important ad-
vantage of using remotely sensed data is the wall-to-wall continuous
coverage of the urban area (Li et al., 2011). Therefore, LST derived
from thermal infrared remote sensors has become one of the most
commonly used indicators for heat island analysis.
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Numerous studies of the SUHI effect have been carried out using
large-scale satellite LST data sets, such as the AVHRR data of the NOAA
satellites (Dousset & Gourmelon, 2003; Streutker, 2002, 2003) and the
MODIS data of the Terra/Aqua satellites (Imhoff, Zhang, Wolfe, &
Bounoua, 2010; Rajasekar & Weng, 2009b). Using MODIS data, a com-
parative SUHI analysis can also be implemented between daytime and
nighttime (Cui & De Foy, 2012; Quan et al., 2014). However, these
data are only suitable for coarse-scale urban temperature mapping
with about a 1-km spatial resolution, and it has been proved that a spa-
tial resolution of about 50 m is needed to properly estimate the SUHI ef-
fect at a district level (Sobrino, Oltra-Carri6, Soria, Bianchi, & Paganini,
2012). Fortunately, a number of satellite systems can retrieve thermal
infrared LST information with a relatively fine spatial resolution. For ex-
ample, the spatial resolution of the TM/ETM +/TIRS sensors onboard the
Landsat-5-8 satellites is 60 m to 120 m. Spatially fine analyses have
been achieved by the use of this type of data, such as the spatio-
temporal evolution of the SUHI effect (Cai, Du, & Xue, 2011; Li, Wang,
Wang, Ma, & Zhang, 2009; Li, Zhang, & Kainz, 2012), as well as its rela-
tionship with vegetation (Chen, Zhao, Li, & Yin, 2006; Weng, Lu, &
Schubring, 2004), impervious surfaces (Li et al., 2011; Yuan & Bauer,
2007), and other factors (Mackey et al., 2012; Zhang & Wang, 2008).
Some researchers have also studied how urbanization and land use
and land cover (LULC) affect the SUHI effect (Aniello, Morgan, Busbey,
& Newland, 1995; Rajasekar & Weng, 2009a; Weng, 2003). In recent
years, the Landsat series of satellites has been the foremost data source
for fine-scale SUHI analysis, although the Landsat satellites do not ac-
quire nighttime images.

Accurate time series data are very important for the monitoring of
SUHI growth (Streutker, 2003). Long-term remotely sensed data can
help us to more intuitively understand the evolution mechanism of
the SUHI effect and its relationship with LULC and/or climate change
(Lietal.,, 2012), and can therefore help decision-makers develop and ex-
ecute rational land-use policies (Zhang et al., 2013). However, due to
the limited spatial coverage, poor temporal resolution, and the influence
of cloud cover, it is often difficult to obtain a long-term data sequence at
a finer scale. For instance, although the Landsat satellites have a revisit
cycle of 16 days, the effects of clouds, as well as stripe gaps (Landsat-7),
can lead to there being no available data over a period of several months.
It is also well known that the difference in the SUHI patterns of different
seasons can be quite obvious (Li et al.,, 2012). Therefore, an LST data se-
quence for long-term SUHI analysis should be obtained in the same sea-
son, which further increases the difficulties of image acquisition. This
contradiction between supply and demand for satellite data is a very
common problem in SUHI research. As a result, most of the existing stud-
ies of long-term SUHI patterns have had to use only a few representative
remotely sensed images (Li et al., 2012; Zhang et al.,, 2013). The use of dis-
continuous data can result in great uncertainty when drawing conclu-
sions. How to realize a temporally continuous fine-scale view of the
SUHI effect is therefore an open and significant issue.

The main objectives of this paper are: 1) to solve the spatio-temporal
discontinuity of remotely sensed LST for a summer SUHI analysis; and
2) to provide a long-term (26-year) and fine-scale (Landsat-like) case
study of the city of Wuhan in China. Multi-temporal and multi-sensor
fusion methods were employed to obtain spatially continuous summer
LST data from 1988 to 2013 by integrating the observations of NOAA-
AVHRR, Terra-MODIS, Landsat-5 TM, Landsat-7 ETM +, and Landsat-8
OLI/TIRS. Based on the long-term and fine-scale data, a SUHI evolution
analysis of Wuhan was carried out, and a number of important findings
were revealed.

2. Methods
2.1. Study area

The Wuhan metropolis was chosen as the study area in this research.
Wuhan is located between 113°41’-115°05’ E and 29°58'-31°22" N,

having a total area of 8494.41 km? and a population of about 10.02 mil-
lion. Since China's “Open and Reform Policy” started at the end of the
1970s, Wuhan has experienced rapid urbanization over the last three
decades. As the capital of Hubei province, it has been recognized as
the economic, educational, and transportation center of central China
(as shown in Fig. 1 (a) and (b)). The confluence of the middle reaches
of the Yangtze River and Han River divides the metropolitan area into
three parts, namely Wuchang, Hankou, and Hanyang (as shown in
Fig. 1 (c)). In order to avoid image mosaicing and the associated prob-
lems, a single standard scene of Landsat data covering about 80% of
Wuhan was used in this research. From Fig. 1 (c), it can be seen that
the Wuhan metropolis is located at the center of this study area. The
study area can therefore be considered as being representative of the
whole of the city of Wuhan.

Wuhan has a subtropical monsoon climate, with the mean annual
temperature ranging from 288.95 K to 290.65 K. It is noteworthy that
Wuhan is regarded as one of the hottest “stove cities” in China (Han,
Li, & Zheng, 2009; Qian et al., 2007; Su, Gu, & Yang, 2010), especially
in summer, and the temperature at night is the highest of all the large
cities in China. Research into the summer SUHI mechanism is therefore
of special significance. In this study, we obtained daily highest air tem-
peratures from 2001 to 2010 from meteorological data, and then calcu-
lated the 10-year average highest temperatures of each day (see Fig. 2).
After analyzing these data, and considering the data availability, we con-
sidered the 100 hottest days to be the “ideal date range”, which was
from the middle of June to the middle of September (between the
thick lines in Fig. 2). All the observed or fused LST data used for the
SUHI analysis were from this ideal range, with the exception of three
LSTs which were observed close to this range in September, as illustrat-
ed in Fig. 2 by the thin lines. It should be noted that although these three
exceptions were out of the ideal summer period, the air temperatures
were still quite high (301.35 K, 303.95 K, and 308.85 K); therefore,
they had little effect on the subsequent analysis.

2.2. The satellite data

We first collected the available Landsat-5, Landsat-7, and Landsat-8
images, which were acquired in the date range of Fig. 2 in the years
from 1988 to 2013. Due to the effects of clouds and gaps, the Landsat im-
ages were only available for a total of 10 years. To make up for the data
deficiency and to obtain continuous 26-year data, some Landsat (out of
the date range), MODIS, and AVHRR data (within the date range and/or
out of the date range) were collected for the multi-temporal and multi-
sensor fusion. By the data fusion, continuous fine-scale LSTs within the
ideal data range could be obtained. In summary, the data used in this
study are listed in Table 1.

For MODIS, the MOD11A1 LST product was directly used. For the
other sensor data, the LSTs were retrieved using the existing standard
algorithms described in the next section. The thermal infrared bands
of Landsat-5 TM, Landsat-7 ETM+, Landsat-8 TIRS, MODIS, and
AVHRR have spatial resolutions of 120 m, 60 m, 100 m, 1 km, and
1.1 km, respectively. Since the downloaded Landsat data had been
resampled to a 30-m resolution, the analysis was performed at this
scale. In addition to the thermal infrared bands and the LST products,
the reflective bands were also needed to compute the normalized differ-
ence vegetation index (NDVI), the impervious surface fraction (ISF), and
the vegetation fraction (VF) for the correlation analysis. All the satellite
data were rectified to the Universal Transverse Mercator (UTM) projec-
tion system (Spheroid WGS84, Datum WGS84, and Zone 49).

2.3. LST retrieval methods

2.3.1. LST retrieval from Landsat images

There have been several algorithms developed for the retrieval of
LST from Landsat images, including the mono-window algorithm (Qin,
Karnieli, & Berliner, 2001), the single-channel algorithm (Jiménez-
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Fig. 1. The study area. (a) The location of Hubei province in China. (b) The administrative boundary of Wuhan in Hubei province. (c) Landsat-7 ETM + image of Wuhan on 22 July 2001
(covering about 80% of Wuhan). The thin and thick blue lines are respectively used to indicate the Han River and Yangtze River, which divide Wuhan into three parts: Hankou, Hanyang,
and Wuchang. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Mufioz & Sobrino, 2003), and the radiative transfer equation algorithm
(Sobrino, Jiménez-Mufioz, & Paolini, 2004). However, it is difficult to ac-
quire near-real-time atmospheric profile data for when the satellites
pass over the study area, which is necessary when utilizing these
methods. Therefore, like many other UHI studies (Li et al., 2009, 2011,
2012; Weng, 2003), we chose a method in which only the TOA spectral
radiance and the NDVI are necessary. The parameter information in the
header file can be easily used to obtain the TOA spectral radiance and re-
flectance of the Landsat TM/ETM (Chander, Markham, & Helder, 2009;
Li et al,, 2011) and Landsat-8 OLI/TIRS data (http://landsat.usgs.gov/
Landsat8_Using_Product.php).
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Fig. 2. The date range of the remotely sensed LST data. The dots represent the daily max-
imum temperatures averaged from 2001 to 2010, the interval between the two thick lines
is the ideal data range, and the dates corresponding to the three thin lines represent the
exceptions out of the ideal range.

Adopting the conversion formula, the spectral radiance values of the
Landsat thermal infrared bands were converted to at-sensor brightness
temperatures, under the assumption of uniform emissivity (Chander
et al., 2009):

B Ky
Tsensor - W (1 )

where Tgens0r is the effective at-sensor brightness temperature in kelvin
(K), Ly is the TOA spectral radiance in W/(m?srum), and K; and K, are the
calibration constants. For Landsat-5 TM, K; is 607.76 W/(mzsmm) and
K5 is 1260.56 K; for Landsat-7 ETM +, K; is 666.09 W/(mzsrpm) and K,
is 1282.71 K; and for Landsat-8 TIRS, K; is 774.89 W/(mzsmm) and K,
is 1321.08 K for band 10 (http://landsat.usgs.gov/Landsat8_Using_
Product.php).

The Tsensor Values obtained above were referenced to a black body,
which is quite different to the properties of real objects. Therefore, it

Table 1
The satellite data used in the study.
Sensor Date
Landsat-5 1988-08-11 1990-09-02 1991-07-19 1993-08-09 1994-09-29
™ 1995-08-31 2000-09-13 2003-04-15 2004-02-13 2005-04-20
2006-11-01 2008-04-28 2009-09-06 2010-12-30 2011-06-08
Landsat-7 2001-07-22 2002-03-19 2002-07-09 2003-07-28 2004-09-16
ETM + 2005-07-17 2006-03-30 2007-01-28 2008-05-06 2010-09-17
2011-03-12 2011-12-09 2012-03-14
Landsat-8 2013-06-13
OLI/TIRS
MODIS 2002-03-19 2004-07-23 2004-09-16 2006-03-30 2006-08-14
2007-01-28 2007-07-28 2008-05-06 2008-07-27 2011-03-12
2011-07-02 2012-03-14 2012-09-15
AVHRR 1989-07-15 1992-07-29 1996-07-24 1997-08-21 1998-09-18
1999-06-18
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was necessary to correct the spectral emissivity, and the LST based on
satellite brightness temperature (Tsensor) Was computed by the follow-
ing equation (Artis & Carnahan, 1982):

LST =

TSE”SOT (2)
T+ (A X Tsensor /@) In (€)

where LST is the LST in K; Tgensor i the black body temperature, and also
the satellite brightness temperature in K; A is the wavelength of the
emitted radiance in meters;oe=1.438 x 10~2mK; and ¢ is the surface
emissivity.

For ¢, water (NDVI < 0) was assigned a value of 0.9925, urban imper-
vious areas and bare soil (0 = <NDVI < 0.15) were assigned a value of
0.923 (Xie, Zhou, Teng, & Wang, 2012), and vegetation (NDVI > 0.727)
was assigned a value of 0.986 (Valor & Caselles, 1996). Otherwise,
there was a modeling relationship with the NDVI values through the fol-
lowing equation (Van de Griend & Owe, 1993):

& = 1.0094 + 0.047 In (NDVI). 3)

Considering that the atmospheric environment is different between
urban and rural areas (Kuttler, Weber, Schonnefeld, & Hesselschwerdt,
2007; Sisterson and Dirks, 1967; Tapper, 1990), and in order to obtain
accurate NDVI data, atmospheric correction is necessary to convert the
TOA reflectance to surface reflectance. The 6S and MODTRAN models
are two commonly employed methods (Adler-Golden et al., 1999;
Masek et al., 2006). In this study, we used the MODTRAN-based
FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes) model embedded in ENVI software for the atmospheric
correction.

2.3.2. LST retrieval from MODIS and AVHRR images

In this study, the MOD11A1 LST product was directly utilized. This
LST product is produced by the MODIS Science Team as a daily 1-km
global land product, and can be obtained from the download URL
(http://ladsweb.nascom.nasa.gov/data/search.html). It is retrieved
with a generalized split-window algorithm (Wan, Zhang, Zhang, & Li,
2004), and includes derivative products at lower temporal frequencies
and spatial resolutions. The MODIS LST accuracy is better than 1 K in
the range from 263.15 K to 323.15 K. It was validated from in situ mea-
surement data collected in field campaigns between 2000 and 2002
(Wan et al., 2004; Wu, Shen, Ai, & Liu, 2013).

The Planck's function (Streutker, 2003) was employed to retrieve
the brightness temperatures from the radiance of the AVHRR images.
In the implementation of this algorithm, the radiance values for channel
4 (10.3-11.3 pm) and channel 5 (11.5-12.5 pm) were first calculated
using the calibration coefficients contained within the ephemeris data.
These radiance values were then corrected using radiance correction
coefficients. Following this, the corrected radiance (R;) values were con-
verted to brightness temperatures by the use of the following equation
(Streutker, 2002):

3
Ti(R) = Cov/n (14 55). @

where C;=1.1910659% 10> mWm2sr~ 'cm* C,=1.438833cmK,
and v; is the central wave number of each channel. Finally, the bright-
ness temperature data from the split-window channels were used to

calculate the surface temperature by the use of the following formula
(Streutker, 2002):

Tsurface =Ty + R(T4_T5) (5)
where T4 and Ts are the brightness temperatures of the two channels,

and R=1/[(B4/Bs —1)] =3.33(B4 and s are the atmospheric absorp-
tion coefficients for channels 4 and 5).

2.4. Fusion methods

2.4.1. Multi-temporal fusion method

A multi-temporal fusion method was employed to recover the informa-
tion affected by fractus clouds and ETM + gaps in the Landsat images. The pri-
mary image to be recovered was always in the ideal date range (see Fig. 2).
The recovery was implemented by fusing the primary image and an auxiliary
image, which may have been acquired out of the ideal date range. Therefore,
the main problem was how to use the information in the auxiliary image to
fill the vacant pixels in the primary image. Here, a multi-temporal linear
regression method (Zeng, Shen, & Zhang, 2013) was employed. For each
target pixel, the linear relationship hypothesis is represented as:

Yt:a‘Xt—i-b (6)

where Y; and X, are the pixels at the target location in the primary image and
auxiliary image, respectively, and a and b are the regression coefficients calcu-
lated in a local search window using similar pixels. An adaptive determination
procedure for the search window and similar pixels can be found in Zeng
etal. (2013).

If there are N similar pixels in the search window, the regression
equation can be solved by the weighted least-squares method. For con-
venience, the expanded form is given as (Ruppert & Wand, 1994):

> W, (Y,—— 'Y) (x,-— 55)

i=

e - — (7
Wi (Xi— X
> wi(xi=X)
b=Y—aX (8)

where Y; and X; represent the pixel values of the similar pixels in the
search window in the primary and auxiliary images, respectively, Y
and X are their mean values, and W; is the normalization weight of
each similar pixel. Here, a higher spectral similarity and a smaller dis-
tance for a similar pixel to the target pixel is assigned a larger weight.
Thus, a synthetic difference indicator can be designed as:

Dy = Xi—Xe + o - (=% + 0=y, ©)

where x;, y;, X, and y; represent the locations of the similar pixel and tar-
get pixel, and ais a small value to prevent D; equaling zero. The weights
of each similar pixel are then normalized as:

N

Wi = (1/Dy)/>_(1/Dy). (10)

i=1

After normalization, the range of weight W; is from 0 to 1, and the
sum of all the similar pixel weights is 1.

2.4.2. Multi-sensor fusion method

A multi-sensor fusion method was employed to offset the trade-off
between the temporal and spatial resolutions of the different sensors.
The spatial and temporal adaptive reflectance fusion model (STARFM)
was utilized to fuse the Landsat and MODIS images to generate the
daily reflectance data with a 30-m spatial resolution (Gao, Masek,
Schwaller, & Hall, 2006). This method and the extended STARFM
method have also been applied to other parameters of remote sensing
data, such as the NDVI (Meng, Du, & Wu, 2013) and LST (Weng, Fu, &
Gao, 2014; Wu et al.,, 2013). In this study, a synthesis of the original
and extended STARFM was used to generate the high spatio-temporal
resolution LST. This approach predicts Landsat LST values at t;, using
MODIS/AVHRR LST values at t,, and is spatially and radiance-weighted
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between baseline Landsat and MODIS image data acquired at t;. The
fine-resolution LST can be calculated using:

F(Xw/2~yw/27 fz)
w w

= Wi * (C(xi,yj,Q) +F(x,»,yj.,ﬁ)—C(x,»,yj.,tl))
i=1 j=1

(11)

where F and C denote the fine-resolution and coarse-resolution LST,
respectively; (x;y;) denotes the pixel location; t; is the acquisition
date; t, is the prediction data; w is the size of the moving window; and
(Xwy2:Ywy2) is the central pixel. Wj; is the spatial weighting function.

The Wj; value determines the degree to which similar neighboring
pixels within a moving window contribute to the predicted central
pixel. Wj; can be calculated by the following equation:

Wi = (1/Ey)/ > (1/Ey)

ij=1

(12)

where Ej; is only related to the radiance difference and geometric dis-
tance in the moving window, for a single image pair, as the t; input
(Hilker et al., 2009; Shen et al., 2013; Wu et al., 2013), and can be
expressed as:

Ej =Ln(Sj«A+1) =Dy (13)
where A is a scale factor, which is equal to 10,000 (Gao et al., 2006), and
Dj and S;; represent the geometric distance and radiance difference con-
sidering the observation difference, which can be easily obtained by the
method developed by Gao et al. (2006):

Sij= \F(x,-,yj,t> —C(x,-7yj,t)) (14)

Dj =1+d;/B (15)
where F and C denote the fine-resolution LST and coarse-resolution LST,
respectively. B is a constant that defines the relative importance of the
spatial distance to the radiance and temporal distance (Gao et al,,
2006). d;; denotes the spatial distance between the central predicted
pixel and the surrounding similar candidate pixel. The spatial similarity
is normally better for a closer pixel; thus, a closer candidate should be
assigned a higher weight. d;; can be expressed as:

dj = \/(Xw/z —x) + (J/w/z—}’i)z (16)

where (x,2,Yw/2) denotes the central pixel, and (x;y;) denotes the can-
didate pixel.

2.5. Workflow for the generation of the 26-year summer LSTs

Fig. 3 shows the flowchart for the LST generation. When the Landsat
images are free of clouds and gaps, the LST can be directly retrieved
from the thermal infrared bands. If the Landsat images are contaminat-
ed by gaps and/or fractus clouds, the multi-temporal fusion method is
employed for gap filling and/or cloud recovery before the LST retrieval.
In the case of there being no available Landsat images in the date range
shown in Fig. 2, the multi-sensor fusion method is employed to predict
the desired LST using a Landsat LST out of the ideal range, with the aux-
iliary of the corresponding MODIS and/or AVHRR LSTs. Table 2 shows
the processing methods for the LST generation of the different years.

It should be noted that the Landsat and MODIS LSTs can be directly
fused because the difference between the acquisition times of Terra
and Landsat (e.g., 10:00 A.M. and 10:30 A.M.) is very small. However,
the AVHRR acquisition time is not fixed, which makes the direct fusion
of AVHRR and Landsat data unreliable. To solve this problem, we fused
the AVHRR LST with a pair of Landsat and MODIS LSTs which were ac-
quired on 19 March 2002. It is noted that this choice neglects the system
difference between AVHRR and MODIS, and obtains a high-resolution
LST corresponding to the AVHRR acquisition time. In order to ensure
consistency over time in this long-term study, a moment matching
method (Gadallah, Csillag, & Smith, 2000; Shen, Jiang, Zhang, & Zhang,
2014) was employed to adjust the LSTs in different years to have the
same mean and variance. As 2001 is in the middle of these years, it
was selected to be the reference data for the moment matching. Since
we have a yearly continuous data sequence, a one-dimension low-
pass temporal filtering could be further performed on the LST to relieve
the possible uncertainties. In this study, an average filter with a window
size of 3 was used.

2.6. The strategy of temperature grading

Temperature grading can generate a temperature map which can be
utilized to study the evolution of the SUHI pattern (Li et al., 2012). Many
researchers have used the absolute temperature grading strategy
(ATGS) that divides the LST images into defined temperature ranges
(Chen et al., 2006; Li et al., 2012). However, in temporal analysis of
the SUHI effect, the air temperatures on the satellite imaging dates are
commonly different, which can result in the serial LSTs of the same ob-
ject having considerable differences, even if the object itself has not
changed. Furthermore, the parameter uncertainties in LST retrieval
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Fig. 3. The flowchart of LST production processing.
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Table 2
Acquisition methods for the 26-year LSTs in Wuhan (MS: multi-sensor fusion result; MT: multi-temporal fusion result; R: retrieval from Landsat data).
Year Method TM/ETM +/TIRS MODIS AVHRR Result
1988 Multi-temporal fusion 1988-08-11 1988-08-11 (MT)
(cloud recovery) 1990-09-02
1989 Multi-sensor fusion 2002-03-19 2002-03-19 1989-07-15 1989-07-15 (MS)
1990 Retrieval from Landsat data 1990-09-02 1990-09-02 (R)
1991 Retrieval from Landsat data 1991-07-19 1991-07-19 (R)
1992 Multi-sensor fusion 2002-03-19 2002-03-19 1992-07-29 1992-07-29 (MS)
1993 Retrieval from Landsat data 1993-08-09 1993-08-09 (R)
1994 Retrieval from Landsat data 1994-09-29 1994-09-29 (R)
1995 Retrieval from Landsat data 1995-08-31 1995-08-31 (R)
1996 Multi-sensor fusion 2002-03-19 2002-03-19 1996-07-24 1996-07-24 (MS)
1997 Multi-sensor fusion 2002-03-19 2002-03-19 1997-08-21 1997-08-21 (MS)
1998 Multi-sensor fusion 2002-03-19 2002-03-19 1998-09-18 1998-09-18 (MS)
1999 Multi-sensor fusion 2002-03-19 2002-03-19 1999-06-18 1999-06-18 (MS)
2000 Retrieval from Landsat data 2000-09-13 2000-09-13 (R)
2001 Retrieval from Landsat data 2001-07-22 2001-07-22 (R)
2002 Retrieval from Landsat data 2002-07-09 2002-07-09 (R)
2003 Multi-temporal fusion 2003-04-15 2003-07-28 (MT)
(gap filling) 2003-07-28
2004 Multi-temporal fusion 2004-02-13 2004-09-16 (MT)
(gap filling) 2004-09-16
Multi-sensor fusion 2004-09-16 (MT) 2004-09-16 2004-07-23 (MT-MS)
2004-07-23
2005 Multi-temporal fusion 2005-04-20 2005-07-17 (MT)
(gap filling) 2005-07-17
2006 Multi-temporal fusion 2006-11-01 2006-03-30 (MT)
(gap filling) 2006-03-30
Multi-sensor fusion 2006-03-30 (MT) 2006-03-30 2006-08-14 (MT-MS)
2006-08-14
2007 Multi-temporal fusion 2006-11-01 2007-01-28 (MT)
(gap filling) 2007-01-28
Multi-sensor fusion 2007-01-28 (MT) 2007-01-28 2007-07-28 (MT-MS)
2007-07-28
2008 Multi-temporal fusion 2008-04-28 2008-05-06 (MT)
(gap filling) 2008-05-06
Multi-sensor fusion 2008-05-06 (MT) 2008-05-06 2008-07-27 (MT-MS)
2008-07-27
2009 Retrieval from Landsat data 2009-09-06 2009-09-06 (R)
2010 Multi-temporal fusion 2010-12-30 2010-09-17 (MT)
(gap filling) 2010-09-17
2011 Multi-temporal fusion 2011-06-08 2011-03-12 (MT)
(gap filling) 2011-03-12
Multi-sensor fusion 2011-03-12 (MT) 2011-03-12 2011-07-02 (MT-MS)
2011-07-02
2012 Multi-temporal fusion 2011-12-09 2012-03-14 (MT)
(gap filling) 2012-03-14
Multi-sensor fusion 2012-03-14 (MT) 2012-03-14 2012-09-15 (MT-MS)
2012-09-15

2013 Retrieval from Landsat data 2013-06-13

2013-06-13 (R)

can also have some effect. These factors make it difficult to accurately
analyze the changes in the SUHI effect. In order to reduce the influence
of temperature fluctuations, a relative percentage temperature grading
strategy (RPGS) was adopted to generate the temperature map in this
study. This method utilizes the relative percentage range to divide the
LST data, instead of the absolute temperature range. The threshold
values were determined with reference to the class proportions in the
study region. We obtained the classification map by the use of maxi-
mum likelihood supervised classification of a Landsat-7 image from 17
September 2010. The proportions of water, vegetation, soil, and build-
ings were 22.83%, 34.73%, 28.76%, and 13.68% in Wuhan, respectively.
Guided by these class proportions, we determined five temperature
grades of low, sub-low, middle, sub-high, and high, and set their tem-
perature zones as 20%, 40%, 25%, 12.5%, and 2.5%, respectively. The per-
centages of the land-cover types and the temperature zones are shown
in Table 3. In summary, the LST data were divided by this standard: from
low to high, the LST data between 0% and 20% were defined as the low
temperature zone; the data between 20% and 60% were defined as the
sub-low temperature zone; the data between 60% and 85% were defined

as the middle temperature zone; the data between 85% and 97.5% were
defined as the sub-high temperature zone; and the data between 97.5%
and 100% were defined as the high temperature zone. In this study, we
were mainly concerned with the transfer tendency of the high and sub-
high temperature zones, not the change in their areas. Therefore, the
same grading standard was used in all the 26 years to ensure that the
pixel numbers in each temperature zone did not vary. In this way, the
heat transfer can be clearly observed from the time sequence data.

Table 3

The percentages of the different land-cover types and the temperature zones.
Cover Temperature
Type Percentage Zone Percentage
Water 22.83% Low 20%
Vegetation 34.73% Sub-low 40%
Bare soil 28.76% Middle 25%

o . Sub-high 12.5%

Buildings 13.68% High 259
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Fig. 4. Simulated validation of the fusion methods. (a) LST retrieved from the auxiliary image on 19 March 2002. (b) LST retrieved from the primary image on 9 July 2002. (c) The striped
LST on 9 July 2002. (d) The multi-temporal fused LST corresponding to (c). (e) The cloud-covered LST on 9 July 2002. (f) The multi-temporal fused LST corresponding to (e). (g) The MODIS
LST distribution on 9 July 2002. (h) The multi-sensor fused LST corresponding to (g). (i) The combination of multi-temporal and multi-sensor fused LST corresponding to (g).



116 H. Shen et al. /| Remote Sensing of Environment 172 (2016) 109-125

3. Results
3.1. Simulated validation of the fusion methods

A number of simulation experiments were conducted to validate the
feasibility of the multi-temporal and multi-sensor fusion methods in
LST mapping. Two cloud-free Landsat-7 ETM + images acquired on
19 March 2002 and 9 July 2002, as well as their corresponding MODIS
images, were used for the simulation experiments. Fig. 4 (a) and
(b) respectively show the LSTs retrieved from the ETM + thermal infra-
red bands on 19 March 2002 and 9 July 2002. In the validation of the
multi-temporal fusion method, the Fig. 4 (b) image was contaminated
by dead pixel stripes (Fig. 4 (c)) and fractus clouds (Fig. 4 (e)), respec-
tively. The Fig. 4 (a) image was then used as the auxiliary data to recover
these simulated images by the use of the multi-temporal fusion method
described in Section 2.4.1. The LSTs retrieved from the recovered images
are shown in Fig. 4 (d) and (f), respectively. Here, it can be seen that the
LST distributions are quite similar to the real LST shown in Fig. 4 (b). In
the validation of the multi-sensor fusion method, Fig. 4 (a) was used to
predict Fig. 4 (b) at the Landsat scale by the use of the multi-sensor fu-
sion method described in Section 2.4.2, with the auxiliary data of the
MODIS LSTs on these two dates. Fig. 4 (g) is the MODIS LST on the pre-
diction date, and Fig. 4 (h) shows the fusion result. By comparing Fig. 4
(g) and (h), it can be seen the spatial resolution has been greatly im-
proved. However, the fusion result is slightly more blurred than the
real LST distribution shown in Fig. 4 (b). The main reason for this is
the re-sampling process in the fusion procedure, with which the blur-
ring problem is inevitable in regions with complex geographic features
(Gao et al., 2006). Nevertheless, the spatial distribution is still quite
similar to the real LST. Fig. 4 (i) is the result of the combined application
of the multi-temporal and multi-sensor fusion methods, which is
quite similar to Fig. 4 (h). In terms of the quantitative evaluation, the
average absolute deviation (AAD) of each simulation experiment
was 0.90 K, 1.20 K, 3.31 K, and 3.27 K, respectively. All these results in-
dicate that the proposed fusion method is accurate, and we believe that
it was feasible and appropriate to apply it in the SUHI analysis in this
study.

3.2. Qualitative evolution analysis of urban heat distribution

Based on the LST generation method described in Section 2.5, and
the temperature grading method described in Section 2.6, the 26-year
Landsat-like LSTs were generated and are shown in Figs. 5 and 6,
which correspond to before and after the temporal filtering, respective-
ly. Although the LST distributions in Fig. 5 show obvious patterns of
change over the 26 years, there are also some years (e.g., 1992) in
which the LST distributions deviate from the overall trend. This may
be due to poor data quality, extreme weather conditions, the uncer-
tainties of the retrieval and fusion algorithms, etc. We can, however,
see that the LST changes are more regular after the post-processing
(as shown in Fig. 6). In summary, the proposed method can clearly re-
flect the evolution process of the SUHI effect.

Fig. 6 demonstrates that the LSTs in the urban areas were consistent-
ly higher than those in the surrounding rural areas. The high tempera-
ture (red) and/or sub-high temperature (yellow) zones were mainly
distributed in the city proper. Moreover, their joint aggregated area in
the urban regions was much lower in the early stages. This pattern of
change was mainly due to the process of urbanization in Wuhan,
which is quantitatively analyzed in Sections 3.3 and 3.4.

Notably, the specific distribution patterns of the high temperature
and sub-high temperature zones showed dramatically different pat-
terns of change over the 26 years. It can be seen, in the early stages,
that most of the high temperature zone was concentrated in the old
city zone, and the sub-high temperature zone had a relatively scattered
distribution, and showed a high temperature island structure. As time
passed, the high temperature zone slowly transferred outwards, and

the sub-high temperature zone gradually moved towards the central
part of Wuhan. In the middle stages, although the high temperature
zone was still concentrated, it was more dispersed, and the heat island
showed a mixture of high temperature and sub-high temperature. In re-
cent years, most of the high temperature zone was re-concentrated into
several local areas and belt structures. On the other hand, most of the
sub-high temperatures were concentrated into the central urban areas
of Wuhan. By 2013, the combination pattern of a global sub-high
temperature heat island and local high temperature heat islands had
been formed.

From the above analysis, a very interesting phenomenon is that the
severest SUHI effect districts, corresponding to the high temperature
zone, changed from being concentrated in the old city zone to becoming
concentrated into several local clusters. In order to display this pattern
of evolution at a finer scale, the analysis was further performed on the
three urban areas (Fig. 1 (c¢)): Hankou, Hanyang, and Wuchang. In
order to ensure a clearer contrast, we divided the 26-year LST data
into five stages, i.e., 1988-1992, 1993-1997, 1998-2002, 2003-2007,
and 2008-2013, respectively. For each stage, the average LST distribu-
tion was utilized, as shown in Fig. 7.

The first row of Fig. 7 shows the thermal distribution evolution of
Hankou. Here, it can be seen that the concentrated high temperature
zone was slowly scattered and moved to the outskirts of the city over
the 26 years. In the latest stage (2008-2013), the old city had almost
no significant high temperature zone, except for a belt area. In fact,
this belt area is located in the area of the second ring road, where com-
merce and population are very highly concentrated. Moreover, the area
indicated by a circle is a large business zone consisting of a building
material market, motor vehicle market, ceramic market, etc. Further-
more, a new high temperature zone (square region) grew up. This is
the Linkonggang Economic Development Zone, which is focused on
logistics, commerce, and trade.

The thermal distribution evolution of Hanyang is shown in the
second row of Fig. 7. Here, the most dramatic change took place in
the area indicated by the rectangle, which is the Zhuankou Economic
Development Zone. The motor industry and electronics are the two
main pillars of industry in this development zone. The rapid industrial-
ization of this region changed the temperature zone from medium and
sub-low to high and sub-high. Hanyang had a similar change trend to
Hankou, in that the high temperature zone in the old city of Hanyang
showed a gradual scattered tendency. In the latest stage (2008-2013),
a high temperature belt was still obvious along the main road. The rail
transit system under construction was also deemed to contribute to
this.

The thermal distribution evolution of Wuchang is shown in the third
row of Fig. 7. Again, the high temperature zone clustered in the old city
in the early stage, and then scattered as time went on. However, there
was one large region which had high temperatures all the time, as la-
beled by the circle. The reason for this is that this region contains a size-
able iron and steel enterprise, whose output is ranked fifth in the world.
The expanded local high temperature zone indicated by the dashed el-
lipse is also due to the heavy industries, which include a shipyard,
glass factory, and carbon black plant. It is worth mentioning that there
is a famous development zone in Wuchang, i.e., the East Lake High-
tech Development Zone, which is also called Optics Valley of China
(indicated by the rectangle). Its main industries include photoelec-
tronics, bioengineering, and geoinformatics. These relatively light in-
dustries do not result in high temperatures as much as in the other
two large development zones in Hankou and Hanyang.

Fig. 8 (a) shows the distribution of factories in the main city areas, as
labeled on a Baidu web map. Although we could not obtain more de-
tailed information, and some of the factories may not have been in pro-
duction, by a visual comparison with Fig. 8 (b), it is interesting to see
that the factory density has a high correlation with the distribution of
the high temperature zone. Fig. 8 (b) also shows some of the large com-
mercial districts (circles or ellipses) and residential communities
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Fig. 5. Summer LST distribution for Wuhan from 1988 to 2013, before the temporal filtering.

(polygons) existing in 2013. Here, it can be seen that there are also high temperature proportion is not high. This indicates that the influences
temperature spots in the commercial districts. For the residential com- of industry, businesses, and residential districts on the thermal distribu-
munities, although they feature a high population density, the high tion are in descending order in Wuhan.
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Fig. 6. Summer LST distribution for Wuhan from 1988 to 2013, after the temporal filtering.

In addition to the main city areas, Wuhan also has several have also developed rapidly, and they have therefore resulted
outer city zones, such as Huangpi, Yangluo, Jiangxia, Hannan, in more and more high temperature and sub-high temperature
and Caidian, as shown in Fig. 9. In the past decades, these zones areas.
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Fig. 7. SUHI patterns of Hankou (the first row), Hanyang (the second row), and Wuchang (the third row) in the five stages, respectively.

3.3. Quantitative evolution analysis of heat aggregation and heat
island intensity

A heat aggregation indicator (HAI) based on the RPGS was used to
describe the aggregation degree of the high temperature and/or sub-
high temperature zones. The HAI counts the area (or pixel number) of
the high temperature and/or sub-high temperature zones divided by
the RPGS in a region of interest which covers all or part of the urban
area. The pixel numbers of high temperature, and high temperature
plus sub-high temperature, were respectively counted within the
three zones shown in Fig. 10, which are, respectively, the old city
zone, the areas within the third ring road, and the areas within the belt-
way. Among them, the old city zone was delineated from the satellite
image of 1988. From Fig. 11, it can be seen that within the beltway
area, both the high (Fig. 11 (b)) and high plus sub-high temperature
(Fig. 11 (a)) areas showed an increasing tendency on the whole from
1988 to 2013, although there were some fluctuations. Since this region

covers most of the urban area, these results demonstrate that the urban-
ization resulted in the high temperature and sub-high temperature
areas being continuously concentrated from rural to urban areas. With-
in the third ring road area, the high plus sub-high temperature area
showed an increasing tendency at first, and then became relatively sta-
ble (Fig. 11 (c)) after 2003. At the same time, the high temperature area
decreased rapidly after 2003 (Fig. 11 (d)). For the old city zone, the high
plus sub-high temperature area increased at first and then later fell, to a
small degree, as shown in Fig. 11 (e). Conversely, the high temperature
area showed an obvious decrease due to the rapid development of
the new city zones and outer city zones (Fig. 11 (f)). In fact, the
quantitative analysis of this indicator showed a strong consistency
with the evolution process demonstrated in Figs. 6 and 7. The main
reason for the HAI change was that the sub-high temperature zone
was aggregated to a relatively stable status, and the high temperature
zone showed a dispersive tendency, along with the urbanization mode
in Wuhan.

Fig. 8. The distribution of factories, businesses, and residential districts. (a) Factories (orange dots) on a Baidu web map. (b) Large business districts (ellipses) and residential communities
(polygons) in 2013. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. LSTs of the outer city zones in Wuhan. (a) Huangpi. (b) Yangluo. (c) Jiangxia. (d) Hannan. (e) Caidian.

Fig. 10. Areas of interest for quantifying the surface urban heat islands. Rings from inside
to outside: the approximate old city border, the third ring road, and the beltway.

In order to quantitatively measure the SUHI effect, the heat island in-
tensity is commonly computed. Although a wide variety of indicators
for heat island intensity have been proposed, the temperature differ-
ence between urban and rural areas (TDUR) (Gallo et al., 1993; Imhoff
et al., 2010; Tomlinson, Chapman, Thornes, & Baker, 2012; Zhou,
Rybski, & Kropp, 2013) is the most commonly used indicator. In the lit-
erature, the differentiation between “urban” and “rural” remains prob-
lematic (Schwarz et al., 2011). For “urban”, we respectively chose the
old city zone and the area within the third ring road, after removing
the water areas. The “rural” category was chosen as all the non-urban
and non-water areas. The results are shown in Fig. 12 (a) and (b).
Here, it is very interesting that the two figures both show that the
SUHI intensity showed a fluctuating increase at first, and then decreased
after the peak in 2003. The maximum temperature difference between
the old city zone and the rural area was 7.19 K, and the minimum was
4.20 K. The corresponding values for the area within the third ring
road were respectively 4.65 K and 2.82 K.

By comparison, we found that the HAI and TDUR showed a strong
correlation. A very notable phenomenon was the break point appearing
around 2003. For example, the curves in Figs. 11 (d), (f), 12 (a), and
(b) begin to drop after 2003, and the curve in Fig. 11 (c) becomes stable
from this year. Notably, the phenomenon of the SUHI intensity first in-
creasing and then decreasing has seldom been reported in previous
SUHI research. We believe that this evolutionary characteristic in
Wuhan can be mainly attributed to the land-cover change caused by
the urban development mode. Fig. 13 illustrates the abundance figures
for vegetation and impervious surfaces, for 1988, 2003, and 2013,
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Fig. 11. Heat aggregation indicator (HAI) for Wuhan from 1988 to 2013. (a) High plus sub-high temperature zone within the beltway. (b) High temperature zone within the beltway.
(c) High plus sub-high temperature zone within the third ring road. (d) High temperature zone within the third ring road. (e) High plus sub-high temperature zone within the old city

zone. (f) High temperature zone within the old city zone.

respectively. The VF and the ISF were determined by a normalized spec-
tral mixture analysis (NSMA) method (Wu, 2004). From 1988 to 2003,
the impervious surfaces in the old city zone (delineated by the red
line in Fig. 13) increased from 89.21 km? to 107.04 km?, in pace with
the urban development. In 2013, this fell back to 97.47 km?, which
was due to community greening, the construction of parks, etc.
Conversely, the vegetation area in the old city zone increased
after first dropping, being 17.72 km?, 11.66 km?, and 25.71 km?, in
1988, 2003, and 2013, respectively. Moreover, the impervious surfaces
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in the rural area rapidly increased in the last 10 years, and the corre-
sponding areas were respectively 687.06 km? and 1299.69 km? in
2003 and 2013.

In the heat island intensity charts, there are also some fluctuations.
On the one hand, although the city area always expanded, the urban vil-
lage renovation resulted in decreased impervious surfaces and in-
creased vegetation in some local areas in the city. On the other hand,
in the rural area, the impervious surfaces also showed an increase, and
the vegetation decreased. In the past 26 years, Wuhan has undergone
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Fig. 12. Heat island intensity in Wuhan from 1988 to 2013. (a) Temperature difference between the old city zone and the rural area. (b) Temperature difference between the urban area

within the third ring road and the rural area.
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Fig. 13. The impervious surface fraction (ISF) and the vegetation fraction (VF) derived from Landsat images for the study area. The area delineated by the red line represents the old city
zone. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

dramatic changes, both in the city and in the countryside. The land cover
has been influenced by the ongoing urbanization, government policy,
and other complicated factors, which resulted in these fluctuations. In
the next sub-section, a quantitative analysis is given.

3.4. Spatio-temporal relationship of LST with different indices

It is well known that water, vegetation, and impervious surfaces are
very important factors affecting LST distribution in a SUHI analysis. It
can be seen from our results that the water bodies in Wuhan had a
very obvious cooling effect. However, since the effect of water is embod-
ied by pure pixels, we concentrated on the relationships between LST
and vegetation (the NDVI and the VF), as well as LST and impervious
surfaces (ISF). It should be noted that the relationships between LST
and these indices have been widely researched (Chen et al., 2006;
Dousset & Gourmelon, 2003; Li et al., 2011; Yuan & Bauer, 2007). How-
ever, these studies were all based on one or a small amount of LST im-
ages, because of the lack of available data, and they mainly analyzed
the spatial relationship characteristics. Analyses of the temporal chang-
es of these relationships are very limited. To determine the spatio-
temporal characteristics of these relationships, we undertook a contin-
uous analysis, based on the fused 26-year data set. In this study, we de-
termined the mean LST at 0.01 intervals for the NDVI and at 1% intervals
for the VF and ISF. Considering that the NDVI values of pure bare soil and
vegetation are respectively 0.157 and 0.727 (Valor & Caselles, 1996), we
computed the relationship between LST and the NDVI only within the
interval [0.15, 0.75]. This is a more reasonable approach, as noted by
Chen et al. (2006). In order to facilitate the comparison, water bodies
were excluded.

The correlation coefficients (R) of LST with the NDVI, the VF, and the
ISF are shown in Fig. 14 (a). The mean correlation coefficients for the
NDVI, the VF, and the ISF are —0.9752, —0.9642, and 0.8941, respec-
tively. It can also be seen that the fluctuations in the correlation

coefficients for the three indices are small. To better understand the re-
lationship characteristics, the spatio-temporal relationships of LST with
the NDVI, the VF, and the ISF are illustrated in a three-dimensional
mode in Fig. 14 (b), (c), and (d). Here, it is clear that the relationships
over the 26 years were fairly stable, although there were some small
fluctuations. Comparatively speaking, the fluctuations in the NDVI
were greater than in both the VF and ISF. This may be due to the fact
that the NDVI is more dependent on the reflectance retrieval. Moreover,
it can be seen that the chart of the ISF is more like a curved surface thana
planar surface, which demonstrates that this relationship was not strict-
ly linear.

To further investigate these relationships, linear and quadratic func-
tions were respectively fitted and compared. The first row of Fig. 15
shows the regression results between LST and the NDVI, the VF, and
the ISF for 2000, 2009, and 2005, respectively. Since the correlation co-
efficients for these years are the closest to the mean values, we show
them as examples. Here, we can see that the quadratic function is
more appropriate, especially for the VF and the ISF, and the R? values
are greatly increased when substituting the linear function with the
quadratic function. We also attempted to fit one curve using all the
26-year data. In general, this is very challenging because there can be
great inconsistency in long-term data. Nevertheless, the relationships
are still oblivious, as shown in the second row of Fig. 15. The correlation
coefficients of the NDVI, the VF, and the ISF are respectively —0.9348,
—0.9028, and 0.8357. Overall, the difference between the linear and
quadratic functions is negligible for the NDVI, but is obvious for the
ISF, and the VF lies between the two.

The above two groups of analyses demonstrate that in Wuhan, the
NDVI and VF had a strong negative relationship to LST, and the ISF had
an obvious positive relationship to LST. In addition, all these relation-
ships were confirmed to be interannually stable. Overall, we believe
that the use of the continuous long-term data weakened the interfer-
ence of poor data quality and improved the reliability.
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Fig. 14. The spatio-temporal relationships between mean LST and the NDVI, the VF, and the ISF. (a) The correlation coefficients between LST and the NDVI, the VF, and the ISF. (b) The 3D
relationship between LST and the NDVL (c) The 3D relationship between LST and the VF. (d) The 3D relationship between LST and the ISF.

306 305
Y=-7.7412X+305.9256 X Y=-4.5141X+303.9722
305 304
R?*= 0.9509 R*= 0.9294
304 303
2 3
- 303 — 302
3 4
302 301
=4.5782X2-9.1381X+304.7582
3071 y-11.1035X-17.8454X+307.8913 300 "
R= 0.9978 R%= 0.9931
300 299
0 0.2 0.4 0.6 08 0 02 04 06 08 1
NDVI VF
(a) (b)
308 308
Y=-6.9304X+305.5205 Y= -3.6878X+303.7556
306 R= 0.8738 306
g,
2304 2304
o o
- 302 - 302
[ "'ﬂ! -
Y S
300} Y=7.8244X2-14.0506X+306.9057 300} Y=3.6286X2-7.3528X+304.378
R?*= 0.9005 R*= 0.8676
2980 0.2 0.4 0.6 0.8 2980 0.2 0.4 0.6 0.8
NDVI VF

(d)

(e)

Y=5.5333X+299.9130

R*= 0.8003

Y=10.3629X>-4.9332X+301.6923
R*= 0.9874

2980

310,

0.2 0.4 0.6 0.8 1
ISF

(©

308

Y=4.6139X+300.5827

R*= 0.6985

=7.6703X2-3.1331X+301.8997
R*= 0.8271

0.4 0.6
ISF

0]

0.8 1
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4. Discussion and conclusions

The trade-off between the spatial and temporal resolutions is the
main restraining factor in SUHI research. This study has demonstrated
the feasibility of employing data fusion methods for long-term and
fine-scale SUHI analysis. Through the multi-temporal and multi-sensor
fusion of TM, ETM +, OLI, TIRS, MODIS, and AVHRR data, a series of
26-year LSTs were generated for the city of Wuhan in China. Based on
this data set, a long-term analysis at the Landsat scale was undertaken.
It was found that the use of the continuous long-term data produced by
the fusion methods is able to weaken the interference of poor data qual-
ity and can enhance the understanding of SUHI growth and its evolution
mechanism.

Using the continuous 26-year data, we have provided a clear picture
of the spatio-temporal changes in heat distribution and aggregation. On
the one hand, along with the urbanization of Wuhan, the higher tem-
peratures (high and sub-high temperature zones) were continuously
concentrated from rural to urban areas from 1988 to 2013. In the central
part of Wuhan, a wide range of obvious heat island structures were
formed. On the other hand, the highest temperatures had a tendency
to transfer from the old city zone to the newly established development
zones, resulting in the high temperature zone becoming more and more
scattered, which is a very interesting phenomenon.

Secondly, using the classic TDUR indicator, we observed an impor-
tant characteristic of the SUHI intensity. In general, the SUHI intensity
first increased and then decreased over the 26 years. For the old city
zone, the maximum temperature difference between the city zone
and the rural area was 7.19 K, and the minimum was 4.20 K. The corre-
sponding values for the area within the third ring road were respective-
ly 4.65 K and 2.82 K. For both areas, the peak arose in 2003.

Thirdly, we have provided new insights into the relationships be-
tween heat distribution and the NDVI, VF, and ISF indices. Our results in-
dicated that these relationships were interannually stable. The average
correlation coefficients for the NDVI, VF, and ISF indices and heat distri-
bution were —0.9752, —0.9642, and 0.8941, respectively. Furthermore,
we also found that the relationships were not truly linear, and the R? can
be considerably improved when using a quadratic function. This result
agrees with the results in the research of Chen et al. (2006) and Xian
(2008).

We next discuss some possible uncertainties inherent in this re-
search. The first uncertainty is with regard to the multi-temporal fusion
method, the accuracy of which can be influenced by vegetation phenol-
ogy. In general, the closer the dates of the two images, the better the re-
construction. However, we found that the influence of vegetation
phenology was not significant for the LST retrieval in this research,
which was verified in the quantitative evaluation in Section 3.1. When
the two images were acquired, respectively, in March and July, the
error was only about 1 K, which satisfies our application requirements.
Furthermore, for fractus cloud removal, the restored LST is actually
the value under clear sky conditions, which may be higher than the
value for the actual cloudy conditions. However, we believe that this
should not affect the applicability, because in the long time series
analysis of the SUHI effect, only the cloudless LST can reflect real SUHI
changes.

Moreover, the multi-sensor fusion accuracy can be affected by sever-
al factors. For example, the difference in viewing angles of MODIS and
AVHRR can lead to considerable uncertainties. To deal with this prob-
lem, we selected images with similar viewing angles; otherwise, angle
correction would have been required. Another notable point is that
the acquisition times of the known low-resolution and high-resolution
pair should not have a great difference. It was also noted in Section 2.5
that special attention should be paid to the fusion of Landsat and
AVHRR data. Finally, the multi-sensor fusion method was originally
used for reflectance data, and considerable errors can be produced
when the land cover changes. However, we found that this problem
was greatly alleviated when the multi-sensor fusion method was used

for the LST fusion. The main reason for this may be that the LST product
is much smoother than the reflectance product in spatial structure.

How to make the years of LST data comparable is another important
issue in SUHI evolution research. Although the temporal aggregation
products have been widely used for representing an annual normal con-
dition, Hu and Brunsell (2013) proved that they can result in a loss of ac-
curacy, particularly for summer daytime data. In our research, we were
mainly concerned with how the high and sub-high LSTs transferred and
aggregated along with the urbanization of Wuhan. Thus, the temporal
aggregation method may have led to unacceptable errors in this study.
Therefore, we selected a high-quality and high-resolution LST product
for each year by directs retrieval or data fusion. In order to improve
the comparability, a moment matching method was employed to nor-
malize the LSTs in the different years. After this normalization, the com-
parability was greatly improved. Furthermore, since we were mainly
concerned with the overall tendency of the 26 years, a one-dimension
low-pass temporal filtering was also performed on the LSTs to further
relieve any possible uncertainties.

In summary, although there are some uncertainties in the technical
framework, they can be controlled by adopting appropriate counter-
measures. Therefore, this research could be used to guide further studies
in applying the framework to other regions and making more compre-
hensive analyses with the auxiliary of different types of data. Neverthe-
less, some aspects deserve further investigation, such as the
consideration of temperature cycles and urban thermal landscape het-
erogeneity (Weng et al., 2014). Furthermore, the SUHI effect changes
along with the seasons and also diurnally, and research into this aspect
coupled with air temperature measurements is worthy of further inves-
tigation. Finally, Wuhan is regarded as one of the hottest “stove cities” in
China. How to mitigate or minimize the UHI effect will therefore be a
very significant topic for future research.
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