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Patch Matching-Based Multitemporal Group Sparse
Representation for the Missing Information
Reconstruction of Remote-Sensing Images

Xinghua Li, Student Member, IEEE, Huanfeng Shen, Senior Member, IEEE, Huifang Li, Member, IEEE,
and Liangpei Zhang, Senior Member, IEEE

Abstract—Poor weather conditions and/or sensor failure always
lead to inevitable information loss for remote-sensing images
acquired by passive sensor platforms. This common issue makes
the interpretation (e.g., target recognition, classification, change
detection) of remote-sensing data more difficult. Toward this end,
this paper proposes to reconstruct the missing information of opti-
cal remote-sensing data by patch matching-based multitemporal
group sparse representation (PM-MTGSR). In the framework of
sparse representation, the basic idea is to utilize the local corre-
lations in the temporal domain and the nonlocal correlations in
the spatial domain. Based on image patches, the local correlations
are first taken into consideration. The similar patches are then
grouped for joint sparse representation so that the nonlocal corre-
lations are also considered. Owing to the patch matching of similar
patches, the nonlocal correlations in the remote-sensing images are
efficiently exploited. Simulated and real-data experiments demon-
strate that the proposed method is effective both qualitatively and
quantitatively.

Index Terms—Cloud removal, group sparse representation
(GSR), missing information reconstruction, nonlocal similarity,
patch matching, remote sensing, spectral, temporal.

I. INTRODUCTION

ISSING information is very common in optical
remote-sensing images. The problem originates from
two aspects. On the one hand, due to the harsh environment
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and sensor aging, onboard imagers are subject to a risk of
failure. Once an imager suffers from a failure, the correspond-
ing ground information cannot be acquired as usual (resulting
in the so-called missing information). For example, the majority
of the detectors (in band 6) of the moderate resolution imaging
spectroradiometer (MODIS) sensor onboard the Aqua satellite
are nonfunctional [1], and the scan line corrector (SLC) of the
Landsat-enhanced thematic mapper plus (ETM+) sensor has
permanently failed [2]. On the other hand, when the weather is
cloudy or rainy, thick clouds often obscure the land surface,
which also results in missing information in optical remote-
sensing images. According to an approximate estimation, about
35% of the Earth’s surface is covered by clouds at any one time
[3]. Since information loss is an inevitable issue for optical
remote-sensing images, taking reasonable measures to recon-
struct the missing information can have a positive impact on
the usability of the images themselves.

In the past few decades, a series of missing information
reconstruction methods for remote-sensing images have been
proposed, which can be grouped into four classes: 1) spa-
tial methods, 2) spectral methods, 3) temporal methods, and
4) hybrid methods. The spatial methods make use of the local or
nonlocal spatial correlations to complete the missing informa-
tion and include all the different kinds of interpolation methods
(e.g., nearest neighbor interpolation, bilinear interpolation, and
kriging interpolation) [4], the diffusion-based methods [5], [6],
the variation-based methods [7], [8], and the exemplar-based
methods [9]. The spatial methods are the most basic class of the
four classes. However, due to the absence of sufficient comple-
mentary information, spatial methods cannot reconstruct a large
missing area. For instance, NASA uses bilinear interpolation to
reconstruct Aqua MODIS band 6, and the results show obvious
discontinuities between the reconstructed and good regions.

In the second class of methods, the spectral correlations lay
a foundation for reconstructing large-area missing information.
The most typical examples of the spectral methods are designed
for use with Aqua MODIS band 6. In order to reconstruct
the missing information of band 6, Rakwatin er al. [10] and
Shen et al. [11] proposed to model the spectral relationship
between band 6 and band 7 based on the good detectors,
and, finally, the missing information is recovered according to
the modeled relationship. Similarly, Gladkova et al. [12] and
Li et al. [13] modeled the relationships between band 6 and
all the other six bands. Additionally, Shen et al. [1] exploited
compressed sensing theory to sparsely represent the spectral
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correlations between band 6 and the other bands, and the effect
was satisfactory. By further exploiting the spectral correlations,
the result was better than when only using one extra spec-
tral band. There have also been a number of studies of cloud
removal based on spectral correlations. For an optical remote-
sensing image contaminated by cloud, it is quite difficult to
remove the clouds in the visible spectrum. As a result, most
researchers have resorted to extracting complementary informa-
tion from the infrared spectrum, which penetrates clouds more
powerfully than the visible spectrum. For example, Wang et al.
[14] used wavelet analysis to remove the clouds in the infrared
spectrum and then reconstructed the cloudy area of the visible
spectrum by a B-spline-based model. Using an improved homo-
morphic filtering method, Chun et al. [15] filtered out clouds
according to the statistical characteristics of the image informa-
tion, in which the clouds are considered as noise. Li et al. [16]
removed thin cloud in the visible spectrum using a fusion of the
visible and short-wave infrared spectra.

The third class is the temporal methods, which have attracted
the most attention for missing information reconstruction, espe-
cially cloud removal. The most basic method is missing infor-
mation replacement from another time, including both direct
and indirect replacements. Direct replacement involves select-
ing the optimal value in a time series [3], [17], (e.g., the
maximum value composite (MVC) procedure [18]); indirect
replacement involves first reducing the temporal differences
between the degraded image and the auxiliary images and
then replacing the missing information as the direct replace-
ment does [3], [19]-[22]. However, such temporal replacement
may neglect the normal changes of the underlying surfaces
over time, amounting to a reduction in the temporal resolution.
Temporal interpolation is another kind of method, for which
the geostatistical methods (e.g., cokriging) are representative
[23]-[25]. When a time series is long enough, a large num-
ber of scholars favor the temporal filter methods, which include
the sliding window filter (e.g., the best index slope extraction
method [26] and the Savitzky—Golay filter [27]), function-based
curve fitting (e.g., the asymmetric Gaussian model [28] and
double logistic model [29]), and the frequency domain meth-
ods (e.g., the harmonic analysis of time series (HANTS) [30]).
In general, a temporal filter has a more powerful ability to keep
the dynamic variation of ground features than temporal replace-
ment. However, to some degree, temporal filters still reduce the
temporal resolution of remote-sensing images. More recently,
with the advent of sparse representation, a number of new algo-
rithms have been developed. Lorenzi et al. [31] considered
cloud removal as a multiobjective genetic optimization scheme
under the perspective of compressed sensing. Li et al. proposed
two algorithms based on a synthesis model [32] and an anal-
ysis model [33], and these two models can obtain satisfactory
results on the premise of a series of multitemporal data. It is,
however, noteworthy that all the temporal methods are power-
less with regard to the abrupt transformation of geographical
objects (e.g., new buildings and man-made landscapes) [34].

The above-mentioned three classes of methods make use of
the spatial correlations, the spectral correlations, or the tem-
poral correlations in remote-sensing images. However, they do

not synthetically exploit all three kinds of correlations. To this
end, hybrid methods have been proposed which integrate two
or three kinds of correlations. Benabdelkader and Melgani [35]
opportunely captured the spatial and spectral correlations by
postreconstruction of the contextual process. For Landsat SLC-
off images, Zeng et al. [2] used indirect temporal replacement
to first complete the main missing information and then used
a variational method in the spatial domain to complete the
remainder. Cheng et al. [36] obtained the statistical information
of similar pixels according to an auxiliary image from another
time (temporal domain), which guides the cloud removal in the
spatial domain. Li er al. [33] proposed to utilize the spectral
and temporal correlations in the framework of sparse repre-
sentation. However, the similarity between patches is ignored
in the reconstruction process. Recently, Zhang et al. [37] pro-
posed the group sparse representation (GSR) for digital image
restoration based on patch similarity. Inspired by this approach,
this paper makes the best use of the local sparsity in the tempo-
ral domain and the nonlocal similarity in the spatial domain to
reconstruct the missing information of remote-sensing images.
First, the temporal differences are reduced by normalization of
the auxiliary images. The similar patches are then grouped and
matched with the target patch. Finally, sparse representation
is applied to complete the missing information. The proposed
method is called patch matching-based multitemporal group
sparse representation (PM-MTGSR). However, another kind of
GSR approach was proposed in [38], [39], and compared with
these methods, PM-MTGSR groups the similar patches, rather
than the similar atoms of a learned dictionary. In summary, this
paper has two main contributions: 1) the GSR is expanded from
the spatial domain (of a digital image) to the temporal domain
(of a remote-sensing image); 2) the idea of patch matching is
introduced into the framework of GSR.

This paper is organized as follows. In Section II, we intro-
duce the PM-MTGSR method from the aspects of image
normalization, similar patch search, patch matching, and miss-
ing information reconstruction. This is followed by the missing
information reconstruction experiments in Section III. The
corresponding conclusion is drawn in Section IV.

II. PM-MGSR METHOD

Since the hybrid methods have more advantages in miss-
ing information reconstruction than the other three kinds of
method, this paper proposes to simultaneously combine the spa-
tial and temporal correlations in the framework of GSR. By
utilizing the temporal correlations, the proposed method obtains
the prior information of the missing areas in the remote-sensing
images. Thanks to the spatial correlations, the similar patches to
the target patch are found and grouped into a set which can then
be sparsely represented. The similar patches are then matched
with the target patch in a group. After patch matching, the cor-
relations of the grouped patches are strengthened. The integral
process of the proposed PM-MTGSR method consists of four
parts: 1) image normalization; 2) similar patch search; 3) patch
matching; and 4) missing information reconstruction. We give
a detailed description of the process in Sections II-A-D.
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Fig. 1. Multitemporal remote-sensing images with both missing and good
areas.

A. Image Normalization

Since the shooting angle, imaging time, and atmospheric
environment are usually different, multitemporal remote-
sensing images over the same geographical area show obvi-
ous radiance differences. As a result, temporal differences
are common in multitemporal images. These differences seri-
ously affect the utilization of the temporal correlations in the
reconstruction process and hinder us from trying to find sim-
ilar patches. To reduce this kind of harmful influence, image
normalization is adopted.

For the convenience of description, we suppose that all
the used remote-sensing images are two dimensional. Given
a series of remote-sensing images {It}thl € R™*" each I,
can be a component of a multitemporal or multispectral image.
For example, I, I, and I3 can be acquired from three periods
over the same geographical area (multitemporal), and they can
also be the red, green, and blue bands (or other spectral bands)
simultaneously acquired from the same geographical area (mul-
tispectral). Without loss of generality, as shown in Fig. 1, I3
consists of missing region .S and good region S, and the other
good {It}fzz also consist of the corresponding two regions S
and S~ . It is noteworthy that the regions S and S~ of {I, t}?:z
are good regions. Hereafter, I is called the target image and the
others are called the auxiliary images. Similarly, .S is called the
target region, and S is called the reference region. In order to
quantify the difference between the target image and auxiliary
images, they are supposed to satisfy the following equation:

L(SUST)=a [, (SUST)+b, t=23,....T (1)

where I; (SUS™) denotes the pixels belonging to region
SUS™ of I, and a; and b; are the regression parameters.
In fact, each pair of a; and b; is solved by the least-squares
method [33] according to the reference regions of the target and
auxiliary images, as follows:

L(ST)=adi(S7)+0b, t=23,....T. (2

Once a; and b; are solved, they are applied to normalize the
auxiliary images

Jt(SUS_):atIt(SUS_)—i—bt, t=2,3,...,T (3)

where .J; is the normalized version of [;.
The previous normalization is imposed on the auxiliary
images directly. However, in direct normalization, only one pair

of regression parameters for one auxiliary image may cause
a large fitting error. Researchers have shown that direct nor-
malization is better conducted in a local window. When the
classification map of the auxiliary image is available, within-
class fitting [11] or local within-class fitting [40] can be adopted
in the normalization process. The local within-class fitting cor-
responds to undertaking the normalization in a local window.
As is well known, when the temporal difference is not obvious
for multitemporal images, within-class normalization is better;
when the temporal difference is obvious, direct normalization
is better. How the different sizes of window can influence the
reconstruction result is discussed in the experimental section.

B. Similar Patch Search

As stated previously, one of the reasons for image normaliza-
tion is to improve the search for similar patches, which will be
grouped into one set thereafter. However, before searching for
similar patches, some other preprocessing steps are required.
Since all the missing information reconstruction methods can
be generalized as estimating the missing values according to the
good values (in the reference region), a number of researchers
have tended to only exploit the good values, including in the
similar patch search. Nevertheless, this paper favors searching
for the similar patches based on target and reference regions.
For this purpose, the target region is initially completed by the
nearest neighbor interpolator. However, no matter which spatial
interpolator is applied, it will achieve an unsatisfactory effect
when the target region is large. On that account, we propose
to make use of the temporal correlations from the auxiliary
images. The basic idea is that these images are permutated from
three dimensions to two dimensions so that the size of the con-
secutive interpolated region is artificially reduced. Therefore,
the interpolation accuracy can be improved, especially for a
large missing area. This permutation is called “image inter-
leaved by line” (IIL). In other words, it involves encoding the
three-dimensional (3-D) sequential images line by line (the
same lines of all the images constitute a tile), as shown in Fig. 2.
In Fig. 2, taking three images from different periods, e.g., all
the same rows of the three images consist of a tile. After this
permutation, it can be easily seen that the maximum consecu-
tive line number to be interpolated is usually one. On the basis
of permutation, the missing pixels are interpolated by the near-
est neighbor interpolation, as shown in Fig. 2. In fact, this way
amounts to the interpolation in the temporal domain.

Fig. 3 shows the process of similar patch search after the per-
mutation and initial interpolation. The red square represents the
current target patch, and the similar patches are searched for in
the surrounding window with the half size of . By the metric of
the similarity indicator between the target patch and the other
patches, a similar patch is found when the indicator reaches
a certain condition. The condition may be a fixed number of
similar patches or an indicator threshold. In other words, the
most similar patches will consist of a group, on which sparse
representation is then exerted. When the similarity threshold
is used, we call this the “adaptive approach.” To save time,
we also require that the number of similar patches should not
be more than 20 in the adaptive method framework. For ease
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of calculation, all the patches involved in the process are col-
umn stacked (that is to say, all the patches are transformed into
vectors of equal length). There have been a lot of similarity indi-
cators developed for measuring two vectors; here, we briefly
introduce several of the representative methods. Given two vec-
tors c and d with the length of [, most of the similarity indicators
can be categorized into the following two groups of methods.

1) The lower the better: The Euclidean distance (), the
Jeffreys and Matusita distance @) s [41], the Canberra distance
Qcan [42], the mean absolute error (MAE) Q4. and the
mean relative error (MRE) @ ysr e (supposing d; is the standard
vector) are calculated by (4)—(8), respectively

!
Qr =D (c;—d;)? )
\ i=1
! 2
Qua =], (\/Ei_ \/671) 5)
i=1
I
_ i — di
QCan = ; |Cz| T |d1| (6)
!
Quag = Y _|ci — dil @)
i=1
I
i —di
QMRrE = Z |C|d|| )
i=1 ‘

2) The higher the better: For all the previous indicators, a
lower value means that the vectors are more similar. As far as
the following indicators are concerned, a higher value means
a better similarity. Correlation coefficients (CC) Q¢ ¢, cosine
coefficients Q¢ s, generalized Dice coefficients Qg p [43], and
generalized Jaccard coefficients Q¢ [44] are calculated by
(9)-(12), respectively

(ci — pie) (di — pa)

@4
i~
i

Qcc = ©)

S (e — o)y | 35 (i — pa)?

i=1 i=1

where pi. and 4 are the mean values of ¢ and d, respectively

Qcos = Z cid; Z ci’e Z d;? (10)
=1 =1 =1
l l l
Qap = (2) cidi Y+ d (11
=1 =1 =1
l l l l
Qas = (> cd; ST @ - adi ). (12)
=1 i=1 =1 =1

In Section III, we evaluate the impact of these indicators on
the reconstruction result.

C. Patch Matching

In the framework of GSR, each target patch corresponds to a
similar group. The general approach is to learn a sparse repre-
sentation for this group and average the patches by the number
of times they are overlapped (because one patch may belong
to several groups), as in [37], [45], and [46]. In most cases,
the weighted average can contribute to a good reconstruction.
However, it also gives rise to a smoothing effect, which can be
seen in almost all the methods based on averaging. To alleviate
this effect, we just reconstruct the target patch, with the other
similar patches abandoned in the final result. Additionally, in
order to enhance the correlations between the target patch and
similar patches, we propose to make the similar patches match
the target patch (in the same group) with linear transforma-
tion, as shown in Fig. 4. We assume that the patch is of a size
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Fig. 4. Patch matching.

of VB x /B, and the target patch z;, € RE*! corresponds
to the group z¢, € RP*9 (g represents the number of simi-
lar patches). We let =, denote the extracted patch at location k
from the lexicographically stacked representation of the images
after interpolation (x € R™"7*1) and the mathematical
expression is

k=1,2,...

zy = pr(x), e (13)

with

(T~ VB +w) (n-VB+w)

K = 5

(14)
w

where py (®) represents the patch extraction operator at location
k, K is the total number of extracted target patches, and w is
the sliding step size on the 2-D version of x. Similarly
k=1,2,....K 15)

LG, = PGy (Z‘),

where pg, represents the operator of the similar patch group
extraction at location k. Additionally, xZGk denotes the 7th col-
umn of z¢, . For brevity, we let z, be the target patch (z¢;, =
x). The following linear relationship is assumed:
ag, =exg, +fi, i=23,...,9 (16)
where e; and f; are the parameters obtained by a linear least-
squares regression. Then, z¢;, is matched with xék by
; new ; .
(¢5,)"" = eial, + fi i=23,....9 (T
3 new
Where. (;vZGk)
matching.
With the patch matching completed, the missing information
reconstruction with PM-MTGSR starts, which is introduced in
the next section.

is the new version of x};k after patch

D. Missing Information Reconstruction

The basic idea of PM-MTGSR is that every similar patch
group xg, can be approximately reconstructed by the linear
combination of a few atoms from the group dictionary Dg, €
RBxgh, D¢, is concatenated by h atoms of din c RBxg,

ie, Dg, = [déwd%w . ,d%k}. We assume that the group
sparse coefficient ag, € REXB" is also concatenated by
ag, €RPXE (e, ag, = [ag,, 08, ... ag, | € RBXEM),
Then, the PM-MTGSR for z¢, (hereafter, x¢, means the sim-
ilar patch group after patch matching, not the original group) is

h
va, = Do, oag, = Yy _agdg,, k=12, K (18)
i=1

where the notation (o) represents the special atom product
of the two multipliers. Then, for the missing information
reconstruction, we have

2

K K
1
argmin o Z Mg, ® (g, — Dg, oaqg,)|| + )\Z ag,
Deyac, <15 2 k=1 0
(19)
with
Mg, =pe, (M), k=1,2,....K (20)

where M € R™"T<1 is a mask of x signifying where the infor-
mation is missing, which consists of ones and zeros, with the
zeros representing the missing data; similarly, Mg, € RE*9 is
the mask of z¢, , (®) represents the pointwise product of the
two multipliers, A is the regularization parameter, || ||, is the
Frobenius norm, and ||e||, is the /5 norm. In (19), the first item
is the data fidelity term and the second one is the regularization
term. This expression is an ill-posed joint optimization of D¢,
and o, , which is usually solved by alternately optimizing
Dg, and ag, . First, as the K-SVD method [47] done, all the
atoms of D¢, can be updated. Then, on the basis of the known
Dg,, ag, is updated by the split Bregman method as in [37],
which is estimated by hard thresholding [48] as follows:

ag, = hard (16,,v20) =76, @ (e | > V20) @D

with

BK
Y (22)

TmnT

where 7g, is the singular values of residual error matrix in the
K-SVD dictionary update process, 7 is a parameter introduced
in the process of split Bregman method.

Finally, x¢, is reconstructed by

$Gk = DGk o aGk (23)

where (o) is the same as in (18). The reconstructed target patch
equates to the first column of z ¢,

T = a:%;k. 24)

The complete reconstructed version of z is

K K
z =Y pf (@) O pi (u) (25)
k=1 k=1

where p? (e) denotes the pseudoinverse operation of py (e),
which puts the kth patch back to its original position in the
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Fig. 5. Simulated reconstruction of a MODIS reflectance image using the dif-
ferent methods. (a) The original image. (b) Corrupted image. (c¢) Auxiliary
image. (d) Reconstruction using direct replacement of the auxiliary image.
(e) Reconstruction using MT-KSVD [32]. (f) Reconstruction using the pro-
posed PM-MTGSR.

image, padded with zeros elsewhere, y; is all ones with the
same length as xy, and (®) denotes the pointwise division.
Note that instead of reconstructing all the patches in zg,, we
just reconstruct the target patch (the first column of z¢,). In
this way, to some degree, the smoothing effect can be allevi-
ated. However, the target patches are partly overlapping, so the
corresponding parts should be averaged by the number of times
they are overlapped.

III. MISSING INFORMATION RECONSTRUCTION
EXPERIMENTS

In order to qualitatively and quantitatively verify the valid-
ity of the proposed PM-MTGSR algorithm, we undertook both
simulated and real-data experiments. For multitemporal data,
they may change greatly or not significantly. Therefore, data
representative of each category was used in the experiments.
In other words, we deliberately chose stable 500-m resolution
MODIS reflectance images and unstable Landsat TM images
as the experimental data. For the 500-m resolution MODIS

Fig. 6. Simulated reconstruction of a TM image using the different
methods. (a) Original image. (b) Corrupted image. (c) Auxiliary image.
(d) Reconstruction using direct replacement of the auxiliary image.
(e) Reconstruction using MT-KSVD [32]. (f) Reconstruction using the pro-
posed PM-MTGSR.

reflectance images, they have seven bands, and we only pro-
cessed one band. For the TM images, three bands (red, green,
and blue) were used. In general, in the experiments, one image
was corrupted or cloud contaminated and the other tempo-
ral one was intact (as the auxiliary image). The value of the
MODIS reflectance images ranges from O to 1, and the value
of the TM images ranges from 1 to 255. For consistency
of the parameter setting, the TM images were normalized to
[0,1]. The experimental data were also georeferenced before
the reconstruction was conducted. The experimental platform
was a PC with an Intel 3.4-GHz CPU and 8 GB of memory.
Without any special instructions, the parameters were set as fol-
lows: 7 = 0.02, A = 1.5 x 107%, g = 20 (for the nonadaptive
approach), r =20, T'=2, B =16, w = 2, m = 300 (image
size), n = 300 (image size), and the window size of the nor-
malization was set to 80. The indicator threshold for Q g, Q s,
Qcan, Quriar, and Qyre was 0.5 x 1074, and the indica-
tor threshold for Qcc, Qcos, Qap, and Qg y was 0.95. The
default similarity indicator was Q) ¢<. Additionally, the adaptive
approach for searching for similar patches was adopted.


https://www.researchgate.net/publication/260623423_Compressed_Sensing-Based_Inpainting_of_Aqua_Moderate_Resolution_Imaging_Spectroradiometer_Band_6_Using_Adaptive_Spectrum-Weighted_Sparse_Bayesian_Dictionary_Learning?el=1_x_8&enrichId=rgreq-8856dab2-3d32-4f82-8857-b8ded91bcc97&enrichSource=Y292ZXJQYWdlOzI5ODQyNjkzOTtBUzozNTMyMzU5NjI0ODI2ODlAMTQ2MTIyOTQyNDM4Nw==

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: PM-MTGSR FOR THE MISSING INFORMATION RECONSTRUCTION OF REMOTE-SENSING IMAGES 7

A. Simulated Experiments

First, two simulated experiments were undertaken. Each
experiment involved two images: one was the original image
and the other was the auxiliary image. Parts of the original
image were artificially removed and then reconstructed. Since
the original images were available, quantitative evaluation was
possible. For the MODIS reflectance images, the original and
auxiliary images were acquired on March 5, 2008, and April 6,
2008, respectively. For the TM images, the original and auxil-
iary images were acquired on September 27, 2001 and July 22,
2001, respectively.

To demonstrate the effect of the proposed PM-MTGSR, we
contrasted its reconstruction with those of direct replacement
of the auxiliary image with the missing area and multitemporal
K-SVD (MT-KSVD) [32]. Since the GSR approach in [37] can-
not be directly applied to multitemporal remote-sensing images,
we do not show its reconstruction. The corresponding results of
the MODIS reflectance images and the TM true-color images
are shown in Figs. 5 and 6, respectively. In terms of the sta-
ble MODIS reflectance images, Fig. 5(a) and (c) is the original
and auxiliary images, respectively, and although they are sta-
ble to some degree, the direct replacement result [Fig. 5(d)]
shows an obvious temporal difference. MT-KSVD [Fig. 5(e)]
succeeds in reducing this kind of radiance difference; however,
since the number of auxiliary images is not sufficient, the recon-
struction is oversmoothed (MT-KSVD is good at the processing
of multiple images). In contrast, PM-MTGSR [Fig. 5(f)] effec-
tively reconstructs the missing information. This is because it
takes the correlations between patches into consideration, rather
than the independent sparse representation of every patch, as
in MT-KSVD. As far as the unstable TM images are con-
cerned, Fig. 6(a) and (c) is the original and auxiliary images,
respectively, based on the direct replacement in Fig. 6(d), and
we can see that their ground features vary greatly. In this sit-
uation, as shown in Fig. 6(e), MT-KSVD cannot reconstruct
the significant temporal difference, and the effect is very poor.
Fortunately, PM-MTGSR [Fig. 6(f)] reconstructs a satisfactory
result, which is basically consistent with the original image.
This indicates that when the temporal difference is great, patch
correlation is meaningful. Generally speaking, for both the sta-
ble MODIS reflectance images and the unstable TM images, the
proposed PM-MTGSR can successfully reconstruct the miss-
ing information and performs better than MT-KSVD, which is
because the nonlocal similarity between patches benefits the
missing information reconstruction.

In order to further distinguish the reconstruction effects,
scatter plots between the reconstructed region and the orig-
inal region are shown in Figs. 7 and 8. Fig. 7(a)—(c) is for
Fig. 5(d)—(f), and 8(a)—(c) are for Fig. 6(d)—(f). For the recon-
struction of the MODIS reflectance image, the points on the
scatter plot of direct replacement [shown in Fig. 7(a)] deviate
from the red diagonal and are worse than for MT-KSVD and
PM-MTGSR. Additionally, the points on the scatter plots of
PM-MTGSR show a more compact distribution than those of
MT-KSVD, but the advantage is not obvious. This is because
the temporal difference is small, and the patch matching of PM-
MTGSR cannot significantly enhance the correlations between
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Fig. 7. Scatter plots between the original and reconstructed pixels (only for the
missing areas) in Fig. 5. (a) Direct replacement in Fig. 5(d). (b) MT-KSVD in
Fig. 5(e). (¢) PM-MTGSR in Fig. 5(f).
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Fig. 8. Scatter plots between the original and reconstructed pixels (only for the
missing areas) in Fig. 6. (a) Direct replacement in Fig. 6(d). (b) MT-KSVD in
Fig. 6(e). (c) PM-MTGSR in Fig. 6(f).

the target patch and similar patches. As for the scatter plots of
the TM image in Fig. 8, the scatter plots of direct replacement
and MT-KSVD are again worse than that of PM-MTGSR. The
difference with Fig. 7 is that the scatter plot of PM-MTGSR
is obviously better than that of MT-KSVD. Benefitting from
the patch matching, the difference between the target patch
and similar patches is markedly weakened. As a result, PM-
MTGSR obtains a better reconstruction than MT-KSVD. In
summary, according to the scatter plots, PM-MTGSR obtains a
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TABLE 1
QUANTITATIVE EVALUATION OF THE RECOVERY RESULTS OF THE DIFFERENT METHODS (PART I)

Images Methods MAE/107 MSE/10°* MRE/% cc Time/min
Corrupted 94.4501 908.7120 100.0000 - -
Fig. 5 Replacement 24.1471 62.5120 25.5851 0.9347 —
MT-KSVD 43201 3.2120 4.6458 0.9018 6.0958
PM-MTGSR 2.6531 1.5120 2.8314 0.9548 2.9417
Corrupted 321.3051 10544.6120  100.0000 - -
Fig. 6 Replacement 43.3421 346.1120 13.2046 0.5684 -
MT-KSVD 21.7451 80.2120 7.3239 0.8338 20.3646
PM-MTGSR 8.3961 12.8120 2.7440 0.9712 8.7947

Fig. 9. Simulated reconstruction of a MODIS reflectance image using the
different methods. (a) Original image. (b) Corrupted image. (c) Auxiliary
image. (d) Reconstruction using direct replacement of the auxiliary image.
(e) Reconstruction using MT-KSVD [32]. (f) Reconstruction using the pro-
posed PM-MTGSR.

better reconstruction result than MT-KSVD. When the temporal
difference is obvious, the advantage is greater.

After the previous qualitative comparison, we now focus on
a quantitative comparison of the different methods. The evalu-
ation indicators are MAE, MRE, CC, and mean-squared error
(MSE). MAE, MRE, and CC are calculated by (7)—(9), respec-
tively. MSE has the same meaning as (4). For MAE, MSE, and

Fig.
ent methods. (a) Original image. (b) Corrupted image. (c) Auxiliary
image. (d) Reconstruction using direct replacement of the auxiliary image.
(e) Reconstruction using MT-KSVD [32]. (f) Reconstruction using the pro-
posed PM-MTGSR.

10. Simulated reconstruction of a TM image using the differ-

MRE, the lower the value, the better the result. For CC, the
higher the value, the better the result. The quantitative eval-
uation is shown in Table I. For both the MODIS reflectance
image and the TM image, compared to the corrupted image
itself, all three methods can improve the quantitative indica-
tors, which mean an effective reconstruction. However, direct
replacement using another temporal image cannot achieve a
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TABLE II
QUANTITATIVE EVALUATION OF THE RECOVERY RESULTS OF THE DIFFERENT METHODS (PART II)

Images Methods MAE/107* MSE/107° MRE/% CcC Time/min

Corrupted 126.8371 1683.7120 100.0000 - —

Fig.9 Replacement 18.6731 60.6120 13.0716 0.9529 =
MT-KSVD 8.4651 12.3120 6.7903 0.9148 8.6023
PM-MTGSR 4.7221 4.1120 3.6454 0.9734 43312

Corrupted 295.3541 8916.8120 100.0000 - -

Fig, 10 Replacement 82.4111 790.0120 29.4818 0.6610 -
MT-KSVD 26.0001 131.0120 8.8973 0.6642 21.6219
PM-MTGSR 10.5791 22.3120 3.7334 0.9409 8.5065

TABLE III

satisfactory reconstruction. Since it completely ignores the tem-
poral variation, its evaluation is the worst among all three
methods. MT-KSVD obtains a better result than direct replace-
ment because it makes use of the sparse property of the
remote-sensing data, i.e., to some extent, it can capture the tem-
poral variation. Even though MT-KSVD is based on the latent
sparsity of the patch-based remote-sensing data, it ignores the
relationship or similarity between patches. As a result, MT-
KSVD does not perform better than PM-MTGSR, which takes
the patch similarity into consideration. However, GSR and PM-
MTGSR work differently when they utilize the patch similarity.
GSR first searches for the similar patches to the target patch
and then groups them for the sparse representation. In con-
trast, PM-MTGSR carries out patch matching after the similar
patches are found. With the help of the patch matching, the
similarities between the target patch and the similar patches
are strengthened. PM-MTGSR therefore obtains the best result.
From the perspective of operating efficiency, thanks to the split
Bregman acceleration strategy, PM-MTGSR outperforms MT-
KSVD. Additionally, PM-MTGSR directly reconstructs the
target patch, rather than the similar group like GSR, so the
time is shortened further. Overall, a ranking of the reconstruc-
tion effects from worst to best is as follows: direct replacement,
MT-KSVD, and PM-MTGSR.

To ensure a comprehensive assessment of the proposed
algorithm, we also conducted another two similar simulated
experiments. For the MODIS reflectance images, the original
and auxiliary images were acquired on November 2, 2013, and
November 4, 2013, respectively. For the TM images, the orig-
inal and auxiliary images were acquired on July 22, 2001, and
May 3, 2001, respectively. The corresponding reconstruction
results are shown in Figs. 9 and 10, respectively. The quantita-
tive evaluation is shown in Table II. The two extra experiments
allowed the same conclusion as the previous experiments and
again showed that the proposed PM-MTGSR is very effective.

We now investigate several factors which influence PM-
MTGSR itself. The first factor is the similarity indicators
used in the search for similar patches. In the experiments,
the data consisted of Figs. 5 and 6 and the listed indicators
in Section III-B. To ensure the reliability, all the parameters
except for the similarity indicator were identical. Table III
shows the quantitative assessment of the reconstruction results
of the different similarity indicators. As shown in the table,
for both the MODIS reflectance image and the TM image, all

QUANTITATIVE EVALUATION OF THE PROPOSED PM-MTGSR USING
DIFFERENT SIMILARITY INDICATORS

Images Indicators MAE/10° MSE/10° MRE/% CC  Time/min
Qe 2.7581 1.6120 29434  0.9520  2.4623
Qm 2.7511 1.6120 29364 09521  2.6159
Qcan 2.7631 1.6120 29496 09518  2.7184
Qumas 2.7621 1.6120 29494 09519  2.2390
Fig.5  Quxe 2.7621 17120 29467  0.9495  2.5626
Qce 2.6531 1.5120  2.8314  0.9548  2.9417
Qcos 2.6991 1.5120 28816 09540  2.6216
Qap 27711 1.6120 29578 09523  2.6182
Qo 2.7701 1.6120 29486 09517  2.5236
Qe 8.4611 13.1120 27601  0.9705  6.6841
Qmt 8.4611 13.1120 27602  0.9705  7.9496
Qcan 8.4831 13.1120 27671  0.9704  8.0061
Quar 8.4831 132120 27669  0.9703  6.7937
Fig.6  Qwre 9.0361 144120 29506  0.9679  7.7695
Qce 8.3961 12.8120 27440  0.9712  8.7947
Qcos 8.4061 129120 27447 09710  7.8650
Qop 8.5131 133120 27729 0.9699  7.7532
Qom 8.5131 133120 27729 0.9699  7.5932

the indicators successfully reconstruct the missing information.
Moreover, the differences in the reconstructions are very small.
Although different similarity indicators may select different
patches to form a group, the patch matching reduces their dif-
ferences. Therefore, the differences in the reconstruction results
are small. On the whole, CC as the similarity indicator per-
forms a little better than the other indicators. This experiment
demonstrates that PM-MTGSR is relatively robust with regard
to different similarity indicators.

We now discuss how the number of similar patches affects
the reconstruction effect. A series of reconstruction experi-
ments for Figs. 5 and 6 were conducted. For these experiments,
the number of similar patches was varied. Fig. 11 shows the
CC variation diagrams with the number of similar patches. The
CC is calculated from the original and reconstructed pixels. As
shown in Fig. 11(a) and (b), for both the MODIS reflectance
image and the TM image, the CC gradually decreases as the
number of similar patches increases. This is because the newly
added similar patches are less similar to the target patch and
bring more harmful noise. However, the decrease is very small.
When the number of similar patches increases from 10 to 80,
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Fig. 11. CC variation with the number of similar patches. (a) MODIS
reflectance image in Fig. 5. (b) TM image in Fig. 6.
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Fig. 12. CC variation with \. (a) MODIS reflectance images in Figs. 5 and 9.
(b) TM images in Figs. 6 and 10.

the CC only decreases by 0.03% and 0.05%, respectively. In
other words, the proposed PM-MTGSR is relatively robust with
regard to the number of similar patches. In addition, the red
lines in the two subfigures represent the CC using adaptive
search, and it can be seen that the adaptive method is a little
better than a fixed number of similar patches. It is also worth
noting that the adaptive method takes less time than the fixed
number approach. Overall, the number of similar patches has a
limited influence on the reconstruction result.

In order to explore the influence of the regularization param-
eter A in (22) on the reconstruction, a series of reconstruction
experiments for the MODIS reflectance images and the TM
images with different values of A were conducted. When A was
varied, the other parameter 7 was fixed as 0.02 (we discuss
parameter 7 in the next part). The CCs of the reconstruction
results are shown in Fig. 12. Fig. 12(a) is for the MODIS
reflectance images, and Fig. 12(b) is for the TM images. As
shown in these two subfigures, when the value of A is small,
the reconstruction result is satisfactory, and this trend remains
unchanged within a certain range; however, when A is a large
value, the reconstruction result is very poor. These experimen-
tal results demonstrate that a suitable value of A is of great
significance for the reconstruction. Although the optimal A is
different for the MODIS reflectance images and the TM images,
as shown in Fig. 12, both MODIS images share the same opti-
mal value of )\, as do the TM images. As a result, we can
easily obtain the optimal value of \ via simulated experiments
and then apply it to real-data experiments. These experiments
demonstrate that \ is very important for the reconstruction of
PM-MTGSR, and the optimal value of )\ is usually the same for
the same kind of remote-sensing image.

cc

-B-Fig. 6
-o-Fig. 10 .

H 1
0 0.02 005

1
0.1 0.15
T

(a)

H 1
0.2 0 0.002 0.005

1
0.01
T

(b)

1
0.015 0.02

Fig. 13. CC variation with 7. (a) MODIS reflectance images in Figs. 5 and 9.

(b) TM images in Figs. 6 and 10.

TABLE IV

QUANTITATIVE EVALUATION OF THE RECOVERY RESULTS USING
DIFFERENT SIZES OF NORMALIZATION WINDOW

Images Size MAE/10® MSE/10”° MRE%  CC 21?:?
20 3.0361 1.8120 32700 0.9434  3.8620
40 27581 16120 29531  0.9517  3.1866
Fig5 60  2.6631 15120 2.8443  0.9550  3.0404
80  2.6531 15120 28314  0.9548  2.9417
100 2.6911 15120 2.8736  0.9538  3.0011
20 93241 147120 30437 09692 93651
40 9.0021 140120 29386  0.9697 10.2477
Fig. 6 60 87401 136120 28581 09701  9.4018
80 83961  12.8120 27440 09712  8.7947
100 83211 128120 27147 09710 92272

In the same way as we tested regularization parameter \, we
also investigated the effect of the other regularization parame-
ter 7 in (22). When 7 was varied, A was fixed as 1.5 x 107%.
The CCs of the reconstruction results are shown in Fig. 13.
Fig. 13(a) is for the MODIS reflectance images, and Fig. 13(b)
is for the TM images. For both the MODIS and TM images,
the variation trend of CC with 7 is consistent: it first rises and
then remains steady. As can be clearly seen, 7 also has a great
impact on the reconstruction. An optimal value of 7 is therefore
necessary for a satisfactory reconstruction. As with parameter
A, both MODIS images share the same optimal value, and the
TM images also share the same optimal value. Via simulated
experiments, the optimal value of 7 for a certain kind of remote-
sensing image can be easily determined. These experiments
show that parameter 7 is also important for the reconstruction
of PM-MTGSR, and the optimal value of 7 is usually the same
for the same kind of remote-sensing image.

In Section II-A, we noted that the normalization is under-
taken within a local window. Accordingly, we now analyze how
the size of normalization window influences the reconstruction
result. Based on the MODIS reflectance image and the TM
image in Figs. 5 and 6, respectively, we undertook a sequence
of reconstruction experiments with different sizes of normal-
ization window. The quantitative evaluation results are shown
in Table IV. As can be seen in Table 1V, as the size of window
increases, the result first increases to the optimal level and then
declines. For the two images, a local window size of 80 is the
best size.
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Fig. 14. Real-data reconstruction of a MODIS image using the differ-
ent methods. (a) Original image. (b) Cloud mask. (c) Auxiliary image.
(d) Reconstruction using direct replacement of the auxiliary image.
(e) Reconstruction using MT-KSVD [32]. (f) Reconstruction using the pro-
posed PM-MTGSR.

B. Real-Data Experiments

After the simulated experiments, real-data experiments were
also undertaken. Similarly, the experimental data consisted
of MODIS reflectance images and TM images. For the
MODIS reflectance images, the cloud-contaminated and aux-
iliary images were acquired on December 2 and 11, 2008,
respectively. For the TM images, the cloud-contaminated and
auxiliary images were acquired on July 22, 2001 and May 3,
2001, respectively. As cloud detection was not our focus in this
work, the cloud masks were manually drawn. The correspond-
ing reconstruction results are shown in Figs. 14 and 15. For
both the stable MODIS reflectance image and the unstable TM
image, the reconstruction results [Figs. 14(d) and 15(d)] using
direct replacement show inconsistent transitions at the cloud
edges. This is because the temporal difference is inherited from
the auxiliary image. MT-KSVD [Figs. 14(e) and 15(e)] obtains
a better reconstruction result in this sense. However, because
of the absence of sufficient auxiliary images, the MT-KSVD
result is still oversmoothed, as in the simulated experiments. In

Fig. 15. Real-data reconstruction of a TM image using the different methods.
(a) Original image. (b) Cloud mask. (c¢) Auxiliary image. (d) Reconstruction
using direct replacement of the auxiliary image. (e) Reconstruction using MT-
KSVD [32]. (f) Reconstruction using the proposed PM-MTGSR.

contrast, the PM-MTGSR results [Figs. 14(f) and 15(f)] show
a more natural visual effect. The real-data experiments also
confirm that the proposed PM-MTGSR is very effective.

IV. CONCLUSION

In this paper, we have proposed the PM-MTGSR method for
the reconstruction of the missing information of optical remote-
sensing data. PM-MTGSR is suitable for cases of sensor failure
(e.g., Aqua MODIS band 6) and thick cloud cover. Since the
reconstruction of data affected by cloud cover is more chal-
lenging, we focused on this aspect in our experiments. A target
image (to be reconstructed) and auxiliary image(s) are needed
for PM-MTGSR. First, the auxiliary image is normalized to the
target image so that the differences are weakened. The auxiliary
and target images are then reordered by IIL to two dimensions
and divided into a series of partly overlapping patches. On this
basis, the similar patches are found and then grouped for the
joint sparse representation. In the process, the similar patches
are matched with the target patch to be reconstructed. Since the
similarity between the patches is considered and strengthened,
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the reconstruction effect is satisfactory. Through both simu-
lated and real-data experiments, the proposed PM-MTGSR was
demonstrated to be more effective than the state-of-the-art M'T-
KSVD. Although the experiments only considered two images
from different times, the method is also suitable for use with
more than two images, and the corresponding reconstruction
should be better. In this work, automatic cloud detection was
not considered, which will be a very interesting research topic
in our future work.
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