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Abstract 

 Super-resolution (SR) technique reconstructs a higher-resolution image or sequence 

from the observed LR images. As SR has been developed for more than three decades, 

both multi-frame and single-frame SR have significant applications in our daily life. 

This paper aims to provide a review of SR from the perspective of techniques and 

applications, and especially the main contributions in recent years. Regularized SR 

methods are most commonly employed in the last decade. Technical details are 

discussed in this article, including reconstruction models, parameter selection 

methods, optimization algorithms and acceleration strategies. Moreover, an 

exhaustive summary of the current applications using SR techniques has been 

presented. Lastly, the article discusses the current obstacles for future research. 

Keywords: Super resolution; resolution enhancement; regularized framework; 

applications. 
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1. Introduction 

 Image spatial resolution refers to the capability of the sensor to observe or measure 

the smallest object, which depends upon the pixel size. As two-dimensional signal 

records, digital images with a higher resolution are always desirable in most 

applications. Imaging techniques have been rapidly developed in the last decades, and 

the resolution has reached a new level. The question is therefore: are image resolution 

enhancement techniques still required? 

 The fact is, although the high-definition displays in recent years have reached a new 

level (e.g., 1080*1920 for HDTV, 3840*2160 for some ultra HDTV, and 2048*1536 

for some mobile devices), the need for resolution enhancement cannot be ignored in 

many applications [1]. For instance, to guarantee the long-term stable operation of the 

recording devices, as well as the appropriate frame rate for dynamic scenes, digital 

surveillance products tend to sacrifice resolution to some degree. A similar situation 

exists in the remote sensing field: there is always a tradeoff between the spatial, 

spectral, and temporal resolutions. As for medical imaging, within each imaging 

modality, specific physical laws are in control, defining the meaning of noise and the 

sensitivity of the imaging process. How to extract 3D models of the human structure 

with high-resolution images while reducing the level of radiation still remains a 

challenge [2, 3]. 

Based on these facts, the current techniques cannot yet satisfy the demands. 

Resolution enhancement is therefore still necessary, especially in fields such as video 
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surveillance, medical diagnosis, and remote sensing applications. Considering the 

high cost and the limitations of resolution enhancement through “hardware” 

techniques, especially for large-scale imaging devices, signal processing methods, 

which are known as super-resolution (SR), have become a potential way to obtain 

high-resolution (HR) images. With SR methods, we can go beyond the limit of the 

low-resolution (LR) observations, rather than improving the hardware devices. 

SR is a technique which reconstructs a higher-resolution image or sequence from 

the observed LR images. Technically, SR can be categorized as multi-frame or 

single-frame based on the input LR information [4-8]. If multiple images of the same 

scene with sub-pixel misalignment can be acquired, the complementary information 

between them can be utilized to reconstruct a higher-resolution image or image 

sequence, as Fig. 1 shows. However, multiple LR images may sometimes not be 

available for the reconstruction, and thus we need to recover the HR image using the 

limited LR information, which is defined as single-frame SR [9-12]. 

 

Fig. 1. The concept of multi-frame super-resolution. The grids on the left side represent the 

LR images of the same scene with sub-pixel alignment, thus the HR image (the grid on the 

right side) can be acquired by fusing the complementary information with SR methods. 
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Although SR techniques have been comprehensively summarized in several studies 

[4, 6, 8, 13-15], this paper aims to provide a review from the perspective of 

techniques and applications, and especially the main contributions in recent decades. 

This paper provides a more detailed description of the most commonly employed 

regularized SR methods, including fidelity models, regularization models, parameter 

estimation methods, optimization algorithms, acceleration strategies, etc. Moreover, 

we present an exhaustive summary of the current applications using SR techniques, 

such as the recent Google Skybox satellite application [16] and unmanned aerial 

vehicle (UAV) surveillance sequences [17]. The current obstacles for the future 

research are also discussed. 

 

2. Technical background 

 Nowadays, charge-coupled devices (CCDs) and complementary metal oxide 

semiconductors (CMOSs) are the most widely used image sensors [4, 18]. To obtain 

an HR image, one of the solutions is to develop more advanced optical devices. As the 

spatial resolution is governed by the CCD array and optical lens, reducing the pixel 

size is one of the most direct approaches to increase the spatial resolution. However, 

as the pixel size decreases, the amount of available light also decreases, and the image 

quality becomes severely degraded by shot noise. Furthermore, nonrectangular pixel 

layouts, as in the hexagonal Fujifilm super CCD and the orthogonal-transfer CCD [18, 

19], have been used to increase the spatial sampling rate, as shown in Fig. 2. Other 

approaches include increasing the focal length or the chip size. However, a longer 

focal length will lead to an increase in the size and weight of cameras, while a larger 
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chip size will result in an increase in capacitance. Therefore, both of these approaches 

are not considered to be effective due to the limitations of the sensors and the optics 

manufacturing technology [4]. Compared with CMOSs, CCDs have advantages in 

sensor sensitivity, imaging resolution, noise suppression and technology maturity [20]. 

However, considering the high cost of current CCD-based cameras, CMOS-based 

technologies have recently been investigated. For example, Scientific CMOS 

(sCMOS) sensors feature a higher resolution and high signal-to-noise ratio (SNR); 

however, the practical use of this technology remains a problem [21]. Overall, due to 

the limitations of hardware technology, it is still necessary to study SR algorithms to 

achieve the goal of resolution enhancement. 

     

(a)                    (b)                  (c) 

Fig. 2. The basic CCD types [18]: (a) conventional CCD, (b) super CCD with a 

nonrectangular pixel layout, and (c) orthogonal-transfer CCD. 

 

 Based on the concept of SR, the first problem we need to discuss is the conditions to 

obtain an HR image from multiple LR observed images. In general, if there is 

supplementary information among the images, SR is feasible [22]. That is to say, the 

LR observations cannot be obtained from each other by a transformation or 

resampling process, thus they contain different information which can be used for SR. 

If the relative shifts between the LR images are integral, the images after motion 
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registration will contain almost the same information. As a result, SR cannot obtain 

effective results. 

 To implement SR in a real application, researchers have attempted to acquire the 

images for SR through hardware control. By means of designing the imaging 

mechanism by hardware techniques, the sensors can acquire observations with known 

sub-pixel displacements, or multiple “looks” for the same scene. SR is therefore 

possible. Successful examples can be found in various fields [2, 23-26]. One of the 

most famous successful cases is in the field of remote sensing. In the French space 

agency’s SPOT-5 satellite system, a specially developed CCD detector was used 

which packages two 12000-pixel CCDs in one structure. Two line-array CCDs are 

shifted with each other by half a pixel width in the line-array direction, as shown in 

Fig. 3 [23]. Since the two CCD detectors can capture images at the same time, a set of 

data can therefore be acquired at a half-pixel shift in the imaging position. Using this 

device and SR techniques, we can obtain a HR image from the two sub-pixel shifted 

images. Leica ADS40 aerial cameras have adopted a similar imaging mechanism to 

SPOT-5 [27, 28]. Moreover, some CCD pixels comprise sub-pixels with different 

shapes and spatial locations [29]. By combining multiple images recorded with 

different sub-pixel components, we can obtain a higher-resolution image via SR. 
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(a)                                  (b) 

Fig. 3. Sub-pixel imaging for SPOT-5 [23]. A double CCD linear array in (a) generates two 

classical square sampling grids in (b), shifted by half a sampling interval in both row and 

column directions. 

3. Super-resolution technologies and methods 

In this part, we discuss the methods and current problems for SR with multiple 

observations. The key problem is how to use the supplementary information among 

the acquired repeat-pass images. In 1964, Harris [30] established the theoretical 

foundation for the SR problem by introducing the theorems of how to solve the 

diffraction problem in an optical system. Two decades later, Tsai and Huang [31] first 

addressed the idea of SR to improve the spatial resolution of Landsat TM images. 

Since then, many researchers have begun to focus on SR, either in theoretical research 

or practical applications [1, 2, 22, 24-26, 28, 32-70]. SR has now been developed for 

more than three decades, and the progress of SR can be roughly summarized as 

follows. 

 At the very start, most of the methods concentrated on the frequency domain [31, 33, 

59-61]. Frequency domain algorithms can make use of the relationship between the 

HR image and the LR observations based on a simple theoretical basis, and have high 

0.5pixel

0.5pixel

Flight direction
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computational efficiency. However, the methods have apparent limitations, such as 

sensitivity to model errors and difficulty in handling more complicated motion models, 

which have prevented them from further development. 

Due to the drawbacks of the frequency domain algorithms, spatial domain methods 

then became the main trend [4]. The popular spatial domain methods include 

non-uniform interpolation [35], iterative back-projection (IBP) [56], projection onto 

convex sets (POCS) [57, 63, 70], the regularized methods [34, 40, 43, 47, 53, 54, 58, 

62], and a number of hybrid algorithms [71]. Early review papers have provided 

specific descriptions and explanations of those methods [4, 8, 14]. Among them, the 

regularized methods are the most popular due to their effectiveness and flexibility. 

Therefore, most of the recent representative articles about SR have focused on 

regularized frameworks [1, 47, 49, 53, 54, 68, 72, 73]. In this part, our emphasis is to 

review the development of the regularized methods, especially over the last decade. 

Furthermore, the related research progress into parameter setup and optimization 

algorithms is also summarized. The remainder of this part is structured as follows. 

Firstly, we talk about the imaging models. The related models are then described, 

including the data fidelity and regularization terms. Some advanced techniques and 

challenges are then discussed, including adaptive parameter setup, blind 

reconstruction, and optimization strategies. 

3.1 The observation model 

 The imaging model, which refers to the observation model, is essential to SR when 



9 

 

using a regularized framework. Before reconstruction, we need to clarify the process 

by which the observed images have been obtained. The image acquisition process is 

inevitably confronted with a set of degrading factors, such as optical diffraction, 

under-sampling, relative motion, and system noise. In general, we usually suppose 

that the degradation procedure during image acquisition involves warping, blurring, 

down-sampling, and noise (Fig. 4), and the observation model is simulated as follows: 

k k k k k k y O D B M z n                    (1) 

where there are K  LR images participating in the reconstruction. As 
1 2k kN N  is 

defined as the size of the kth  input LR image, 
1 1 2 2k k k kL N L N  is set as the size of 

the reconstructed HR data, which is determined by the horizontal and vertical 

magnification factors 
1kL  and 

2kL . In (1), z  is the vector form of the reconstructed 

image with a size of 
1 1 2 2 1k k k kL N L N  , which is given as 

1 1 2 21 2, , ,
k k k k

T

L N L Nz z z   z , 

and 
1 2,1 ,2 ,, , ,
k k

T

k k k k N Ny y y   y  is the vector form of the kth  input dataset. 
kD  

is the down-sampling matrix of size 
1 2 1 1 2 2k k k k k kN N L N L N , 

kB  represents the 

blurring operator with size of 
1 1 2 2 1 1 2 2k k k k k k k kL N L N L N L N , and 

kM is the warp 

matrix describing the motion information (e.g. translation, rotation, etc.). 
kn  

(
1 2 1k kN N  ) indicates the additive noise. 

kO  is the operator excluding the 

unobservable pixels from the kth  image [47, 74, 75]. In this way, we can deal with 

the inpainting and SR problem simultaneously if there are invalid pixels and/or 

motion outliers in the LR images (Fig. 4). 

We can obtain the observation model for single-frame SR when 1K   in (1). If 

kD  and 
kM  are excluded, it is a model for image restoration, only dealing with the 
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problems of noise, blurring, or missing information. For convenience of expression, 

we rewrite model (1) by substituting the product of 
kO , 

kD , kB , and 
kM  by 

kH , 

which is as follows: 

                         
k k k y H z n                           (2) 

The model in (1) is still insufficient for expressing all possible situations. As a result, 

other models take more complicated factors into consideration to better describe real 

cases, including different kinds of noise [52, 76], dimensional complexity [51], 

domain transformation for the particular images [77], etc. These models are not 

discussed in detail in this paper. 

 

 

Fig. 4. The super-resolution imaging model. 
kB , 

kM  and 
kD  indicate the blur matrix, 

warp matrix and down-sampling matrix, respectively. 
kn  represents the additive noise, 

while 
kO  is the operator cropping the observable pixels from 

ky . 

3.2 Regularized reconstruction methods 

3.2.1. The regularized framework 

Based on the observation model described above, the target is to reconstruct the HR 

k kB M kD kn

Ill-posed inverse problem

kO



11 

 

image from a set of warped, blurred, noisy, and under-sampled measured images. As 

the model in (2) is ill-conditioned, SR turns out to be an ill-posed inverse problem. 

Based on maximum a posteriori (MAP) theory, the problem we need to solve can be 

transformed to the minimization problem as [62, 78]: 

                        
1

( ) arg min
K

k k

k

E U 


  
z

z y H z z                   (3) 

where     and  U   indicate the corresponding constraint functions. In (3), the 

first term is the data fidelity term, and the second term is the regularization term, with 

 U z  being the energy function.   is the regularization parameter balancing these 

two terms. This is the general variational regularized SR framework. Without the 

regularization term, this is equal to maximum likelihood (ML) estimation. The MAP 

methods incorporate the prior constraints of the image, and obtained the results by 

maximizing the cost function of the posterior probability. They are popular for their 

flexibility with edge-preserving priors and joint parameter estimation. Comparatively, 

Bayesian estimation are used when the posteriori probability distribution of the 

unknown parameters, instead of the specific parameters, is estimated. 

3.2.2. The data fidelity term 

The data fidelity term is used to constrain the residuals between the real LR images 

and the simulated ones obtained, and it is usually associated with the noise model. For 

instance, the 
2l  norm based linear least-squares term is widely used [41, 49, 62, 79, 

80], as 2p   in (4). The main advantage of the 
2l  norm problem is that it is easy to 

solve, and many efficient algorithms exist [43, 81]. However, the result solved by the 
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2l  model is only optimal when the model error is white-Gaussian distributed [82]. 

1

( )
K

p

k k p
k

F


 z y H z                   (4) 

As a result, there has been a growing interest in choosing the 
1l  norm as the 

function     in (4) for image SR and restoration, where 1p   in (4). As the 
2l  

norm corresponds to Gaussian distributed errors, the 
1l  norm mainly corresponds to 

the Laplacian error model, as shown in Fig. 5. According to Farsiu et al. [43], 1p   

results in a pixel-wise median and 2p   leads to a pixel-wise mean of all the 

measurements after motion compensation in the SR model. It has been proven that the 

1l norm  fidelity is more effective than the 
2l norm  fidelity when the images 

contain non-Gaussian errors [43, 83]. 

 

(a)                       (b)                      (c) 

Fig. 5. The properties of different norm functions and the error distribution, where (b) and (c) 

indicate the distribution for Gaussian and Laplacian errors, respectively. The 
2l  norm 

corresponds the quadratic curve in (a), which is consistent with the Gaussian distribution in 

(b). In contrast, the plot of 
1l  norm is more consistent to the Laplacian distribution. 

 

For complicated types of noise and/or model error, however, both the 
1l  norm and 

the 
2l  norm have their advantages and disadvantages. Some researchers have 

therefore employed improved techniques for the data fidelity term [52, 81, 84-87]. In 

cases with mixed error modes, the pl  norm function (1 2p  ) is sometimes 

x

 
p

f x x

2
x

1
x

 1
p

p
x p 

1 10

1

x

y

0 x

y

0
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employed as the constraint function because of its convex property and its pertinence 

for the imaging model errors [81]. When 1 2p  , it results in a weighted mean of 

measurements. If the value of p  is close to one, then the solution is calculated with 

a larger weight around the measurements near the median value. When the value of 

p  is near to two, the solution is approximated to the average value [43]. In some 

cases, images are contaminated by both Gaussian and non-Gaussian errors, and the 

pl  norm function is considered to be an effective solution [81, 82]. According to the 

imaging model, detecting the outliers and restoring them in matrix kO
 as 

unobservable pixels is also an effective way to exclude the impulse noisy pixels and 

the motion outliers belonging to non-Gaussian errors [47]. 

The comparative reconstruction results for the different fidelity norms are given in 

Figs. 6–7. In the first case, the synthetic test was conducted with the Lena test image, 

in which the original image was first down-sampled by a factor of two in both the 

horizontal and vertical directions. Thus, four LR images were obtained, with the 

translational shifts being (0, 0), (0, 0.5), (0.5, 0), and (0.5, 0.5). A mixed mode of 

Gaussian (normalized variance 0.003) and impulse noise (density 0.03) was then 

added in the LR images. In the Foreman experiment, five degraded images with 

moving objects were included in the reconstruction, and the 24
th

 frame of the video 

sequence was set as the reference frame. The LR images were obtained using the 

corresponding HR frames in the video, with a down-sampling factor of two. We 

evaluate the results of the synthetic experiments using the peak signal-to-noise ratio 

(PSNR) and the structural similarity (SSIM) index [88]. The PSNR is used to evaluate 
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the gray value similarity, while the SSIM is mainly employed to reflect the structural 

similarity [89].When images are contaminated with mixed noise (Fig. 6), the 
2l  norm 

cannot completely remove the speckles while preserving the texture. In contrast, the 

1l  norm has some problems in dealing with Gaussian-distributed noise, and the 
pl  

norm can obtain better results, in terms of both the visual effect and quantitative 

indexes. In the second test, it can be clearly seen that 
1l  and pl  are more robust than 

2l  when dealing with motion outliers in the LR observations. With the ability to deal 

with motion outliers, both 
1l  and pl  can prevent the reconstructed details from 

being oversmooth. Furthermore, the pl norm  fidelity can achieve a balance 

between removing noise and suppressing motion artifacts in the noisy cases [52]. 

    

PSNR: 22.026 

SSIM: 0.530 

PSNR: 26.108 

SSIM: 0.730 

PSNR: 28.040 

SSIM: 0.787 

PSNR: 28.311 

SSIM: 0.801 

(a) (b) (c) (d) 

Fig. 6. The SR reconstruction results of the Lena image by (a) bilinear interpolation, and (b) 

MAP with l2-norm fidelity, (c) l1-norm fidelity, and (e) lp-norm fidelity, with p=1.3. 

 

    

PSNR: 32.671 

SSIM: 0.921 

PSNR: 35.683 

SSIM: 0.942 

PSNR: 36.542 

SSIM: 0.960 

PSNR: 36.675 

SSIM: 0.959 

Fig. 7. The SR reconstruction results of the noiseless Foreman image by (a) bilinear 

interpolation, and (b) MAP with l2-norm fidelity, (c) l1-norm fidelity, and (e) lp-norm fidelity, 

with p=1.5. 
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A weighted data fidelity term is also suitable for some cases in which the LR images 

make different contributions to the reconstructed image [25, 79, 90]. In some practical 

cases, the amount of available information contained in each LR image might differ 

according to the image quality (e.g., noise level, spatial resolution, angle, etc.). Thus, 

different weights should be considered in such cases, as in (5). A weighted data 

fidelity term has been widely used in the related works, and different methods were 

presented to determine 
kw  [25, 79, 90]. The core idea is to discriminate between the 

different contributions of the LR images involved in SR. 

                        
1

( )
K

p

k k k p
k

F w


  z y H z                    (5) 

3.2.3. The regularization term 

The regularization plays a significant role in the regularized variational framework. 

As SR is a classical ill-posed inverse problem, regularization is therefore adopted to 

stabilize the inversion process [4, 47, 91]. According to the Bayesian theorem, the 

regularization term represents the image prior modeling, providing the prior 

knowledge about the desired image [4, 72, 92]. Over the past 10 years of vigorous 

development, there have been a large amount of studies of regularization for image 

restoration and SR [81, 89, 93-98].  

 Smoothness prior models 

In the early years, the smoothness of natural images was mainly considered, which 

leads to the quadratic property of the regularizations [99, 100]. Tikhonov-based 

regularization is the representative smoothing constraint, whose energy function is 
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usually defined as: 

 
2

2
U z Γz                           (6) 

where Γ  is usually chosen as an identity matrix or high-pass operator (e.g., a 

difference operator or a weighted Fourier operator). Laplacian regularization is one of 

the most common regularizations used in SR, and was developed from Tikhonov 

regularization by choosing the smoothing operator as the discrete 2-D operator [100]. 

 Another category of regularization is based on Markov theory. A Markov random 

field (MRF) assumes that the value of a pixel is only related to the adjacent pixels, 

which satisfy a Gibbs density function [50]. In this way, MRF can efficiently describe 

the local statistical characteristics of images. The energy function can be given as: 

                            
t = 1

( ) t

c c

c C

U V d





  z z z                   (7) 

where t

cd  is a coefficient vector for clique c , which is usually defined as the 

finite-difference approximations to second-order derivatives in the four directions. 

    is the constraint function. The regularization function is usually divided into two 

categories, Gaussian MRF (GMRF) [78] or Huber MRF (HMRF) [101], in 

accordance with the choice of    . For GMRF regularization, the quadratic 
2l  

norm is employed for    . 

These regularized methods smooth the restored image by penalizing the 

high-frequency component, and thus perform well in suppressing noise. However, 

they inevitably oversmooth the sharp edges and detailed information. 

 Edge-preserving prior models 

The smoothing prior models are somewhat against the nature of images, in that 
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sharp details in images are always desirable for human beings in many applications, 

including remote sensing imaging, medical diagnosis and object recognition [2, 28, 

69]. Thus, 
1l norm  based regularizations are often preferred for their 

edge-preserving properties [93, 101, 102]. The representative total variation (TV) 

regularization was first proposed by Osher et al. [93, 103], based on the fact that an 

image is naturally “blocky” and discontinuous. The standard TV norm is given as: 

2 2( ) ( ) ( )x yU     z z z                (8) 

where x z  and y z  are the first-order image gradients in the horizontal and 

vertical directions, respectively. Here,   is a small scalar to ensure differentiability. 

Unlike the quadratic regularizations, edge information can be better preserved 

using TV regularization, with the 
1l  norm to deal with the image information rather 

than the 
2l  norm [47, 104, 105]. Therefore, the TV prior model has been the most 

popular model for image processing in the last two decades, and has been applied in 

fields such as image denoising, deblurring, segmentation, and SR [47, 76, 104, 106]. 

However, the results of the TV prior model will often result in a “staircase” effect 

with strong noises, especially in flat regions [89]. 

To overcome the shortcomings of the TV prior model, some researchers have 

proposed spatially adaptive strategies. A number of methods use spatially adaptive 

regularization parameters to eliminate the staircase effects [94, 107-109]. Some of 

them classified the image into detailed and flat regions using the spatial information, 

and used a larger penalty parameter for the flat regions and a smaller one for the edges 

[94, 107]. However, the spatially adaptive indicators such as gradients, the difference 
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curvature, and structure tensor are usually sensitive to noise. 

Moreover, different norm constraints can also be employed for the prior modeling 

in a spatially adaptive way [96, 108]. The 
pl  norm, rather than the 

1l  norm, can be 

used as the constraint function for z  in the TV term. As the 
2l  norm represents a 

smoothing prior and the 
1l  norm tends to preserve the edges, the 

pl  (1 2p  ) 

norm achieves a balance between them, thereby avoiding the staircase effect [110]. 

Other improvements include higher-order TV (HDTV) [111], bilateral TV (BTV) [43], 

locally adaptive BTV (LABTV) [96], etc.  

HMRF is also a representative edge-preserving prior model [101, 112]. A hybrid 

norm can theoretically achieve a balance between preserving edges and suppressing 

noise, to some degree. For the HMRF term,     in (7) is chosen as the Huber 

function, which is piecewise as: 

                         

2

2
( )

2

x Tx
x

x TT x T


 
 


                   (9) 

where T  is the threshold. The Huber function satisfies the properties of convexity, 

symmetry, and discontinuity. The HMRF model is effective when dealing with images 

with clear texture. However, only the neighborhood information is considered, which 

limited its performance [113]. 

 Nonlocal-based priors 

The local derivatives are somewhat sensitive to noise in the images’ homogenous 

regions, which negatively affects the reconstruction effect in noisy cases. Recently, 

the concept of nonlocal-based priors has been proposed and has developed rapidly in 

image processing [97, 114-116]. Rather than defining the neighborhood of a pixel 
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locally, nonlocal-based priors consider pixels in a large search area and weight them 

according to the similarity between rectangular patches. This is based on the 

assumption that every feature in a natural image can be found many times in the same 

scene [114]. The nonlocal models have become popular in the regularized framework, 

given the nonlocal TV regularization as: 

       ,
x

NLTV

x y

U w x y x y
 

 
Ω

z z z      (10) 

where x  indicates one of the pixels in the image :z , and the search window 

is usually restricted to the square neighborhood of x , denoted as 
x . The weight 

function  ,w x y  can then be defined as: 

 
   

2
, exp

p

x y p
P P

w x y


 
  
 
 
 

z z
         (11) 

 

 Here,  xP z  and  yP z  represent the    2 1 2 1n n    patch of z , centered at 

the pixel x  (or y ) with a radius of n . The similarity can be calculated with various 

distance formulas (e.g., by choosing different values of p ).   is the filtering 

parameter. Compared with the TV model, the nonlocal-based model can make use of 

more information, and can thus prevent the staircase effect in flat regions, and can 

help restore the details [97, 113]. 

The comparative results of the typical regularizations are displayed in Fig. 8. The 

down-sampling process was set the same as for the Lena image in Section 3.2.2. The 

generated LR images were then blurred by a 3*3 filter with a variance of 1, and 

contaminated by Gaussian noise with a standard variance of 10. From the results, it 
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can be seen that all the edge-preserving regularizations perform well in removing 

noise and preserving the details. Nevertheless, the results of the HMRF and nonlocal 

TV models better conform to human visual perception. 

   

The LR image 
PSNR: 27.462 

SSIM: 0.770 

PSNR: 28.252 

SSIM: 0.822 

   

PSNR: 28.472 

SSIM: 0.816 

PSNR: 28.561 

SSIM: 0.818 
The original image 

Fig. 8. The SR reconstruction results using different regularizations. Top row: bilinear 

interpolation, Laplacian regularization, and HMRF regularization [100]. Bottom row: TV 

regularization [47], NLTV regularization [114], and the original HR image. 

 

 In addition to the above regularizations, there have been many other studies of prior 

models, such as regularization based on sparsity [117], along with morphological 

theory [98]. The common goal of all these methods is that they want to reconstruct a 

noiseless HR image with natural texture and clear, detailed information. There have 

also been studies of spectral images (e.g., digital color images or hyperspectral 

images), where the emphasis has been on the preservation of spectral information, 

while enhancing the spatial resolution [118, 119]. 
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3.2.4. Adaptive regularization parameter selection 

Parameter selection is always a headache when dealing with ill-posed inverse 

problems. The regularization parameter, in particular, plays a significant role in image 

SR. In this part, we present the main approaches to adaptive strategies for determining 

the regularization parameter   in (6). 

In many cases, the regularization parameter is selected manually. The common 

approach is to test a sequence of regularization parameters and select the optimal 

parameter corresponding to the best results evaluated by quantitative indexes or visual 

inspection. This is, however, a time-consuming and subjective process. Therefore, 

adaptive strategies are necessary in the SR process. A number of strategies have been 

specially designed to adaptively estimate the regularization parameter. These 

strategies have mainly been inspired by developments in the inverse problem field, 

such as denoising and deblurring [120-123]. The popular methods include the L-curve 

method [124], generalized cross-validation (GCV) [35], and the U-curve method [49]. 

It has been noted in the earlier studies that the GCV method tends to give 

unsatisfactory results if the model errors are highly correlated [121]. The L-curve 

method has some advantages over GCV, including well-defined numerical properties 

and robustness in dealing with highly correlated errors. Both of the L-curve and 

U-curve methods are based on the parametric plots generated by varying the 

regularization parameter  . The target is to find the optimal   that achieves a 

good balance between minimizing the data fidelity and regularization. As the 

2l norm  based model is chosen, the energy function can be given as: 
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2 2

1

( ) arg min
K

k k

k

E 


  
z

z y H z Γz              (12) 

where Γ  indicates the two-dimensional Laplacian operator. After using the singular 

value decomposition (SVD) least-squares method for 
kH , we define: 

   
2 2

1

ˆ ˆ,
K

k k

k

R P  


   y H z Γz                (13) 

The L-curve method searches for the distinct L-shaped corner using the relationship 

between  R   and  P  , while the U-curve method selects the maximum 

curvature point close to the left vertical part of the U-curve (  
   
1 1

U
R P


 

  ) 

as the optimal parameter. It has been proved that the U-curve method can obtain more 

accurate solutions in quadratic cases for SR. Further details can be found in the 

related works [49, 124]. These methods can obtain relatively good solutions, but they 

have not yet been extended to the general regularized framework with various 

regularizations. 

It has to be mentioned that the Bayesian framework [53, 72] is also a powerful tool 

for modeling unknown parameters, including the regularization parameter, the blur 

kernel, and motion vectors. We discuss the Bayesian methods in the next section. 

3.2.5. Blind reconstruction 

 Earlier in this article, we have discussed the main developments in the SR 

framework based on MAP theory, from the point of view of data fidelity and 

regularization. However, the techniques mentioned before are used with the 

assumption that the parameters, such as the motion model, blur kernel, and noise level, 
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are known [62]. This is impractical in real-world cases, where the motion of objects 

and cameras cannot be estimated beforehand. In addition, the point spread functions 

(PSFs) and the noise level are always unknown. 

The traditional methods deal with parameter estimation and reconstruction 

separately. These methods regard registration and blur kernel identification as a 

preprocessing stage [43, 79, 96]. However, the parameters estimated using only the 

LR images can be inaccurate, which will lead to an unsatisfactory performance. We 

introduce two effective strategies for blind reconstruction below. 

 The joint MAP framework 

The MAP framework is advantageous in parameter estimation due to its flexibility 

in adding priors for the unknown parameters [4]. Therefore, some researchers have 

developed joint MAP methods to adaptively obtain the unknown parameters [62, 125, 

126]. Similar to the observation model in (1), we define the LR observations as 

1 2, , ,
T

T T T

K
   y y y y , the motion vectors as 1 2, , ,

T
T T T

K
   s s s s , and the PSFs as 

1 2, , ,T T T

K
   h h h h . The observation model in (1) can then be expressed in matrix 

notation as (14): 

    y ODB h M s z n                   (14) 

 Noting that z , h , and s  are statistically independent, we can form an estimate of 

the unknown parameters simultaneously, according to the theory of MAP. Once we 

determine the probability density function (PDF) of z , h , and s , the ill-posed 

inverse problem can be solved by optimizing the following cost function: 

          1 2 3
, ,

ˆ ˆˆ, , arg min
p

p
U U U      

z h s

z h s y ODB h M s z z h s      (15) 
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 The estimated parameters are iteratively updated along with the reconstructed image 

in a cyclic optimization procedure. However, there will be a number of unknown 

parameters which need to be tuned. 

 The Bayesian framework 

Differing from the MAP estimator, the Bayesian methods calculate the posterior 

distribution instead of setting specific values of the parameters for the SR system [72, 

127]. Both the ML and MAP estimators return only single and specific values for the 

parameters, while Bayesian estimation, in contrast, fully calculates the posterior 

distribution  , ,p z h s y . 

 The Bayesian inference is based on the posterior distribution, and thus: 

                         
 

 

, , ,
, ,

p
p

p


z h s y
z h s y

y
                    (16) 

 Here  , , ,p z h s y  refers to        , ,p p p py z h s z h s  for the convenience of 

expression.  p y  is independent of the unknown variables, and is usually ignored in 

the MAP estimator. In fact, as in many applications,  , ,p z h s y  is intractable 

because  p y  cannot be computed [72]. Approximation methods need to be utilized 

for the reconstruction [45, 53, 72]. In Babacan’s work [72], they utilized a variational 

Bayesian method by minimizing the Kullback-Leibler (KL) distance between the 

posterior  , ,p z h s y  and a tractable distribution  , ,q z h s . Assuming the 

approximated distribution  , ,q z h s  can be factorized, the distribution of the 

corresponding parameter can be estimated by calculating the corresponding 

expectation using the first-order Taylor series. 

By estimating the full posterior distribution of the unknowns instead of point 
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estimations corresponding to the maximum probability (e.g., MAP), the uncertainty of 

the estimates is incorporated into the estimation procedure. In addition, the unknown 

parameters can be estimated during the iterative estimation process [41, 53, 72]. 

Nevertheless, the accuracy of the Bayesian framework depends on the parameter 

distribution models, and is influenced by some attached parameters via the iterations. 

3.2.6 Optimization methods 

After the reconstruction model is built, the HR image can be acquired by optimizing 

the corresponding cost function. If a Gaussian distribution is chosen for the noise 

model, and a quadratic constraint is employed for the regularization, then the energy 

function can be given as (12). The Euler-Lagrange function can be acquired as 

follows: 

 
1

( ) 0
k

K
T T

k k

k

E 


     z H y H z Γ Γz     (17) 

 

 For the quadratic equation, 1n
z  can be obtained as the solution to the linear 

equation: 

                       
1

1 1
k k

K K
T T n T

k k

k k



 

 
  

 
 H H Γ Γ z H y               (18) 

The minimization of the standard 
2l norm  based model is the regularized solution 

of a linear partial differential equation (PDE). To solve this quadratic ill-posed inverse 

problem, a conjugate gradient (CG) or preconditioned CG (PCG) method is usually 

employed to optimize the Lagrangian functional [47, 128]. With the initial estimation 
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and stopping criterion for the iteration given, the estimated result will approximate the 

numerical solution via iterations. 

However, the 
2l  norm-based model cannot acquire satisfactory results in many real 

cases. Compared with the 
2l  norm, it is difficult to employ conventional numerical 

methods for 
1l norm  problems directly, due to the nonlinearity of the 

1l  norm 

function. Moreover, the convergence rate cannot meet the demand of large-scale 

inverse problems. Some efficient approximation methods have been developed for 

optimizing the 
1l  norm regularized functional [102, 104, 105, 128-131]. Typically, 

the popular numerical algorithms for the nonlinear SR problems can be roughly 

classified into two categories, which are: 1) Euler-Lagrange smooth approximation; 

and 2) primal-dual/splitting algorithms. 

 Euler-Lagrange smooth approximation 

As we know, perfect or exact solutions are often difficult to acquire. The common 

goal is to find the optimal solution in a statistical sense. Euler-Lagrange smooth 

approximation methods generally use a smooth approximation of the 
1l norm , thus 

construct a linear functional to optimize. The representative algorithms include lagged 

diffusivity fixed point iteration (LDFPI) [128], majorization-minimization (MM) 

[104], the iteratively reweighted norm (IRN) [129, 132], and the half-quadratic 

algorithm [95]. As one of the most popular regularizations employed in image 

restoration, the TV model is a classical non-quadratic optimization problem. Here, we 

take the 
2l TV  SR model as an example to show the specific approximation 

process. The notations are based on LDFPI [128] and IRN [129], respectively. The 
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reconstruction model can be given as: 

 2

2
=arg min

K

k k TV
k

   
^

z
z y H z z                 (19) 

where 
TV

z  indicates the isotropic TV regularization defined in (8). The 

Euler-Lagrange equation for the energy function in (19) is given by the following 

nonlinear system: 

    0T

k k k

k

E      z
z H H z y L z        (20) 

 

where  2
/    zL z , which is the matrix form of a central difference 

approximation of the differential operator, with   being the divergence operator. 

This is a nonlinear equation for z . To transform the functional to a linear PDE, 

smooth approximation strategies need to be adopted. LDFPI, which was first 

introduced by Vogel [128], linearizes the differential term by lagging the diffusion 

coefficient 
2

1/  z  one iteration behind. Thus 1n
z  is obtained as the solution 

to the approximated linear equation: 

                      
1T n n T

k k k k

k k

  
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 
 z

H H L z H y                 (21) 

 Usually, half-point discretization [133] is used to approximate n

z
L . To solve the 

linear PDE above, a CG or PCG method is desirable. IRN is a method which can 

minimize the pl  norm ( 2p  ) by approximating it with a weighted 
2l  norm [129]. 

    
2

12 2 2 2

2

p p T

k k k kp
k k

u u w u


    u u Wu W u          (22) 

where  2p
diag


W u . Introducing the idea into the energy function in (22), the 

functional can be expressed as: 
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 Here, we define 

     22
2R R x ydiag f   W z z             (25) 

where the constraint function  
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0
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x if x
f x

f x


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. Thus, the Euler-Lagrange 

function can be linearized as: 

1T T n n T

k k R k k

k k

  
    

 
 H H W z H y        (26) 

 

 The weight matrix n

RW  can by calculated by (23)–(25) using n
z . It appears that 

LDFPI and IRN are two different methods; however, they are almost the same in 

essence when dealing with the 
1l norm  problem by smooth approximation. In fact, 

all the algorithms mentioned above obtain similar results with TV minimization, 

including LDFPI, IRN, MM, and the half-quadratic algorithm, where lagged iteration 

was used. Consequently, they can be inferred from each other by transformation. This 

category of methods is simple to implement, and can be extended to deal with the 

regularized inversions with various norms. 

 

 Primal-dual/splitting algorithms 

The second group of methods split the original optimization task into a primal 
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problem and a dual formulation of this problem. In recent years, abundant related 

studies have been presented, such as the alternating direction method of multipliers 

(ADMM) [131, 134], the primal-dual (PD) based algorithms [105], the 

Douglas-Rachford algorithm [135], proximal forward backward splitting (PFBS) 

[130], and the split-Bregman (SB) method [102]. ADMM is one of the most prevalent 

methods for convex optimization in image processing. It converts the optimization of 

the original nonlinear problem into looking for a saddle point of an augmented 

version of the classical Lagrange function [131]. Given the original model as (19), it 

can be expressed as the following with an auxiliary variable b  introduced: 
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1
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k

s t
 
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 
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To transform (27) to generate an unconstrained problem, the augmented Lagrangian 

can be rewritten as: 

       
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where u  is the introduced as Lagrangian multiplier, and 0   is the penalty 

parameter. It is easy to minimize the objective function in (28) with respect to either 

z  or b . The optimization expression can be given by (29):  
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     (29) 

 For a fixed b , it turns out to be a quadratic functional for the variable z . The 

generalized shrinkage formula in the second formula is usually employed to solve the 
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minimization problem for 1n
b . Finally, the residual term is added to refine the 

optimization process. Through the alternating iterations, the variables can finally 

converge to the solution of the original model [131]. The model can be easily 

extended to more complex models, e.g., a non-quadratic functional with an 
1l norm  

data fidelity term. 

The relationships between these methods have been discussed in detail in [136]. 

The Bregman iterative regularization method, the Douglas-Rachford algorithm, and 

ADMM have been shown to be equivalent under the assumption of linear constraints 

[136, 137]. The most promising aspect of these methods is that by splitting the 

original large-scale inverse problem into several sub-problems, the computational 

efficiency can be greatly improved. In general, the PD-based methods are faster than 

the optimization algorithms based on smooth approximation.  

There are also other fast and robust optimization methods for image SR. For 

example, graph-cut based methods can be applied for the minimization of graph-based 

energy functions [138, 139]. 

 

3.3 The main challenges for image super-resolution 

 Although SR techniques have been developed for three decades, there are some 

pivotal difficulties. In this section, the main challenges for image SR and the 

corresponding strategies to deal with these issues are discussed. The challenges are: 1) 

SR with complex motion conditions; 2) SR without multiple LR images; and 3) 

acceleration strategies for “big data” processing. 
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3.3.1. Super-resolution with complex motion conditions 

 It is a big challenge to achieve accurate motion estimation in complex motion 

conditions. As a result, the performance of the reconstruction-based SR algorithms is 

significantly affected. Researchers have therefore attempted to deal with the problems 

brought about by inaccurate motion registration. The solutions include more advanced 

registration strategies, robust fidelity models, joint parameter estimation, and methods 

without explicit motion estimation. 

 Advanced registration strategies 

 In simulated cases, the sub-pixel motion fields between the reference frame and the 

other frames can be described by a parameter model (e.g., pure translation or global 

affine warp). However, they have to be estimated point-wise or block-wise under most 

practical cases with more complicated motion conditions. Optical flow estimation 

[140] is one of the representative methods to obtain a relatively accurate motion field 

of all the points. However, the optical flow based methods are computationally 

expensive [141] and are sensitive to noise, large displacements, and illumination 

variation [142]. To increase the accuracy of motion estimation in SR, advanced 

registration methods are necessary. Baboulaz and Dragotti [143] proposed an 

advanced method to extract features in LR images for registration by taking a 

sampling perspective. Su et al. [144] attempted to avoid inaccurate flow estimation by 

accurately estimating the local flow, based on the sparse feature point 

correspondences. 

 Robust fidelity models 
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Although more accurate registration methods have been applied, motion errors are 

inevitable in real cases. Researchers have therefore tried to overcome the influence of 

inaccurate registration from the perspective of model construction. The effects of the 

registration error are mainly embodied in the data fidelity term, which provides a 

constraint for the conformance of the reconstructed HR image to the observed LR 

image. As mentioned in Section 3.2.2, the 
1l  norm performs more robustly in dealing 

with registration errors than the 
2l  norm [43]. Thus, 

1l norm  based SR methods 

can effectively overcome the influence of motion errors. In addition, as expressed in 

(5), LR images with a large registration error will make less contribution in the 

reconstruction process by importing the adaptive channel function 
kw  [145]. The 

weight 
kw  is usually set as inversely proportional to 

p

k k p
y H z  (1 2p  ), and 

thus reduces the effect of model errors. However, both the 
1l norm  based and 

weighted models need an extra registration method for motion estimation. 

Furthermore, the relatively poor convergence performance limits their application. 

 Joint parameter estimation 

 One of the most popular strategies for improving the reconstruction performance is 

the joint methods. These approaches (discussed in Section 3.2.5) can obtain better 

registration results and exclude errors during the iteration by simultaneously 

estimating the motion parameters and the reconstruction result. Specifically, Tom and 

Katsaggelos [146] developed a simultaneous registration and reconstruction approach 

where they formulated the SR problem in the ML framework, and solved it using an 
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expectation-maximization algorithm. Hardie et al. [100] combined a joint approach 

and a MAP framework to reconstruct the HR image. 

 The common assumption is that the blur kernel is known in the reconstruction 

system. The ill-posed inverse problem can be solved by selecting the appropriate PDF 

of z  and s . The choice of prior model  U z  and  U s  in (15) should accurately 

describe the characteristics of the realization. However, it is a difficult task to 

determine the regularized constraint of s , which is related to the motion model, and 

it is usually set as constant with a global motion model. If there is more complicated 

motion, different strategies could be adopted. Shen et al. [62] proposed a joint method 

combining motion estimation, object-based segmentation, and SR. This method can 

handle the SR problem with multiple moving objects by iteratively updating the 

motion fields, segmentation fields, and the HR image. He et al. [126] proposed a 

nonlinear least-squares technique for motion models, including both translation and 

rotation. Furthermore, Tian and Yap [147] proposed a method for SR with a zooming 

motion and employed 
2

s s  as the PDF of  p s , where s  is the initial estimate 

of the motion vectors. Overall, joint super-resolution is an effective way to undertake 

SR without accurate registration. However, relatively complex models and extra 

parameters mean that the methods have not been widely applied. Of course, Bayesian 

methods can also prevent the propagation of estimation errors for the motion fields 

[53, 72]. 

 Super-resolution without explicit motion estimation 

In recent years, SR methods without explicit motion estimation have become popular. 
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The motivation behind these methods is to seek an SR algorithm that is able to 

process sequences with a general motion pattern. Protter et al. [148] generalized the 

nonlocal-means (NLM) algorithm to perform SR reconstruction. Rather than 

calculating the data fidelity globally, the method divides both the LR images and the 

estimated HR image into patches to accumulate the weighted residuals of the similar 

patches. By constructing a penalty function combining fuzzy motion estimation and a 

patch-based approach, it allows the algorithm to handle diverse motion models. 

Following this work, Takeda et al. [54] adapted kernel regression to multi-frame SR, 

and this method is able to handle video sequences with general motion models. Protter 

and Elad [113] presented a new framework in which the pixel-wise motion field in 

each pair of images is replaced with a probabilistic motion field. One of the main 

concerns about SR methods without explicit motion estimation is the computational 

efficiency, since most of them adopt a patch-based manner and require iteration to 

obtain the final result. 

3.3.2. Super-resolution without multiple low-resolution images 

 The goal of SR is to recover the HR details which are unobservable in the LR images. 

Usually, the details are recovered by combining the information across multiple LR 

images. However, in the real world, sufficient images with supplementary information 

are sometimes difficult to acquire. The performance of the reconstruction-based 

algorithms degrades when the magnification factor is large. Thus, researchers have 

turned to study SR methods for use with a single image, where the observation model 
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is similar to (1) as 1K  . 

Single-frame SR should not be confused with similar techniques, such as image 

interpolation and reconstruction methods using little extra information. The 

high-frequency details cannot be reconstructed without supplementary information. 

For example, the reconstruction-based methods [91, 149-154] involve image priors to 

“hallucinate” information lost during the image acquisition. Differing from the priors 

commonly used in multi-frame SR, the single-frame priors are typically designed to 

reduce edge artifacts and estimate the HR details with little additional external 

information. Although the edge-preserving operators can remove the ringing artifacts 

in image resolution enhancement, the main deficiency with mid-frequency textures 

prevents the methods being effective when the magnification factor is large [11]. In 

other words, these approaches cannot satisfy our everyday requirements, because of 

the limited information involved in the reconstruction model. Consequently, we do 

not regard traditional interpolation and reconstruction-based methods as SR in this 

review. 

Distinguished from the traditional interpolation methods, single-frame SR learns 

the correspondence between the low- and high-resolution information from an 

external database, and thus restores the details in the HR space. As with the rapid 

developments in machine learning, much attention has been paid to example-based 

SR in recent years. The example-based algorithms [11, 12, 155-159] either exploit the 

internal similarities of the same image, or learn the correspondences between the LR 

and HR image patches from external low- and high-resolution exemplar pairs. In the 
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early stage, patch or feature-based approaches were used to learn the generic 

relationship between the LR and HR image details [12, 160, 161]. As a representative 

work, Freeman et al. [12] employed an MRF framework to learn the prediction from 

LR to HR images. However, these methods are usually computationally expensive 

and depend on the similarity between the training set and the test set. As a result, 

neighbor embedding (NE) methods and sparse coding methods have since been 

proposed. 

The NE-based approaches assume that the small patches in the HR and LR images 

form similar manifolds in two distinct feature spaces [155-157, 162, 163]. Chang et al. 

introduced locally linear embedding (LLE) [155] to predict the HR patch as a linear 

combination of nearest neighbors from the training dataset, via learning the mapping 

relationship from the LR to HR space. In this way, the NE-based methods require 

fewer training samples and can be applied to a variety of images. However, the crucial 

problems of the NE-based methods are the blurring effects due to over- or 

under-fitting with the strictly fixed neighborhood size. Moreover, the LR-HR feature 

mappings cannot be effectively established through learning high-resolution 

information from the low-dimensional space. 

To overcome the limitations, sparse coding (SC) approaches [11, 159, 164-166] 

attempt to incorporate sparse signal representation to form a learned overcomplete 

dictionary, and have obtained quite promising results. Supposing that the image can 

be represented as a sparse linear combination with an overcomplete dictionary ψ  

and the corresponding coefficient vector α  with very few nonzero entries, then the 
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image patch can be given as x ψα . In the concept of SR, for each input LR patch 

ry , the sparse representation will be found with respect to 
lψ , and the HR patch 

rz  

can be generated according to the HR dictionary 
hψ  and the coefficients. The target 

is to find the sparsest representation of α  and the corresponding HR image by 

optimizing the energy function. The unified framework [11] can be interpreted as: 

 
   

,

22

, ,2 2
, ,

ˆ arg min +
i j

h i j i j

i j

P U R   
 

     
 


z α

z DBz y ψ z z α       (30) 

where ,i jα  denotes the representation coefficients for the  ,i j th  patch of z , α

denotes the concatenation of all ,i jα , and ,i jP  is a projection matrix which selects the 

 ,i j th  patch from z . The  U z  indicates the prior term for the reconstructed 

image, as discussed in Section 3.2.3. By tuning   and  , the model is able to 

control the tradeoff between matching the LR input and finding a HR patch which is 

compatible with its neighbors. In addition,   can achieve the goal of simultaneously 

suppressing the noise. 

The main advances since then include different training approaches for the 

dictionary pair [159, 166, 167], efficiency improvements [168], and various coding 

strategies [164, 169]. In the work of Yang et al. [11], the coefficient α  is assumed to 

be the same with respect to both the LR and HR dictionaries. However, further studies 

claimed that the differences and connections between the coefficients for the 

dictionaries should not be ignored [166, 170]. This is another tough task for 

single-image SR based on sparse representation. Other researchers have developed 

regression-based methods and some improved algorithms, such as the SR method 

with sparse NE [156], image SR using nonlocal autoregressive modeling [159], and 
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anchored neighborhood regression [171] for fast example-based SR. Recently, Dong 

et al. [172] presented the sparse coding based SR method, which can also be viewed 

as a kind of convolutional neural network with a different nonlinear mapping, and 

applied deep learning to learn an end-to-end mapping between the LR and HR 

images. 

We present the experimental results of single-image SR followed by 

down-sampling by a scale factor of 3. Fig. 9 shows the reconstructed HR Girl images 

by the use of different methods. With known degradation parameters, the TV 

reconstruction based method [47] is effective in recovering the texture, but it 

generates piecewise constant block artifacts. With external information learning, all 

the example-based SR methods can achieve effective reconstruction results in terms 

of visual plausibility, and obtain sharper edges. However, the NE method [156] has a 

limited ability to model visually complex texture, due to its high dependency on the 

quality of the samples in the database. The SC [11] approach expects to learn more 

effective information by constructing a joint dictionary. However, it is not sufficient to 

use a single mapping to describe the complex relationship between different image 

patch pairs. Exploiting nonlocal self-similarities between patches, learning mapping 

functions between patches, and employing reasonable assumptions for an image can 

allow better image recovery, as in the ASDS-AR-NL [159] and SPM [166] methods. 

Furthermore, single-frame SR offers the potential to overcome the insufficient 

number of LR images, and has played a significant role in some specific domains 

such as face hallucination [173, 174], license plate recognition [175], medical analysis 
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[176, 177], and satellite imaging [118], where diagnosis or analysis from few 

low-quality images can be extremely difficult. 

    

The LR image PSNR: 32.641 

SSIM: 0.807 

PSNR: 32.906 

SSIM: 0.812 

PSNR: 33.170 

SSIM: 0.818 

    

PSNR: 33.387 

SSIM: 0.818 

PSNR: 33.408 

SSIM: 0.823 

PSNR: 33.515 

SSIM: 0.823 

The original 

Fig. 9. Results for the Girl image with a magnification factor of 3. Top row: The LR image, 

NE [156], the TV-based method [47], and SC [11]. Bottom row: ASDS-AR-NL [159], 

SRCNN [172], SPM [166], and the original image. 

3.3.3. Acceleration strategies for big data processing 

 There is a trend to use SR methods on large datasets, which are referred to as “big 

data”. As a result, it is essential to develop methods that are both effective and 

efficient enough to satisfy the demand of the modern industrial applications. 

 Although abundant optimization methods have been proposed for fast SR (Section 

3.2.6), the efficiency is still far away from the requirements of real-time applications.  

Other strategies for speed need to be developed. Zhang et al. [178] presented two 

methods for fast SR based on recursive multilevel reconstruction and parallel image 

reconstruction. It has to be mentioned that ADMM is well suited to parallelized 
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mechanism for solving large-scale statistical tasks. Moreover, spatially adaptive 

block-based methods [73, 179, 180] are commonly used approaches. However, a 

de-blocking process is always necessary to reduce the edge artifacts. 

 Alternatively, cloud computing is a simple and efficient solution, which can provide 

computing and storage services over the Internet [181]. Users can accomplish their 

goals on a very powerful computing platform employing a “super computer” [182]. 

4. Applications 

 After reviewing the methodologies above, let us return to the specific applications of 

SR in our daily life, which are the most basic concern. In the last three decades, 

various applications of SR have been addressed. In the following subsections, we give 

some examples of SR in the significant application fields. 

4.1 Regular video information enhancement 

 The application of SR techniques has entered our daily life. LR video images can be 

converted to high-definition images using SR techniques. Hitachi Ltd. achieved the 

conversion of standard definition TV (SDTV) to high-definition television (HDTV) 

using SR technology for videos, which makes SR a particularly interesting and 

relevant research topic [183]. The related results can be found on the website 

http://www.engadget.com/2009/01/12/eyes-on-with-hitachi-super-resolution-tv/, 

where all the details in the frame are clearly enhanced. 

Fig. 10 shows the SR results for some daily scenes. The QCIF video sequence was 
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processed by 3-D ISKR [1], while the Bicycle sequence was handled by the method in 

[73]. These typical examples show the effectiveness of SR techniques when dealing 

with motion outliers caused by multiple moving objects, which is common in real 

scenes. Furthermore, Apple Inc. announced that they have applied for a patent of 

SR-based optical image stabilization. SR techniques will be employed in our phones, 

computers, and tablets someday sooner or later. 

  

 

 

  

(a)                          (b) 

Fig. 10. The SR reconstruction of (a) a QCIF sequence [1] and (b) the Bicycle sequence [73]. 

The first row indicates the reference LR frames, while the second row presents the 

corresponding reconstruction results. 
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4.2 Surveillance 

Nowadays, digital video recorder (DVR) devices are everywhere, and they play a 

significant role in applications such as traffic surveillance and security monitoring. It 

is, however, impossible for the moment to equip large-scale HR devices. Thus, it is 

necessary to study image SR techniques. Fig. 11 gives two examples of SR for the 

Walk sequence [184] and a UAV surveillance sequence [66]. Although the techniques 

have developed progressively, the practical use of video SR is still a challenge. Firstly, 

outdoor video devices are vulnerable to the impact of weather conditions. Moreover, 

video data usually feature a huge amount of data and complex motion. Some 

algorithms can deal with the motion outliers, but the computational efficiency limits 

their application. Compressed video SR has also been a focus [185, 186]. 

  

  

(a) (b) 

Fig. 11. The SR reconstruction of the Walk sequence (top row) [184] and a UAV surveillance 

sequence (bottom row) [66]: (a) indicates the reference LR frames, while (b) presents the 

corresponding reconstruction results. 

4.3 Medical diagnosis 

 Various medical imaging modalities can provide both anatomical information about 
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the human body structure and functional information. However, resolution limitations 

always degrade the value of medical images in the diagnosis. SR technologies have 

been used with the key medical imaging modalities, including magnetic resonance 

imaging (MRI), functional MRI (fMRI), and positron emission tomography (PET) 

[187]. The goal is to increase the resolution of medical images while preserving the 

true isotropic 3-D imaging. Medical imaging systems can be operated under highly 

controlled environments, and thus continuous and multi-view images can be easily 

acquired. Fig. 12 indicates the SR results on human brain MRI data [2] and a 

respiratory synchronized PET image, respectively [67]. 

Example-based SR for single frames has been also applied in the medical imaging 

field, by collecting similar images to establish a database [176, 188]. The following 

example presented in Fig. 13 is the reconstructed image of the single MRI image of 

the knee in [176]. The training database was established with a set of five standard 

images, including computed tomography (CT) and MRI images from various parts of 

the human body. 

  

  

(a) (b) 

Fig. 12. The SR results of (a) an MRI [2] image and (b) a PET [67] image. The first column is 
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the original LR images, and the second column shows the corresponding SR results. 

 

    

(a)                          (b) 

Fig. 13. The single-frame SR result on the MRI knee image with a magnification factor of 4 

[176]. (a) The original LR data. (b) The SR result. 

4.4 Earth-observation remote sensing 

As we know, the first SR idea in [31] was motivated by the requirement to improve 

the resolution of Landsat remote sensing images. The idea of applying SR techniques 

to remote sensing imaging has been developed for decades. Though data satisfying 

the demand for SR are not easy to obtain, there have been a few successful applicable 

examples for real data [25, 27, 28, 189-191]. Among them, the resolution of the 

panchromatic image acquired by SPOT-5 can reach 2.5 m through the SR of two 5-m 

images obtained by shifting a double CCD array by half a sampling interval (Fig. 3), 

which was the most successful case [27, 192]. In addition, Shen et al. [28] proposed a 

MAP algorithm and tested it with moderate-resolution imaging spectroradiometer 

(MODIS) remote sensing images, as shown in Fig. 14. Moreover, satellites can 

acquire multi-temporal or multi-view images for the same area, e.g. Landsat, CBERS, 

and WorldView-2, and thus provide the possibility for SR [25, 191]. An example is 

also given in Fig. 14, which incorporates five angular images provided by the 
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WorldView-2 satellite for SR [25]. SR for the spectral unmixing of fraction images 

has been widely studied to acquire a finer-resolution map of class labels, and is 

known as sub-pixel mapping [193-195]. Researchers have also attempted to apply the 

example-based methods to remotely-sensed image SR [196, 197]. 

 Recently, Skybox Imaging planned to launch a group of 24 small satellites, which 

can provide real-time “videos” with a sub-meter resolution using SR techniques [16, 

198]. At the moment, SkySat-1 and SkySat-2 have been launched and put into use. By 

incorporating approximately 20 frames, the ground-based distance (GSD) of the 

output image can be decreased to 4
5

 of the original data [16]. This is a great 

opportunity to bring SR techniques into our daily life. 

                 

   

(a)                     (b) 

Fig. 14. The SR reconstruction of remote sensing images: (a) and (b) indicate the LR and HR 

images, respectively. The first row shows the test on multi-temporal MODIS images with a 

magnification factor of 2 [28]. The second row is the SR example for multi-angle 

WorldView-2 images with a magnification factor of 2 [25]. 

 

The main challenges for remotely-sensed image SR are to overcome the scene 
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changes due to temporal differences, and to adapt the existing methods to massive 

amounts of observations every day. 

4.5 Astronomical observation 

 The physical resolution of astronomical imaging devices limited by system 

parameters also provides a chance for SR techniques to play a role. Astronomical 

systems can typically collect a series of images for SR. By improving the resolution 

of astronomical images, SR can help astronomers with the exploration of outer space. 

A specific example is shown in Fig. 15 [64] showing the SR of multiple star images. 

   

(a)                             (b) 

Fig. 15. SR example of astronomical images: (a) the original LR image, and (b) the SR result. 

 

Satellites are also now being sent into outer space, e.g. the lunar exploration 

program and the Mars Odyssey mission. Fig. 16 indicates an SR example of Chinese 

Chang’E-1 lunar images [199], where the result was reconstructed based on three 

views. The SR can enhance the image resolution, and thus improve the discernibility 

of small objects on the moon’s surface. Beyond this, Hughes and Ramsey [200] used 

Thermal Emission Imaging System (THEMIS) thermal infrared and visible datasets 

from different spectral regions to generate an enhanced thermal infrared image of the 

surface of Mars. 
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Fig. 16. The SR result of Chang’E-1 lunar images with a magnification factor of 2 [199]: (a) 

the original LR image, and (b) the SR result. 

 

4.6 Biometric information identification 

 SR is also important in biometric recognition, including resolution enhancement for 

faces [24, 201, 202], fingerprints [203], and iris images [65, 204]. The resolution of 

biometric images is pivotal in the recognition and detection process. To deal with the 

LR observations, a common approach is the development of high-quality images from 

multiple LR images. Based on the redundancy and similarity in the structured features 

of biometric images, example-based single-frame SR with an external database is an 

effective way of resolution enhancement [11]. We give three cases of biometric image 

reconstruction in Fig. 17 [203, 205, 206]. Using SR, the details of the shapes and 

structural texture are clearly enhanced, while the global structure is effectively 

preserved, which can improve the recognition ability in the relevant applications. 
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(a)                   (b)                         (c) 

Fig. 17. The SR results for face [205], fingerprint [203], and iris images [189], respectively. 

The first row is the LR image, while the second row shows the reconstructed result. (a) Face 

hallucination, (b) fingerprint reconstruction, and (c) iris reconstruction. 

 

5. Discussion and conclusions 

 In this article, we intended to convey the concept, development, and main 

applications of super-resolution (SR) over the past three decades. The main progress 

in SR techniques can basically be divided into three stages. In the first decade, 

researchers shifted their attention from the study of frequency domain methods to 

spatial domain algorithms. Regularized multi-frame SR framework were the main 

focus in the second stage. The Bayesian MAP framework became the most popular 

technique due to its good performance and flexible characteristics. In recent years, 

however, the development of multi-frame SR has slowed down, and researchers have 

mainly focused on SR reconstruction in the various application fields. Unfortunately, 

the extensive practical use of SR still remains a problem. There has been a 

bottleneck-style dilemma in the development of multi-frame SR, while example-based 

SR for single images has become a hot issue. However, the performance of these 

algorithms depends on the reliability of the external database. 

So what should we do in further studies? More advanced, adaptive, and faster 
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methods with extensive applicability are always desirable. In addition, methods 

should be closely combined with actual requirements. The rapid development of 

hardware devices will also bring new challenges to the application of the SR 

framework. For instance, the Google Skybox project will provide us with an 

opportunity to obtain real-time HR “earth-observation videos” using remotely-sensed 

image SR. The concept of SR has also been extended to related fields such as 

fluorescence microscopy [17, 207-209] and multi-baseline tomographic synthetic 

aperture radar (SAR) imaging [210, 211]. Moreover, researchers have attempted to 

apply the single-frame SR techniques to the processing of medical and remote sensing 

imagery. However, the practicability of these methods is still limited by the time 

consumption, and acceleration strategies are essential for large-scale applications. In 

conclusion, the future of SR is still in our hands. 
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