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Abstract—In this paper, we focus on the despeckling of synthetic
aperture radar (SAR) images by variational methods which in-
troduce nonlocal regularization functionals. To achieve this goal,
two models are investigated from different aspects. The first
model is derived for the logarithmically transformed (homomor-
phic) domain of the SAR data, and the other is derived for the
original (nonhomomorphic) domain. The statistical properties of
the speckle and the log-transformed speckle are analyzed, and
the similarity measurements between pixels in the homomorphic
domain and nonhomomorphic domain are then derived for con-
structing the corresponding nonlocal regularization functionals.
Meanwhile, in the proposed models, we develop a strategy to
adaptively choose the regularization parameters based on both the
local heterogeneity information and the noise level of the images,
aiming at getting a better balance between the goodness of fit of
the original data and the amount of smoothing. A quasi-Newton
iteration method is employed to quickly minimize the proposed
adaptive nonlocal functionals. Experiments conducted on both
simulated images and real SAR images confirm the good perfor-
mances of the proposed methods, both in reducing speckle and
preserving image quality.

Index Terms—Homomorphic filter, nonlocal functional, speckle,
variational method.

I. INTRODUCTION

T IS well known that synthetic aperture radar (SAR) images

are inherently affected by speckle noise, which is due to the
coherent interference of waves reflected from many elementary
scatterers. Speckle noise has long been recognized as one of the
most crucial problems of SAR data. The presence of speckle
complicates the image interpretation and analysis and reduces
the effectiveness of target detection and classification [1], [2].
Despeckling can therefore be an essential procedure before
using SAR images to obtain land-cover information.
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An alternative method of reducing speckle is the multilook
process, which amounts to incoherently averaging a certain
number (defined by the number of looks) of independent im-
ages, thus reducing the noise intensity, but at the cost of a clear
loss in spatial resolution. Therefore, to significantly reduce
speckle and, at the same time, to effectively preserve the scene
features, filtering techniques are necessary. In the early years,
speckle reduction techniques were often operated in the spatial
domain with linear filters based on a minimum mean-square
error (MMSE) approach, e.g., the Lee filter [3], Kuan filter [4],
sigma filter [5], and their refined versions [6], [7]. Some other
early methods use the so-called homomorphic approach [8], [9],
taking the log of the data so as to obtain a more tractable
additive model and then applying certain well-known methods
drawn from the additive white Gaussian noise (AWGN) de-
noising literature. These conditional low-pass filters have high
processing efficiency but show limitations in either preserving
image sharpness or effectively suppressing speckle. In the
recent decades, some new filter-based methodologies have been
presented and have been successful in SAR image despeckling.
Two typical categories of these algorithms are the nonlocal
filters [10]-[13] and the wavelet-based filters [14]-[16]. A
detailed introduction to the current research situation for SAR
despeckling can be found in [17] and [18].

In addition to the filter-based techniques in the spatial do-
main and in the frequency domain, the variational methods
are another important branch of image denoising, which break
through the traditional idea of filters by solving the problem
of energy optimization. In the framework of the variational
methods, image denoising problems are considered as varia-
tional problems, where a clean image is obtained by minimiz-
ing an energy functional. Such functionals often consist of a
fidelity term, such as the norm of the difference between the
clean image and the original noisy image, and a regulariza-
tion term, which includes prior information about the original
image. In 1992, Rudin et al. [19] innovatively introduced the
variation regularization approach for AWGN denoising (the
ROF model), and this approach has since raised wide research
interest in image processing and computer vision [20], [21]. In
the last few years, a number of variational models have also
been developed for removing multiplicative noise (including
speckle). Following the maximum a posteriori (MAP) esti-
mator for multiplicative gamma noise, Aubert and Aujol [22]
introduced a nonconvex model (AA model), whose data term
was subsequently adopted in a convex model by Shi and Osher
in [23] (the SO model). The model of Shi and Osher was
modified in [24] by adding a quadratic term to obtain a simpler
alternating minimization algorithm. Steidl and Teuber [25]
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studied a variational model consisting of Kullback-Leibler
divergence as the data-fitting term and total variation as the reg-
ularization term. Recently, Teuber et al. [26] have studied the
problem of removing multiplicative noise by using seminorm
regularization models with I-divergence constraints, and this
approach can realize the task of removing both Poisson noise
and gamma noise by estimating the constraining parameter
based on the type of noise. Yun and Woo [27] have proposed
using the mth root transformation to deal with the nonconvexity
of the AA model. Zhao er al. [28] have proposed a new convex
optimization model for multiplicative noise and blur removal.

Although most variational methods can obtain positive re-
sults in suppressing speckle, the drawbacks of the staircase
effect and the smearing of the image features degrade their de-
speckling performances. In addition, the regularization term of
the conventional variational methods only considers local prior
information, which might also lead to undesirable despeckling
results in some cases. In this paper, we focus on the despeckling
of SAR images by variational methods. In contrast to most of
the well-known variational methods, we investigate two models
which involve nonlocal regularization functionals. The main
motivation behind such nonlocal regularization models comes
from the work of Gilboa et al. [29] and Lou et al. [30], who used
nonlocal functionals for the denoising and recovery of AWGN-
contaminated images. One of our proposed models is derived
for the logarithmic domain of the SAR data, and the other
is derived for the original domain. In the proposed nonlocal
functionals, the regularization parameters are adaptively tuned
based on the local heterogeneity information and the noise level
of the images. As for the rapid implementation of the proposed
adaptive nonlocal functional (ANLF) models, we adopt a quasi-
Newton iteration method.

The remainder of this paper is organized as follows. We start
by reviewing some classical energy methods for denoising in
Section II. In Section III, the statistical properties of speckle and
logarithmically transformed speckle are analyzed, and the two
ANLF models are presented. In Section IV, the implementation
of the proposed ANLF models is described. Finally, we demon-
strate the performances of the proposed algorithms in Section V
and give our conclusion in Section VI.

II. BRIEF INTRODUCTION TO SOME CLASSICAL
VARIATIONAL DENOISING MODELS

A. Variational Models for AWGN-Contaminated Images

1) ROF Model: A variational method aims to restore the
original image by finding the minimum of some appropri-
ate functional in the space ) C R?, which is connected and
bounded. Rudin et al. [19] first employed this method for the
removal of AWGN by minimizing the following functional:

J(u) = /|Vu|dx+ A/(f —u)?dx (1

Q Q

where V is the gradient operator. The first term of the
right-hand side of the aforementioned functional denotes the
regularization term, which includes prior information about
the noise-free image w, and the second term denotes the
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data-fitting term (fidelity term), which depends on the given
(corrupted) data f. A > 0 is a regularization parameter to
control the tradeoff between the goodness of fit of f and a
smoothing requirement due to the regularization term.

2) Nonlocal Functional Models: The conventional varia-
tional models have many desirable properties. However, their
main drawbacks consist of their staircase effect and the regular-
ization term that only takes into account the local information.
Various alternative regularization terms have been considered
to solve this problem. Among them, the nonlocal regularization
term leads to very good denoising results by replacing the clas-
sical regularization term with a nonlocal functional. The idea of
nonlocal means (NL_means) goes back to [31], and it was in-
corporated into the variational framework in [29] and [30]. For
the denoising or recovery of images contaminated by AWGN,
a difference-based nonlocal functional can be formulated as

Iw)= [ 6 () uw) wie.p) dyde + A [ (7 - wdo
Q Q
2)

where (u(z) — u(y))? can be regarded as prior informa-
tion about the difference between two pixels contaminated
by AWGN; w(z,y) = exp[—((v(z) — v(y))/h)?] is a weight
function, which is constructed using the preprocessed image v
as the reference; and h is a scalar parameter. As an example, for
total variation (TV), ¥(a) = v/«, and (2) becomes

Tyt = [ (u@)-u))? we.g)dyds A [ (7w
Q Q
3)

Meanwhile, when ¢ («) = «, (2) becomes

Jne (u)z/ (u(m)—u(y))2 w(z,y)dydx + /\/(f —u)?dz.
Q

Q

“)
The functional in (4) is analogous to the standard H' semi-
norm, so it is denoted as NL/H?'. The functional in (3) is
similarly denoted as N L/TV. Recently, Chierchia ef al. [32]
have extended the NLTV-based regularization by combining it
with a structure tensor to recover hyperspectral images which
are degraded by blurring and AWGN noise arising from sensor

imprecision or physical limitations.

B. Variational Models for Speckled Images

1) AA Model: The ROF model is effective for AWGN de-
noising, but it performs poorly when removing speckle noise.
This is because the data-fitting term in the ROF model is
not suitable for gamma-distributed multiplicative noise. Under
the hypothesis of fully developed speckle, the observed back-
scattered intensity of SAR systems can be expressed as

f=un 5)

where u is the noise-free reflection and n is the speckle noise.
It is well known that the speckle of a multilook SAR intensity
image can be modeled by a gamma distribution. When dealing
with this kind of multiplicative noise, Aubert and Aujol [22]
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proposed to determine the denoised image by minimizing the
following functional:

J(u) =/|Vu|dx—|—/\/ (g —l—logu) dx. (6)
Q Q

In the AA model, the data-fitting term follows canonically
from the MAP approach related to multiplicative gamma noise.
However, some studies [25] have shown that the regularization
term is inappropriate, which often leads to the problem of the
noise surviving much longer at low image values, and |V log u
is a better choice.

2) SO Model: To solve the problem that the AA model
encounters, Shi and Osher [23] suggested keeping the data-
fitting term in (6) and replacing the regular [Vu| by |V log u|.
Furthermore, setting F/ = logu. This results in the following
variational model:

E = argmin /|VE|dx+ )\/(fe’E + E)dz
o Q
i = exp(F). (7

III. PROPOSED ANLF MODELS FOR SAR DESPECKLING

A. Homomorphic and Nonhomomorphic
Nonlocal Functionals

As described in Section II, the AA model is derived for the
original data domain, while the SO model is derived for the
logarithmically scaled data domain. They have the same data-
fitting terms but different regularization terms. Although the SO
model often achieves better performances than the AA model
due to the improvement in the regularization term, its ability
to preserve image features can still be unsatisfactory in some
cases, as revealed in a number of studies [24], [25]. In this pa-
per, we investigate two energy models with nonlocal functionals
for the reduction of speckle in SAR intensity images. The data-
fitting terms of the proposed nonlocal variational models are the
same as those of the AA model and the SO model, respectively,
while the classical regularization terms are replaced by non-
local regularization terms (in this study, we focus on NL/H 1
regularizers for both models, and the N L/T'V regularizers are
not in the scope of this paper). This results in the proposed
nonhomomorphic nonlocal functional model

Jl(u)Z/\/ (g—i—logu)dx—k/(bl(u(m),u(y))wl(x,y)dydx
Q Q

@ =argmin {J1(u)} (8)
and the proposed homomorphic nonlocal functional model
RB) = (e P Byt [02(8(), B) ws(e)dyds

Q Q
rgmin {Jo(E)}
it =exp(E) ©)

oy
I
o)

where F denotes the logarithmically scaled image of wu.
O (u(z), u(y)) and P2 (E(x), E(y)) represent the prior similar-

ity information between two pixels in the original data domain
and the log-transformed data domain, respectively. wy (z,y)
and we (x, y) are the corresponding weights.

Clearly, in the proposed nonlocal functionals, the choice
of the prior similarity measurement ®(-) between two pixels
directly determines the performance of the despeckling. In the
AWGN setting, a smaller Euclidean distance corresponds to
a higher likelihood that the two signal pixels (without noise)
are equal; however, in the non-AWGN setting, the Euclidean
distance may lose its significance in measuring the similarity
between pixels. In the following section, we briefly recall the
statistical properties of speckle and log-transformed speckle
and describe the similarity measurements used in the two cases.

B. Statistical Properties of Speckle and the
Log-Transformed Speckle

1) Statistical Properties of Speckle and the Nonhomomor-
phic Nonlocal Functional: To measure the similarity of pixels
in the original SAR data domain, we employ the method
proposed by Deledalle et al. [10]. For the amplitude format of
SAR data, it can be modeled as independent and identically
distributed, according to the following Nakagami-Rayleigh

distribution:
2 L 2L-1 A?
- —_ - ] — >
I‘(L)(s) A exp( Ls)’A 0 (10)

p(Als) =
where A is the amplitude, L is the number of looks, and s
is the underlying reflection image. I'(-) denotes the gamma
function. Mathematically, given two observed amplitude values
A(z) and A(y), their similarity measure is related to the prob-
ability p[s(z) = s(y)|A(x), A(y)]. The larger the probability,
the smaller the similarity measure. In a Bayesian framework,
without knowledge of p[s(z) = s(y)] and p[A(x), A(y)], the
probability p[s(z) = s(y)|A(x), A(y)] is proportional to the
likelihood p[A(z), A(y)|s(x) = s(y)], which is

(z) = s(y)]

p[A(z), A(y)]s
= /p[A(w)IS(fﬂ) = a]-p[A(y)|s(y) = a] - pla)da (11)
D

where p(-) represents the probability density function. If we
assume that, lacking any prior knowledge, p(-) is uniform over
the domain D, then considering (10), (11) can be further read as

L
X exp{—g [AQ(:U)—FAQ(y)]}da (12)
with the integral equal to

4L

r(zL_1)[ .

A(z)A(y) }
2(L) v) '

A2(z) + A2
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Finally, taking the negative logarithm of (13) and discarding
the constant terms, the similarity measure is derived as

A%(x) + A? (y)>

A(0)A) (1

d(A(x), Ay)) = log (

Note that the similarity measure in (14) is in terms of the
amplitude format, and it is symmetrically invariant; hence,
the nonhomomorphic nonlocal functional model in (8) for the
intensity format can be finally defined as

J1 :)\/ <i —|—logu> dz
U
Q

o @tv @ 12

log
+ 1Og7u(x)+u(y) expl — _Vuln) dydx
) h
@ = argmin {Jy(u)} (15)

where v denotes the preprocessed image, which is discussed
in the next section, and h is a scalar parameter.

2) Statistical Properties of the Log-Transformed Speckle
and the Homomorphic Nonlocal Functional: Speckle in SAR
images is modeled as multiplicative random noise, whereas
most available filtering algorithms were developed for AWGN
in the context of image denoising and restoration, as additive
noise is the most common noise type in imaging and sensing
systems. To take advantage of these algorithms, homomorphic
transformation is often used to convert the multiplicative model
into an additive model, with the assumption that the logarith-
mic SAR image is Gaussian distributed. In fact, it has been
found that the logarithmically transformed speckle follows a
Fisher-Tippett distribution [33], which can be approximately
fitted by a Gaussian distribution when the number of looks of
the image is large enough. In our proposed homomorphic non-
local functional, the Euclidean distance is employed to measure
the similarity between two logarithmically scaled pixels, with
the assumption of a Gaussian distribution.

One important issue related to the logarithmic transforma-
tion that should be pointed out is that the mean of the log-
transformed speckle noise is not zero, whereas a significant
set of techniques assumes it to be Gaussian white noise with
zero mean. For the purpose of radiometric preservation, it is
necessary to correct the biased mean within the processing
stages, especially for SAR images with high noise levels. In
conclusion, the proposed homomorphic nonlocal functional
model in (9) is finally modified as

Jo :A/(fe*E + B)dx

Q

+ / (E(z) — B(y))* exp <—[Mr> dyda

Q
E =argmin {J5(E)}
(16)
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where M is the mean of the log-transformed speckle, which
was found to be a constant value related to the number of looks
[33], and vy is the preprocessed log-transformed image.

The second terms of J; and J, are the fidelity terms
which measure the difference between the clean image and
the original noisy image, and the difference between the clean
log-transformed image and the noisy log-transformed image,
respectively. These terms ensure that the structures and details
in the images can be effectively retained after despeckling. The
first terms of J; and Jo are the nonlocal regularization terms
for the original image and the transformed image, respectively.
These terms play the roles of despeckling.

C. Adaptive Choice of Regularization Parameters

The regularization parameter A of the energy functionals in
(15) and (16) controls the tradeoff between the goodness of
fit of f and the smoothing. When A is too large, insufficient
smoothing is undertaken to remove the speckle, whereas when
A is too small, more noise is removed but with the loss of too
many image features. The basic idea of the adaptive functional
models in this study is to adaptively find appropriate values of A
based on both the local heterogeneity information of each pixel
(spatial adaptivity) and the noise level (noise adaptivity).

There is generally a tradeoff between speckle reduction and
detail preservation. When removing speckle from an image,
the details are often severely reduced. A number of studies
[34], [35] have shown that an approach to partially alleviate
this problem is to use spatial adaptivity. The general idea of
this approach is to exert less smoothing for edges and features,
and more smoothing for homogeneous areas. In this paper, we
employ the local homogeneity index (LHI) in the Lee filter [3]
to realize the spatial adaptivity of A.

An important property of speckle is that the ratio of the
intensity’s standard deviation to the mean [or coefficient of
variation (o,)] is a constant for a given number of looks L

1
v =17/ 7- 17
o =4/ (17
The LHI is derived based on this property
_(f . 2
LHI = Var(fsub) (fsub Uv) (18)

(1 + o2) var(fsub)

where var(fsup) and fsup, respectively, denote the variance and
mean of the observed image computed over a 3 x 3 window
centered on the target pixel. LHI may become negative due to
insufficient samples. If so, it should be set to zero to ensure that
it is between O and 1. For a pixel x in a homogeneous area,
LHI(x) ~ 0; for a pixel located in a heterogeneous area with
highly contrasting edges or features, LHI(z) =~ 1. Finally, the
spatially adaptive regularization parameter can be obtained as

Mz) = LHI(z) x Ao. (19)
By considering the local heterogeneity information, the pro-
posed spatially adaptive A can enhance the image details while
smoothing the homogeneous regions.
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Jo?

Unp (

x)+uo(

[u,, (a:) uﬁ(y)

Y)

Jo T awr

log ug(z)tug(y)
] exp { — [ \/uO(L)uD(y) ] dy—f—)\(x) <_ uf;7((mm)) +1)
(24)
log ug(z)tug(y) N
)]z exp{ — \/U.O(L)U-O(y) dy+ [Iif)(ig]mz)

One issue that should be addressed is the choice of the initial
value of \g. Generally speaking, for serious noise, a small value
of A should be chosen to sufficiently smooth the image; for low
noise, a large value of )\ is appropriate for fitting the observed
image, which means that Ay can be set based on the level of
the noise. Therefore, in this study, a simple linear relationship
is proposed to set Ag automatically, based on the noise level, as

Ao = =

3 (20)

where k is a scalar parameter.

IV. IMPLEMENTATION OF THE ANLF MODELS
1) Implementation of the NHANLF Model

The variation with respect to u of the nonhomomorphic
nonlocal functional .J; in (15) is

o A ) [

.

J dy. (1)

1

f(x)
+
u(z)

£ w2 (z)

()4 (y)

\/vl(z v1(y)

log &

- exp —{

Discarding the same terms u(x) in the denominator, F} can then
be reduced to

f(x)

o1 (z)Fvi(y)
\/U1(ﬂ”)U1(y

log &

- exXp dy (22)

The estimated value of each pixel x can then be obtained
by solving the Euler-Lagrange equation: Fi(u(x)) =0. To
quickly solve this nonlinear equation, we choose the Newton
iteration method [36] for its traits of high computational effi-
ciency and ease of operation.

Given a single-variable nonlinear equation, F'(a) = 0, the
iteration scheme of the Newton method for solving the equation
is as follows:

(23)

where F'(-) denotes the derivative of F(-) with respect to the
variable a and a,, is the approximate solution of the equation
calculated at the nth iteration. Hence, the Newton iteration
scheme for solving F(u(x)) = 0 is given by (24), shown at
the top of the page, where ug(y) is the pixel value of y in the
speckled image and w,(x) is the value of = in the denoised
image of the nth iteration. It must be noted that two issues
should be of concern when applying the Newton method to
solve the equation. How many solvers does the equation have
in the definition domain? Which solver of the Euler—Lagrange
equation minimizes the energy functional? In fact, the Euler
equation of the nonhomomorphic ANLF (NHANLF) model has
only one positive solver, and this solver minimizes .J;. We refer
the readers to the Appendix for the proof of the aforemen-
tioned conclusion and the uniqueness of the minimizer of the
NHANLF model.

Finally, as in the similar procedure in [37], we set u°(z)
f(x) and perform a fixed-point iteration to obtain the final
restored images

't (z) = FY (u'(z)) (25)

where Fj(u’(z)) denotes the solver of the Euler equation
Fi(u'(x)) = 0 calculated by (24), or in other words, in each
fixed-point iteration, the Newton method is employed to obtain
a cleaner image, which is set as the image to be denoised in the
next fixed-point iteration.

As pointed out in [30], in the nonlocal functional models,
a better way of constructing the weight function is to use a
preprocessed image instead of the blurry and noisy data f,
which means that, in each fixed-point iteration, it is better to
calculate the weights using the restored image of the last fixed-
point iteration as the reference.

To sum up, the detailed implementation scheme of the
NHANLF model is as follows: for the pixel z, its restored value
in the n + 1th Newton iteration of the ith fixed-point iteration is
obtained by (26), shown at the top of the next page, where the
superscript of u denotes the fixed-point iteration number and
the subscript of u denotes the Newton iteration number, which
are defined in the same way in the rest of this paper. The Newton
iteration process in the ith fixed-point iteration is stopped if the
following condition is satisfied:

4
n

()|

|U’iz+1(x) —u

: < 0.001.
up ()

27)
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i i 2
log uo(vvv)JruDv(’y)
Vol @yul ()

-expg — 5

dy + A(z) (— Tl 1)

ul (x)+ul (y)
log —0—-0—

g = =
uply) | V@ AMx)f (2)
Jo Trmrmep P z Y+ @r
(26)
E',  (2)=FE'(z) - =——2"2
r ) =) B )
. . i i 2 .
o2 [Bi@) - Ei(y)] exp {— | BB | }dy + (@) {~f(x) exp [~ Ei(2)] +1}
= Ei(x) - (30)

Jo2exp { = flog BEEEDT ) dy 4 7o) (o) ex [ B o)

2) Implementation of the HANLF Model

The variation with respect to E' of the homomorphic nonlocal
functional J; in (16) is

Py = \(x) [— Fz)e B@ 4 1}

2
+ / 2[E(z) — E(y)] exp{— {M} }dy. (28)

Q

It can also be proved that this equation has only one solver
which minimizes the energy functional J> (see the Appendix).
We then set E° = log f and perform a fixed-point iteration

E"tY(z) = F; (E'(2)) (29)
where F;(E‘(x)) denotes the solver of the Euler equation
Fy(E‘(x)) = 0 calculated by the Newton method. To sum up,
for the log-transformed pixel z, its restored value in the n + 1th
Newton iteration of the ith fixed-point iteration is obtained
by (30), shown at the top of the page.

V. EXPERIMENTAL PART

In this section, to illustrate the performances of the proposed
ANLF models, the results obtained with five simulated SAR
images and two real SAR image are reported. In this paper, the
size of the proposed methods’ searching window was fixed as
21 x 21 for all of the tested images. First, several variational
models were implemented to compare with the proposed ANLF
models: the AA model [6], the spatially adaptive AA (SAA)
model [34], the SO model [23], and a new convex variational
model proposed by Zhao et al. [28]. We then compared the
proposed models with two state-of-the-art techniques based
on the nonlocal approach: the probabilistic patch-based (PPB)

filter [10] and the SAR block-matching 3-D (SAR-BM3D)
algorithm [14].

A. Comparison With Other Variational Models on Five
Simulated and Two Real SAR Images

1) Experiments on Simulated SAR Images: The use of sim-
ulated SAR data allows an objective performance assessment
of the speckle suppression efficiency. To achieve this goal, the
common approach in the literature is to use a virtually noiseless
optical image as a clean reference and to inject a speckle field
with proper statistics on it. However, this approach clearly has
some shortcomings, as the statistics of a SAR image are very
different from other types of images, including the dynamics,
gray-level distribution, spatial correlation, operational wave-
lengths, and so on. Recently, Di Martino et al. [38] have
proposed a framework for the objective assessment of SAR des-
peckling techniques, based on the simulation of SAR images
relevant to canonical scenes. In this framework, each image is
generated using a complete SAR simulator that includes proper
physical models for the sensed surface, the scattering, and the
radar operational mode. Through simulating multiple SAR im-
ages as different instances relevant to the same scene, SAR
images with an arbitrary number of looks can be obtained.
This simulation method is based on a SAR raw signal simulator
(SARAS) [39], and it is based on sound geometrical and elec-
tromagnetic models for the evaluation of the reflectivity
function of the scene and on a model for the transfer function of
the system, which are used for the evaluation of the raw signal.
In this paper, we used five SAR images simulated by this frame-
work and the indicators proposed in [38] to inspect the des-
peckling performances of the proposed techniques. All of the
simulated images and the scripts used to calculate the indicators
are available for download at http://www.grip.unina.it/. The
following part is a basic description of the simulated images


http://www.grip.unina.it/
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and the used indicators. For more detailed information about
the images and indicators, readers can refer to [38].

1)

2)

3)

The first image is the “Homogeneous” image. This image
is used to simulate a single flat region with constant
electromagnetic parameters. This is the simplest, yet most
important, canonical scene, as it allows the user to assess
the speckle reduction ability of a filtering technique. To
this end, we employ the widely used equivalent number
of looks (ENL) to characterize the amount of smoothing
in homogeneous areas. Furthermore, we also use two
bias indicators: the mean value and the variance of the
ratio image between the noisy and filtered images. For
an ideal filter, its ratio image should be pure speckle.
Therefore, in this study, a mean of ratio (MoR) signif-
icantly different from one indicates some radiometric
distortion. The variance of ratio (VoR) provides an insight
into the under/oversmoothing phenomena. A VoR < 1
indicates undersmoothing, whereas a VoR > 1 indicates
oversmoothing.

The second image is the “Squares” image. This image con-
tains several regions of flat terrain, separated by straight
contours, and is characterized by different electromag-
netic parameters. By using this image, we can inspect the
capabilities of the despeckling methods in preserving the
edges and boundaries between different land objects. To
describe the degradation of edges, the edge smearing (ES)
and Pratt’s FOM indexes [40] are used. The ES is com-
puted as the weighted square error between the edge pro-
files (EPs) of the filtered image @ and reference image u

ESZ/g(t—to) (EPa(t) — EPu () dt (1)

where g(t — to) is a Gaussian kernel that allows us to
assign a larger weight to errors that occur near the edge
location t(, which can prevent the speckle in the homoge-
neous areas from affecting the edge degradation measure.
Differing from ES, the FOM index is calculated only
considering the edge pixels. The FOM index is defined as

FOM =

1 O |
32
max(ng, n,) ; 1+ ~d? (32)

where ngy and n, are, respectively, the number of edge
pixels detected in the despeckled and reference image, d;
is the Euclidean distance between the ith detected edge
pixel of the despeckled image and the nearest reference
edge pixel, and the parameter ~, which is set as 1/9, as in
[38], modulates the cost of edge displacement. A larger
FOM value indicates superior edge rendition.

The third image is the “Corner” image. This image
simulates a corner reflector placed on a homogeneous
background. In high-resolution SAR images, trihedral
structures often act as corner reflectors, which show
high-intensity returns on the images. A good despeck-
ling method should not significantly modify the corner
reflector response. In this case, to assess the radiometric

4)

5)

preservation of the filtering process, we use the Cy n and
(B¢ indicators, which are defined as

Uucr

Cny =10log;g —— (33)
UNN

Cpc =10log;, der (34)
UBG

where ucr, unn, and upg are the intensity observed
in the corner reflector site, the average intensity in the
surrounding region formed by the eight connected nearest
neighbors, and the average intensity of the background,
respectively. For a good filter, these two indicators should
be close to the corresponding numbers computed on the
reference image.

In the fourth test case, we simulate a “Building” image,
with an isolated building placed on a homogeneous
background. It is important to preserve the position and
radiometric characteristics of building radar returns when
choosing a filtering technique. For the assessment of the
radiometric preservation, the C'p i indicator is employed
UDR
UBG

Cpr = 10logyq (3%5)
where uppr denotes the average intensity computed on
the building radar returns. For a filter that can effec-
tively preserve the high signal returns of a building,
the Cpr indicator should be close to the corresponding
number computed on the reference image. To quantify the
preservation of the building profile (BP), we employ the
building smearing (BS) index, which is defined as

B — [ TT (5% ) lowso (BPa(0) + 2
—logqo (BPy(t) +¢)|dt  (36)

where ¢ is a small positive value. This index is computed
by averaging along the azimuth direction and integrates
the absolute difference with respect to the clean profile in
a small range centered on the double reflection line.

The last simulated image is the “Digital Elevation Model
(DEM)” image, with a single region with constant elec-
tromagnetic parameters but nonflat orography. In this
case, we use two indicators to compare the filtering
methods: the coefficient of variation (C,) and the DG
indicator, which is defined as

(37)

DG = 101logy, (MSE(“’ f))

MSE(u, @)

where u, u, and f are, respectively, the clean image,
the filtered image, and the speckled image. MSE denotes
the traditional mean-square error. A larger value of the
DG indicator indicates better speckle rejection. For a
good filter which can effectively preserve texture, the C,,
estimated for the filtered image by means of the spatial
averages should be close to the value expected for the
original image.

For each of the previously described images, we tested the

filtering methods on eight different instances (eight different
single-look images) relevant to the same scene and obtained
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TABLE 1
QUANTITATIVE ASSESSMENT RESULTS FOR THE SIMULATED IMAGES FILTERED BY THE DIFFERENT VARIATIONAL METHODS

AA model SAA model SO model Zhao's model HANLF model NHANLF model Reference
ENL 48.4 55.1 86.9 89.0 1124 111.5 /
Homogeneous MoR 0.91 0.95 1.81 0.86 0.91 0.98 /
VoR 0.21 0.30 10.52 4.01 0.82 0.84 /
ES up 0.25 0.24 0.58 0.06 0.72 0.05 /
Squares ES down 0.73 0.78 1.66 0.02 0.93 0.12 /
FOM 0.70 0.73 0.70 0.81 0.69 0. 80 /
Cyy 7.96 7.52 1.15 7.76 7.61 8.21 7.75
Corner
Cpe 33.78 36.39 9.82 35.88 36.76 36.41 36.56
- Cpr 65.89 66.56 62.85 64.60 67.02 66.22 65.90
Building
BS 6.97 5.50 5.97 7.35 3.02 2.89 /
C
DEM . 3.13 2.85 1.91 1.84 2.99 2.50 2.40
DG 2.01 2.98 5.80 5.49 5.53 5.44 /

Fig. 1. Despeckling results on the “Homogeneous” image. (a) Reference
image. (b) Single-look speckled image. The images despeckled by (c) the AA
model, (d) the SAA model, (e) the SO model, (f) Zhao’s model, (g) the HANLF
model, and (h) the NHANLF model.

the quantitative results by averaging the assessment results of
these eight different instances, and we used a 512-look image
as a reference image. To fairly compare the performances of the
despeckling techniques, the parameters of each filtering method
were fixed for all of the test cases. Table I lists the quantitative
assessment results of the methods on the simulated images.
To improve the readability, for each indicator in the table, we
use a boldface number to indicate the best filtering result and
underlining to indicate the second-best filtering result. Figs. 1,
2, 3, 5, and 8 show the despeckling results of the variational
methods on one realization of each test image, respectively.

First, it can be seen that, generally speaking, the proposed
NHANLF model can achieve better despeckling performances
than the homomorphic ANLF (HANLF) model from both
the quantitative indexes and the visual result. The reason for
this may be that, as we stressed in Section III, the homo-
morphic nonlocal functional is derived with the assumption
that the log-transformed speckle is Gaussian distributed. The
log-transformed speckle follows a Fisher—Tippett distribution,
which can be effectively fitted by a Gaussian distribution only
when the noise is not serious. This means that the Gaussian
hypothesis about the log-transformed speckle could be more
inclined to result in unsatisfactory results when the number of
looks is small.

For the despeckled “Homogeneous” image, it is quite easy
to visually assess the speckle reduction ability of the different

Fig. 2. Despeckling results on the “Squares” image. (a) Reference image.
(b) Single-look speckled image. The images despeckled by (c) the AA model,
(d) the SAA model, (e) the SO model, (f) Zhao’s model, (g) the HANLF model,
and (h) the NHANLF model.

-
(@ (b) © (d)
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Fig. 3. Despeckling results on the “Building” image. (a) Reference image.
(b) Single-look speckled image. The images despeckled by (c) the AA model,
(d) the SAA model, (e) the SO model, (f) Zhao’s model, (g) the HANLF model,
and (h) the NHANLF model.

techniques. All of the conventional variational methods show
some artifacts, especially Zhao’s model and the SO model.
Compared with the other four models, the AA model and the
SAA model do not effectively reduce the speckle. The ENL
values listed in Table I confirm the good speckle reduction
ability of the proposed methods. Furthermore, the MoR values
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Fig. 4. EPs (upper edges) obtained for the six methods (red) compared with
the reference one (black). (a) AA model. (b) SAA model. (¢) SO model.
(d) Zhao’s model. (¢) HANLF model. (f) NHANLF model.
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Fig. 5. Despeckling results on the “Corner” image. (a) Reference image.
(b) Single-look speckled image. The images despeckled by (c) the AA model,
(d) the SAA model, (e) the SO model, (f) Zhao’s model, (g) the HANLF model,
and (h) the NHANLF model.

indicate that the AA model, the SAA model, and the proposed
models perform better in radiometric preservation.

For the “Squares” image, Table I reports the ES figures for
the two vertical edges, characterized by lower (up) and higher
(down) contrasts. The AA model does not effectively reduce the
speckle, and it results in a slight blocky appearance, which is
a problem that many variational methods often encounter. The
SAA model generally outperforms the AA model due to its spa-
tially adaptive strategy. Compared with the SAA model, the SO
model clearly performs better in reducing speckle, but it badly
smears the boundaries, which can be seen in its poor results for
the ES and FOM indicators. Zhao’s convex variational model
and the proposed HANLF model reduce the speckle to a greater
degree, but both methods have problems: the image filtered by
Zhao’s model shows an evident blocky problem and staircase
effect, which may be undesirable in some applications, and
the HANLF model results in an oversmoothing problem and
smears the edges to some extent. Compared with the aforemen-
tioned variational methods, the proposed NHANLF method not
only effectively suppresses the speckle but also enhances and
retains the edges. To visualize the capability of the variational
methods in preserving edges, we plot the EPs for each filtered
image in Fig. 4. The conclusion that we can draw from this

Ll e h e e e e o
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Fig. 6. Range profiles of the corner reflector obtained by the six methods (red)
compared with the reference one (black). (a) AA model. (b) SAA model.
(c) SO model. (d) Zhao’s model. (¢€) HANLF model. (f) NHANLF model.
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Fig. 7. Range profiles of the building obtained by the six methods (red) com-
pared with the reference one (black). (a) AA model. (b) SAA model.
(c) SO model. (d) Zhao’s model. (¢) HANLF model. (f) NHANLF model.
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Fig. 8. (a) Reference “DEM” image. The ratio images for (b) the reference,
(c) the AA model, (d) the SAA model, (e) the SO model, (f) Zhao’s model,
(g) the HANLF model, and (h) the NHANLF model.

(0

figure is generally in line with the observation for Fig. 2 and
Table I: Zhao’s model and the NHANLF model perform best
in preserving edges, and the SO model and HANLF model
perform poorly in preserving edges.

For the “Corner” image, the measures of interest are aimed
at evaluating the radiometric preservation by using Cyn and
Cpe. One can see from Fig. 5 that some filtering phenomena,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 9. Comparison of the despeckling performances with the Oberpfaffenhofen image. (a) Speckled image. The image restored by (b) the AA model, (c) the
SAA model, (d) the SO model, (e) Zhao’s convex variational model, (f) the HANLF model, and (g) the NHANLF model. (h)—(n) Subimages cropped from (a)—(g),

respectively.

like those observed with the “Squares” image, are still evi-
dent: the blocky problem remains in the AA model filtered
image, and the SO model badly smears the image features.
This conclusion can also be made from Fig. 6, which shows
the range profile of the corner reflector of each filtered image
compared with the reference one. Except for the SO model,
all of the other models can generally retain some of the high
returns of the corner responses to a greater or lesser degree.
Visually, Zhao’s method and the two proposed methods show
comparable filtering results. From the numerical indicators, it
can be seen that Zhao’s model and the NHANLF model perform
the best in radiometric preservation among these six models.

For the “Building” image, it is evident that the SO model
and Zhao’s model badly smear some building profiles with
relatively low values, and the other two conventional varia-
tional models show an oversmoothing problem. The two pro-
posed models obtain better results in preserving the building
profiles, although the AA model is the best at radiometric
preservation, as revealed by the Cpg indicator. As in the
“Squares” and “Corner” images, we also plot the range pro-
files of the buildings of each filtered image compared with
the reference one in Fig. 7. Here, it can be seen that the
proposed models show desirable and comparable results, while
the other four conventional models change the profiles of the
buildings.

For the last case, the “DEM” image, distinguishing the
speckle from the high-frequency signal components is a chal-
lenging task. To better reveal the despeckling performance of
the different methods on the “DEM” image, we show the ratio
images between the noisy image and the despeckled images in
Fig. 8. For an ideal filter, its ratio image should be pure speckle.
In Fig. 8, it can be seen that the ratio image for the NHANLF
model has the appearance of random noise, which indicates the

NHANLF model’s good capability in preserving DEM details.
This conclusion can also be made from the C), values listed in
Table I. Vertical DEM structures are recognizable in the other
five ratio images, especially in the ratio images for the SO
model and Zhao’s model, which proves that some DEM details
are filtered out by these methods. The DG indicator shows
that the AA model and the SAA model still do not effectively
suppress the speckle.

2) Experiments on Real SAR Images: Two real SAR im-
ages were also used for illustration in this study. One was a
single-look image acquired by the DLR Experimental Synthetic
Aperture Radar (ESAR) system over the area of Oberpfaffen-
hofen airport near Munich, Germany. The other was a subimage
of a four-look Airborne Synthetic Aperture Radar (AIRSAR)
data set from Flevoland in The Netherlands. Figs. 9 and 10 show
the despeckling results on these two images. The areas chosen
for computing the ENL are indicated by blue rectangles in
the speckled images. As expected, the image filtered by the
AA model shows a blocky effect, and the edges are blurred.
The SAA model alleviates the blocky problem and achieves
a better performance in reducing speckle than the AA model
(Table II). The SO model shows positive despeckling results
in homogeneous areas; however, the despeckled image is badly
oversmoothed. Zhao’s convex variational model shows better
results in retaining the edges, but the degree of speckle in
the restored image is relatively high; in addition, the blocky
appearance in the despeckled image leads to the problem of
blurring of some strong point targets [Fig. 10(e)].

Compared with the aforementioned variational methods, the
proposed methods obtain better despeckling results, and they
also effectively preserve and enhance the edges. One can also
observe in Figs. 9 and 10 that, for the four-look Flevoland im-
age, the homomorphic model and the nonhomomorphic model
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Fig. 10. Comparison of the despeckling performances with the Flevoland image. (a) Speckled image. The image restored by (b) the AA model, (c) the SAA
model, (d) the SO model, (e) Zhao’s model, (f) the HANLF model, and (g) the NHANLF model. (h)—(n) Subimages cropped from (a)—(g), respectively.

TABLE II
ENL FOR THE REAL SAR IMAGES FILTERED BY THE DIFFERENT VARIATIONAL METHODS

AA model [ SAA model [ SO model |Zhao’s model][ HANLF NHANLF
Oberpfaffenhofen image 32.0 36.7 46.1 34.1 44.9 44.0
Flevoland image 38.4 42.7 46.0 41.7 47.2 47.5
achieve quite comparable results; however, for the single-look 30 —
. .. . . o Original pixel values]
image, the superiority of the nonhomomorphic model is much  Stoote o ihad
more obvious. This once again demonstrates the point that 20+ | SO model TR
NHANLF method h

we made before in that the Gaussian hypothesis about the
log-transformed speckle could be more inclined to bring in
unsatisfactory results for the HANLF model when the noise
level is high.

Preservation of strong returns from point targets is essential
for target and man-made structure detection. In certain SAR
filtering algorithms [7], isolated point targets are detected and
are kept unfiltered. Although, in the proposed methods, no spe-
cial strategies are deployed to detect and retain these targets, we
undertook an experiment to show that the proposed methods are
able to preserve them. A line was taken across four high-return
point targets [marked by the red rectangle in Fig. 10(a)], and the
intensity values of this line after despeckling by the different
methods are plotted in Fig. 11. Here, it can be observed that
the original data are almost overlapped at strong point target
locations by the proposed NHANLF model, which indicates
the proposed method’s ability to retain strong point targets. The
other methods smear the point target signatures to a greater or
lesser degree.

B. Comparison With Other State-of-the-Art Methods

To further validate the despeckling performance of the
NHANLF model, we compared the proposed method with two
state-of-the-art techniques: the PPB filter [10] and SAR-BM3D
[14]. The PPB filter is a kind of “iterative nonlocal means”
method with iteratively refined weights, which are calculated by

Intensity (db)
S

15
Pixels' Location

Fig. 11. Profiles of a line across some point targets in the Flevoland image after
restoration by the different methods.

considering both the information in the original speckled image
and the information in the previous estimates. SAR-BM3D
is the SAR-oriented nonhomomorphic version of the original
BM3D algorithm for AWGN images. Its main modifications
consist of the similarity measure used in the block matching
and the local linear MMSE estimator in the frequency domain
used in both steps of the procedure.

For the simulated SAR images, we used the same parameters
as [38] for the PPB and SAR-BM3D filters, and we only
report their quantitative assessment results due to the space
limitations. Readers can refer to [38] to gain an insight into the
filtering performances of these five images. One can observe
from Table III that, although SAR-BM3D generally shows
the best performances in filtering the simulated SAR images,
the proposed method can also obtain a competitive filtering
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TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND THE OTHER STATE-OF-THE-ART METHODS

PPB SAR-BM3D NHANLF model
ENL 127.7 102.4 111.5
Homogeneous MoR 0.96 0.98 0.91
VoR 0.82 0.81 0.84
ES up 0.07 0.04 0.05
Squares ES down 0.21 0.11 0.12
FOM 0.84 0.85 0.80
C NN
— 3.75 7.39 8.21
Simulated Corner Reference (7.75) =
i C BG
image _
Reference (36.56) 32.69 3545 36.41
C DR
Building Reference (65.90) | *+%° 6591 66.22
BS 3.13 1.46 2.89
Cy
’ 2.71 243 2.50
DEM Reference(2.40)
DG 3.68 5.32 5.44
Real Oberpfaffenhofen ENL 43.5 42.1 44.0
image Flevoland ENL 47.7 46.8 47.5

Fig. 12. (a) From top to bottom: the Oberpfaffenhofen image, the Flevoland image, and the subimages. The corresponding restored images by (b) the PPB filter,

(c) SAR-BM3D, and (d) the NHANLF model.

result. For the “Homogeneous” and “Squares” images, the
PPB filter suppresses the speckle to the greatest degree, while
SAR-BM3D performs the best in preserving edges. The pro-
posed NHANLF method seems to be a compromise between
the PPB filter and SAR-BM3D. For the “Corner” image and
the “Building” image, the Cypy, Cpg, and Cppr indicators
suggest that SAR-BM3D and the proposed method are superior
to the PPB filter in radiometric preservation of high returns. The
BS index indicates the superiority of SAR-BM3D in retaining
object profiles. For the “DEM” image, SAR-BM3D once again
performs the best in preserving image structures and details,
as revealed by the C, indicator; the DG indicator, however,

illustrates that the NHANLF method performs the best in
removing speckle from this complicated image.

Fig. 12 shows the filtering results of the three methods on the
two real SAR images. One can see that, generally speaking, the
three methods all show quite positive and comparable filtering
performances: speckle is suppressed to a large degree, and most
of the structures and details of the images are preserved. From
Fig. 12(b), we can see that, compared with SAR-BM3D and
NHANLEF, the PPB filter seems to result in slight oversmooth-
ing, which degrades its performance in preserving edges to
some extent. SAR-BM3D not only reduces the speckle, but it
performs better in retaining image details than the PPB filter.
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TABLE IV
COMPUTATION TIMES OF THE DIFFERENT METHODS WITH
THE OBERPFAFFENHOFEN IMAGE (SECONDS)

PPB
1200.7

SAR-BM3D
1344.2

HANLF
594.3

NHANLF
928.0

Visually, the NHANLF method looks like a compromise be-
tween the aforementioned two filters, especially for the single-
look Oberpfaffenhofen image.

In addition to the performance in suppressing speckle and re-
taining details, the computation time and storage efficiency are
also important indexes to assess the applicability of despeckling
algorithms. For many high-resolution SAR systems, such as the
TerraSAR-X and Cosmo-SkyMed SAR systems, their image
dimensions can be 10000 x 10000 pixels. Future spaceborne
SAR systems are expected to have even higher dimensions.
Therefore, a rapid and memory-saving despeckling algorithm is
necessary. In Table IV, to inspect the computational efficiency
of the proposed models, we report the computation times of
the proposed models, the PPB filter, and SAR-BM3D with
the Oberpfaffenhofen image (1540 x 2816 pixels). The source
codes of the PPB filter and SAR-BM3D were downloaded
online and were implemented in C++ with a MATLAB inter-
face, while the proposed methods were implemented and run in
MATLAB.

First, we can see from Table IV that HANLF is much faster
than NHANLF. This is because the log-transformation step
compresses the data range, which accelerates the speed of
convergence for the HANLF model. Although it may be unfair
to directly compare the computational efficiency of our methods
with those of the two other methods as they are implemented in
different platforms, we can qualitatively analyze their computa-
tional complexity. SAR-BM3D contains two estimation steps.
In each step, similar patches in the large nonlocal searching
window centered on the reference patch are stacked to form
a group, all of the pixels in each group are then filtered by a
wavelet-based filter and are returned to their original location,
and finally, each pixel in the image is filtered by the weighted
averaging of the estimates which are obtained from the different
groups. This nonlocal 3-D collaborative filtering strategy results
in a heavy memory and computational load. The computation
time of the PPB filter and the proposed methods is associated
with the amount of speckle in the images: the more intense the
noise, the slower the convergence. We found that, in most cases,
for a single-look speckled image, the number of iterations of
the PPB filter was about 20, while the number of fixed-point
iterations of the NHANLF model was about 10. Meanwhile,
Newton iteration has the trait of fast convergence, and we
found that the average number of Newton iterations in the first
fixed-point iteration was about five. Then, with the process of
suppressing the speckle, this number came to about one in the
last fixed-point iteration. Suppose that the patch size in the PPB
filter is P x P, and the size of the nonlocal searching windows
in the PPB and NHANLF methods is S x S. Assuming the
calculation of the similarity between two pixels to be one step,
then the computational complexity of the PPB filter is about
0O(20 x P?% x S?); meanwhile, assuming one Newton iteration
of a pixel to be one step, then the average computational

complexity of the NHANLF model is about O(10 x 3 x S?).
In practice, the processing time of one step of the PPB filter was
found to be between two and three times less than that of the
NHANLF method, when we tested them in the same program-
ming platform, since both steps only involve a simple numerical
computation. Therefore, the NHANLF method is theoretically
faster than the PPB filter. The aforementioned analyses imply
that, from the aspect of both reducing the speckle and easing
the storage and computational load, the proposed NHANLF
method could be a good choice when filtering images with a
very large size.

C. Choice of the Filtering Parameters

There are three parameters that need to be tuned in the
proposed algorithms: the parameter k£ in (20), the estimation
window to calculate LHI in (18), and the scalar parameter & in
the weight functions. We found that, for most images, when
the value of k is between 200 and 400, the filtering results
are quite effective. Therefore, k& was fixed as 300 in all of the
experiments. For the estimation window to calculate LHI, we
found that, in most cases, when this window is set to 3 x 3 to
7 x 7, the filtering results are comparable. Therefore, to im-
prove the computation time and storage efficiency, this window
was set to 3 x 3 in the experiments.

For parameter h, since the noise amount of the preprocessed
image changes with the process of iteration, we should alter
the scalar parameter h in the weight functions of the two
proposed models to compensate for the noise accordingly.
Therefore, in this study, as in [30], h was obtained by the
“noise estimator” proposed by Canny [41]: at the beginning
of each fixed-point iteration, the histogram of the absolute
values of the similarity between any two neighboring pixels
throughout the preprocessed image is computed, and A is set
to be approximately the 90% value of the integral.

VI. CONCLUSION

In this paper, we have presented two variational methods for
the despeckling of SAR images, which introduce the nonlo-
cal regularization functionals derived for the original and the
logarithmic domains of SAR data, respectively. The statistical
properties of the speckle and the log-transformed speckle are
analyzed, and the similarity measurements between pixels in
the homomorphic domain and nonhomomorphic domain are
derived to construct the corresponding nonlocal regularization
functionals. In the proposed models, we have developed a strat-
egy to adaptively choose the regularization parameters based
on both the local heterogeneity information and the noise level
of the images, aiming at getting a better balance between the
goodness of fit of the original data and the amount of smooth-
ing. The proposed techniques compared favorably with regard
to several variational methods in experiments with four phys-
ically simulated images and two real SAR images, with good
results both in reducing speckle and retaining image details. We
also compared the proposed models with other state-of-the-art
methods, which again confirmed the competitive performances
of the proposed models in processing SAR data. In addition,
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it was found that the proposed NHANLF model can generally
achieve better despeckling results than the HANLF model when
the noise level is high.

APPENDIX
EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF THE PROPOSED MODELS

1) To simplify the Euler—Lagrange equation  of
the NHANLF model, let = u( a: and W; =

exp{—[log((v1(z) + v1(y /\/vl z)v1(y))/h)*}

and it is then reduced to

X —uy) 1
— . —Whd
X +u(y) 2 14y

+ Ax) (—% + 1> =0 (38)

and the first-order derivative of the function F; (X) with
respect to X is

Az) f(x)

5= (39

/(X — uly)
00 = [ g

where u(y), f(z), and A(z) are all positive, so Fy(X) is
also always positive, which means that F7 (X ) monotoni-
cally increases with X . Meanwhile, it can be proved that,
when X is positive and close to 0, F;(X) — —oo, and
when X — +o0, Fi(X) — [(1/2)Wdy + A(z) >0
Therefore, we can say that the Euler-Lagrange equation
in (38) has only one positive solver X*. In addition,
when X < X*, F1(X) < 0, and the functional J; in (15)
monotonically decreases; when X > X*, Fi(X) > 0,
and J; monotonically increases. This indicates the
uniqueness of the solution of the NHANLF model.

2) Let Wa = exp{—[(va(z) —v2(y))/h]?}, and the
Euler—Lagrange equation of the HANLF model is then
reduced to

Fy (B(z)) = / 2 (E(x) — E(y)] Wady

Q

+ \(z) [—f(a:)e_E(’”) + 1} —0. (40)

The first-order derivative of the function Fy(E(z)) with
respect to E(x) (E(z) € (—o0, +0)) is

F} (E()) = / Wady + A(2)f(z)e B, (41
Q

Clearly, F}(E(x)) is also always positive, which means
that 5 (E(x)) monotonically increases with E(z). In addition,
when E(z) — —oo, Fp(E(z)) — —oo, and when E(z) —
+oo0, Fy(E(x)) — +oo. Therefore, we can say that the
Euler-Lagrange equation in (40) has only one solver E*(x),
and this solver minimizes the functional Js.
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