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Abstract—Hyperspectral image (HSI) denoising is a crucial
preprocessing task that is used to improve the quality of images
for object detection, classification, and other subsequent applica-
tions. It has been reported that noise can be effectively removed
using the sparsity in the nonnoise part of the image. With the
appreciable redundancy and correlation in HSIs, the denoising
performance can be greatly improved if this redundancy and
correlation is utilized efficiently in the denoising process. Inspired
by this observation, a noise reduction method based on joint
spectral-spatial distributed sparse representation is proposed for
HSIs, which exploits the intraband structure and the interband
correlation in the process of joint sparse representation and joint
dictionary learning. In joint spectral-spatial sparse coding, the
interband correlation is exploited to capture the similar structure
and maintain the spectral continuity. The intraband structure is
utilized to adaptively code the spatial structure differences of the
different bands. Furthermore, using a joint dictionary learning
algorithm, we obtain a dictionary that simultaneously describes
the content of the different bands. Experiments on both synthetic
and real hyperspectral data show that the proposed method can
obtain better results than the other classic methods.

Index Terms—Hyperspectral image (HSI), noise reduction,
sparse representation.

1. INTRODUCTION

YPERSPECTRAL imaging technology has attracted
much research interest in the field of remote sensing
because of its ability to provide abundant spatial and spectral
information, which can offer different reflectance information
to identify specific materials in a scene [1], [2], such as in land-
surface classification [3], object recognition [4], [5], and change
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detection [6]. In practical applications, hyperspectral images
(HSIs) are unavoidably contaminated with noise in the process
of access and transmission, due to the imaging equipment and
external environment [7]. A noisy image hinders the discrimi-
nation of the materials in the HSI. It is therefore important to
reduce the noise before HSI analysis and interpretation.

Various HSI denoising techniques have been proposed in the
last decades [8]-[32]. The simplest method of HSI denoising
is to apply a traditional 2-D denoising algorithm in the spatial
dimension in a band-by-band manner. However, these methods
have the drawback that only the noise in the spatial dimension
is removed, and the strong correlation in the spectral dimension
is ignored. As a result, artifacts and distortion are produced in
the spectral dimension, and the spectral signature will not be
effectively restored. Therefore, a number of advanced methods
jointly utilizing the spatial and spectral information have been
proposed, which can be mainly classified into two categories:
transform-domain-based methods [8]-[14] and spatial-domain-
based methods [15]-[32].

The transform-domain-based methods attempt to separate
clear signals from the noisy data by various transformations,
such as principal component analysis, frequency transform,
or wavelet transform. Atkinson et al. [8] proposed an esti-
mator utilizing discrete Fourier transform to decorrelate the
signal in the spectral domain, and a wavelet transform was
used for the spatial filtering. In [9] and [10], the data were
decorrelated using principal component analysis, and the noise
was removed in the low-energy channels through 2-D discrete
wavelet shrinkage. Wavelet-transform-based methods [8]—[11]
have been also widely used in HSI denoising, as they can
exploit interband correlations, and denoising can be achieved
by thresholding on the wavelet coefficients. To preserve the
image details in a low noise level case, reasonable assumption
or prior knowledge [12]-[14] can be also applied in a wavelet
method. For example, Scheunders and Backer [14] made use of
Gaussian scale mixtures of the wavelet domain and introduced
a noise-free image as extra prior information to enhance the
quality of the image. Nonetheless, these methods are sensitive
to the selection of the transform function and cannot consider
the differences in the geometrical characteristics of HSIs.

Without the complex mathematical transformation, the
spatial-domain-based methods seek to reduce the noise of HSIs
by constructing a multidimensional spatial-spectral denois-
ing model, and they can be further classified into filter- and
regularization-based algorithms. The filter-based HSI denoising
algorithms usually consider HSI data as a 3-D array and then
separate the noise from the signal by multidimensional analysis
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[15]-[22]. For example, the multidimensional filtering method
based on Tucker tensor decomposition [15] reduces noise by
a tensor decomposition strategy. Following this work, different
tensor decomposition models have been used in HSI denoising,
such as multidimensional Wiener filtering (MWF) [16], the use
of the kernel trick in Tucker decomposition [18], and the rank-1
tensor decomposition (R1TD) algorithm [19]. These tensor-
decomposition-based methods jointly take into account the
spectral-spatial information and effectively preserve the original
spectral information. However, the problem is that the applica-
tion of a core tensor and tensor product can lead to information
compression and loss of spatial detail. The regularization-based
approaches [23]-[32] regard the HSI restoration as an ill-
posed inverse problem and remove the noise of the HSI by
solving the optimization function with a prior constraint. Some
examples of such approaches include anisotropic diffusion [23],
Markov random fields [24], total variation [25], sparsity prior
[27]-{29], and low-rank models [30], [31]. These priors control
the perturbation of the solutions and play an effective role in
the process of denoising. Considering the high correlation and
continuity along the spectral dimension of HSIs [29]-[32], the
regularization-based methods can achieve promising denoising
results. Hence, how to build a regularization-based model by
simultaneously utilizing the spatial and spectral information is
a very important issue in the HSI denoising problem.

Redundant representations and sparsity of signals is a power-
ful prior model and has drawn a lot of research attention in the
past decade or so. Mathematically, sparsity of signals can be
described by sparse representation, which assumes that signals,
such as an image, can be recovered as a sparse linear coding
over a prespecified dictionary of atoms [33]. By applying the
sparsity of the image, this approach has performed well in 2-D
image denoising [33]-[35]. However, HSIs contain many im-
ages acquired from a continuous spectrum with a narrow band-
width. There is strong correlation in neighboring bands [36],
and similar image patches of the HSI are located simultane-
ously in the global space and neighboring bands. The existing
sparse representation framework only utilizes the sparsity of
the signals in the spatial or the spectral dimension, and large
spectral distortion or spatial information loss will be produced.
Therefore, it is important to develop a sparse representation
framework for HSI denoising that can jointly consider the
spatial and spectral information.

In this paper, a joint spectral-spatial distributed sparse rep-
resentation framework is proposed to recover noise-free HSIs
by fully exploiting the correlation across bands and adaptively
distinguishing the differences between bands. In our work,
the highly correlated bands are first clustered into a group
to gather more local sparsity and redundancy. Each group is
then represented with the proposed spectral-spatial distributed
sparse coding. The main ideas can be summarized as follows.

1) The joint sparse approximation is designed to capture

both the interband correlation and the intraband structure
by the distributed sparse component, the common sparse
component, and the specific sparse component. Different
bands with different noise levels can then also be adap-
tively recovered by setting variable representation error
thresholdings.
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2) To obtain the corresponding sparse components, joint
dictionary learning is developed to train the common
dictionary and the specific dictionary. The common dic-
tionary is used to capture the common component for
depicting the similar structure across bands, whereas the
specific component computed by the specific dictionary
is related to the unique information within each band.
The experiments confirm that the proposed method out-
performs many current state-of-the-art schemes in both
peak signal-to-noise ratio (PSNR) and visual perception.

The remaining parts of this paper are organized as follows. In

Section II, the proposed method and the optimization process
are formulated. Section III contains the experimental results
and discussion. Section IV concludes this paper. Moreover,
some necessary notions and preliminaries are illustrated in the
following. Bold symbols with lowercase letters are reserved for
vectors, and bold symbols with uppercase letters are used for
matrices. For a matrix with a 3-D data array X € R/1>/2x1s
with a size I} x Iy x I3, the image patch of size \/n x /n
from X is ordered as column vectors &;j in the ith row and
the jth column of the bth band. The vector x;;. is formed
by stacking all the ¢th row and the jth column vectors from
the different bands into a single column vector. X7 is the
transposition of X.

II. JOINT SPATIAL AND SPECTRAL DENOISING MODEL
A. Regularization-Based HSI Denoising Framework

Assuming that the noise type is additive, then the noise
degradation process of HSI X can be modeled as

Y, = Tp + vy (1)

where x; is a clear band image from HSI X, with X =
{zp}B., € RM*N*B: o s a clear band image from HSI Y,
with Y = {y,} 2., € RM*N*B. Y denotes the noisy image;
and the additive Gaussian noise is v, ~ N (0, Jf), 1<b<B.
B denotes the number of bands, and ag means that the noise
intensity varies in the different bands. Given the observation
model, the denoising problem can be defined as the following
regularized least squares problem:

—~

X =argmin|Y — X3 + pR(X) ©)

where |Y — X||2 is the data fidelity term denoting the loss
function between the observed data and the original clear data,
and R(X) is the regularization item connected with the prior
of the original image. y is the regularization parameter used to
balance the contribution of the two items.

B. Basic Sparse Representation Framework

The regularization item R(X) plays a very important role
in the denoising process. It controls the perturbation of the
solution, solves the ill-posed problem, and guarantees a stable
noise-free image estimation. As discussed in Section I, sparsity-
based prior models have been successfully applied in image
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Fig. 1. (a) Method of spectral—spatial vector extraction from an HSI in the proposed model. (b) Band grouping.

denoising and are effective in removing the noise component.
Mathematically, the sparse representation model assumes that
column vectors € R™ can be sparsely represented as Do
[33]-[35]. D is an overcomplete dictionary, such as discrete
cosine bases, wavelet bases, or the dictionary learned from a set
of examples, and the entries in the sparse vector o are mostly
close to zero. To make the ill-posed denoising problem more
precise, the sparse approximation problem can be described as

{D,a} = argmin |« — D3 + pfexllo ©)

where ||a||o is the sparse regularization, which represents the
count of the nonzero entries of c. Although the problem in
(3) is an NP-hard problem, some approximation strategies
[37]-39] can be used to guarantee an effective solution, such
as basis pursuit [38] or orthogonal matching pursuit (OMP)
[39]. However, the band-by-band approach used in the basic
sparse representation framework for HSI denoising ignores the
sparsity of the spectral information and therefore leads to noise
residuals in the spectral dimension. For HSIs, our ultimate aim
is to construct an HSI sparse representation model that can si-
multaneously code the spectral-spatial information for the dif-
ferent bands. In Section II-C, the proposed joint spectral-spatial
distributed sparse representation model is presented in detail.

C. Joint Spectral-Spatial Distributed Sparse
Representation Model

1) Hyperspectral Image Spectral-Spatial Sparse Denoising
Model With Noise Adaptivity: Due to the high correlation and
the close spectral reflectance values in the neighborhood or
highly correlated bands, patches coming from the same spatial
location will be regarded as similar structural information. It

is assumed that the similar structural information generates
similar sparse patterns. Thus, the highly correlated bands can be
simultaneously coded by the proposed spectral-spatial sparse
representation model, which is introduced in detail as follows.

First, the highly correlated bands are gathered into C'1 clus-
ters by the correlation-measure-based k-means. As shown in
Fig. 1(b), the C1 clusters are then reclassified to C'2 groups
based on the spectral position of the different clusters. For one
group, the similar patches across the bands are stacked into a
vector for sparse representation, as described in Fig. 1(a). A
brief description of the patch vectorization is as follows.

1) The 3-D patches are extracted from the groups and
arranged into a new 2-D matrix. As shown in Fig. 1(a),
each 3-D patch is reshaped into a submatrix of the matrix,
with a width a. The neighborhood columns in the matrix
have similar sparse pattern.

2) Patches with the size of n x T from the matrix are
stacked into a vector x;; and then jointly coded. Here,
T represents that there are T' similar spatial vectors ;.
When applying sparse representation to the vector, these
patches can keep the similar sparsity by sharing the same
atoms. Moreover, owing to the spectral information in the
vector, the spectral noise can be simultaneously removed
in the processing.

Using the spectral—spatial sparse coding strategy introduced
earlier, the objective function for HSIs can be written as

o _ ,
{X,D,a} =arg min \|X - Y|} +Zuz‘j||aij~||o
ij

+ Z ||Da” -
ij

R X|5. 4
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In (4) R;;. is a matrix that extracts the vector x;;. € R"T>*!
from the image X, and «;;. is the sparse vector according to
the vector x;;.. In this expression, ||a;.||o is the sparsity prior,
and ), [|Da;. — R;;.X |3 is the global prior [33].

In the sparse model in (4), we allow a representation error
e7;- = | Daj. — R;j. X |3 as noise exists in the image. Due to
the noise varying from band to band, the error 6%. = ||Doyj. —
R;;.X||3 for x;;. should be below its corresponding thresh-
old ¢;;. <each(Const- o) (b=1,...,T). This means that
gijp(b=1,...,T) from ¢;;. should satisfy the corresponding
Ty, Which is equal to Const - 03,. Furthermore, the choice of
35 is handled implicitly by the count of the nonzero entries of
a;;, and hence, it depends on the representation error of each
band. A smaller representation error allows a larger number of
nonzero entries and implies a low ;5. Conversely, it implies a
high p;;. In the preceding way, the different noise intensities in
the different bands can be adaptively reduced.

Using the model in (4), the sparsity of the spatial and spectral
domains can be simultaneously represented, and a common
sparse component across the bands can be effectively coded.
However, these highly correlated patches also contain specific
components because of the tiny differences in the spectral
reflectance. How to sparse code the common information and
specific information simultaneously is a critical problem. To
solve this issue, a joint spectral-spatial sparse representation
and dictionary strategy is proposed. The task can be achieved
by alternating between two steps: joint sparse approximation,
which captures the common sparse information and the specific
sparse information, and joint dictionary learning, which learns a
joint spectral-spatial dictionary from the corrupted image itself.

2) Joint Sparse Approximation: Recent studies [40]-[42]
have demonstrated that the joint reconstruction of several cor-
related signals with sparse representation can outperform the
results achieved when recovering each signal one by one. For
an HSI, these highly correlated bands have a similar structural
pattern, and they should be coded jointly to preserve the spatial
structure and the spectral continuity. Meanwhile, the differ-
ences between bands in a group should be also carefully consid-
ered in the sparse representation process. Therefore, in the joint
sparse approximation stage, we assume not only that the highly
correlated bands share a common sparse component, which is
reflected in the interband correlation across bands, but also that
each individual patch contains a specific sparse component,
which is reflected in the interband correlation within bands.
The common sparse component means that the coefficient is
the same for all the bands, and the specific sparse component
represents the unique structural information of each band.

To simplify the description of the formulation in
Sections II-C2 and C3, we use x with sparse coefficient
« to replace the extracted vector x;;. with sparse coefficient
o, ¢, with sparse coefficient oy, to replace vector x;j, from
the bth band with sparse coefficient oy, and p to replace ji;;
for vector x;;.. The joint sparse coding of one patch in the bth
band then has the form

zy = Dyoy, = Dy cze + Dy p2p (5)

where oy, (1 < b < B) is the sparse representation coefficient.
From the joint sparse idea aforementioned, oy, can be decom-
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Fig. 2. Dictionary trained in the joint spectral-spatial dictionary learning. (Top
row) Common dictionary D, of the different bands. (Bottom row) Specific
dictionary D7 of the different bands.

posed into two parts: z. and zy,. z. is the common sparse com-
ponent with sparsity S., which is the same for all the correlated
vectors xp. zp with sparsity .S, is the specific sparse compo-
nent of sparse representation ay,, which captures the intraband
correlation to preserve the unique feature for the bth band.

Supposing the dictionary Dy, is fixed, then the sparse repre-
sentation process in the joint sparse stage involves solving the
following optimization problem:

T
{zc,zo} =argmin Y |(Dyeze + Dypzo) — @l
cy#b
b=1

T

(D lzelo+lzsllo ). 6

b=1

Given the T correlated patches « = [@1, ..., z7|T € R™T,
then the sparse representation coefficients, which involve a
common component and 7" unique components, can be denoted
by z = [z, 2z1,..., 27T € REX(THD | The aforementioned
optimization task can be changed to

{z} = argmin [ Dz — 3 + pllzo ™

where Hz||0:SC—|—ZtT=1 Sy, and dictionary D € R*T>*K(T+1)
can be extended as
D, Dy, Dyyp - 0
D=|:|=|: : . |=[DeDy]
Dy Dt 0 Dt
(®)
where D. = [D1,c, ..., Dr.|" is the common dictionary for
the common sparse component, and Dy, . is only a part of the
common dictionary for the bth band. All of Dy . (1 <b<T)
have almost the same structure. D = diag(D1 1,..., D7)
is the set of specific subdictionaries for each band. Dy ; con-
tains the particular information for the bth band, and each
of Dy has a different structure. To illustrate the difference
between D. and Dy, their structures are shown in Fig. 2, and
we give an explanation in the joint dictionary learning part.
Because of the simplicity and efficiency [39] of OMP for the
L problem, we adopt the joint OMP algorithm to optimize
problem (7). Due to the noise intensity being different in the

different bands, the algorithm stops when each band satisfies a
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certain criterion. The optimization problem is depicted in the
following procedure.

The optimization of joint OMP

Input: an extracted vector x = [z1,...,x7]T, a fixed
dictionary D, a constant ¢, the noise standard deviation
{op}_,, and the maximum number of iterations maxlter.
Output: The sparse representation coefficients z, involving a
common component z. and 7" specific components {zb}szl.
Initialization: the residual r, = (1 < b < T)andr = @,
the solution support S = Support{ z} =), the solution z.=0
and z, = 0.

Procedure: Do

(a) Compute w, = Dzr and wy, = DabTrb(l <b<T).

(b) Find a minimizer: if maxy, |we k.| > maxg, |wp k, |,
k* = arg maxy, |we k.| and Se =S U{kL};
otherwise, for any maxy, |we .| < maxg, [we, |,
then {k},k;} = {argmaxy, |we k, |, arg maxy, |we i, |},
Se=S.U{k:}, and Sy = Sy U {k; }.

(c) Update  the  provisional solution:  compute
z = [2¢,21,...,27|, the minimizer of |Dz — z||3,
subject to S = S. U {S,}{_, = Support{z}.

(d) Update the residual: compute 7y =, — Dg, 2c k., —
Dg, zp, thenr = [rq,...,r7|".

(e) Stopping rule: each ||7p||3 < (c-0p)? or achieve the
maximum iteration maxlter.

End

3) Joint Dictionary Learning: In the proposed method, the
dictionary D is composed of the common dictionary D, which
includes the similar spatial structure and the continuous spectral
information across the bands, and the specific dictionary Dj,
which includes the unique information of the intraband structure.
When fixing the sparse vector o, we propose joint spectral—
spatial dictionary learning to optimize the atoms from the dic-
tionary. Similar to K-SVD [33], only one column of the diction-
ary and the nonzero entries in the associated row are updated
each time. However, for different components of the sparse cod-
ing, the utilized atom is only extracted from the related part of D.

For any column k in D, we compute its representation error
e” for the different situations, i.e.,

eb=z— > d’a(m)- Y dj'a(m), keS.
m#k m#k
T
e*=10,...,0,z,— > dj".a(m)— > dj,a(m),0,...,0
N~—— mEk m#k N——
Lo b1 b1, T
ke S,
©)

where « is one of the patches using the kth atom, a(m) is the
mth entry of the vector c, and e* is the column vector from the
error matrix E*. d" is the mth column of dictionary D, and

,TC is the mth column of Dy, .. dy" is the mth column of Dy,

and dy", is the mth column of Dy, .

After obtaining the representation error, the resulting prob-
lem is given by

. 2
{d*, .} = argmin |[E* — d"a ||}, + pijllevij llo - (10)

where d* and a.  are the updated atom and coefficient row,
respectively. The problem can be solved directly via singular
value decomposition [43].

In summary, the proposed approach is to solve the dictionary
learning problem by alternating between two steps: 1) we first
find the common components and the specific components of
the sparse coefficients with a fixed dictionary by the use of joint
sparse coding, and 2) we then learn the spectral-spatial dictio-
nary by the use of the joint dictionary learning approach. Fig. 2
shows the difference between the common dictionary D, and
the specific dictionary Dy, as obtained by joint dictionary
learning.

In Fig. 2, the top row shows the 64 atoms from the four
subdictionaries Dj . from the common dictionary D., and
the atoms are arranged by the standard deviation from a large
value to a small value. The bottom row shows the specific
subdictionaries Dy corresponding to Dy .. From the top
row, the atom with the maximum standard deviation in D, is
separated into four subatoms, which are shown with red blocks
in Fig. 2(a)—(d). The similar pattern in these subatoms indicates
that D, can provide the similar structure for the highly cor-
related bands. On the other hand, Fig. 2(e)—(h) shows that the
texture structure in the atoms of the specific subdictionaries is
different, which reflects the unique information of the different
bands.

After obtaining the sparse coefficients c;;. and the dictionary
D, returning to (4), we can solve the HSI denoising problem as
follows:

-1

—~

ij

ij

(1)

Finally, the flowchart of the overall denoising process is sum-
marized in Fig. 3

III. EXPERIMENTAL RESULTS AND ANALYSIS

The performance of the proposed method was evaluated by
applying the different methods to both simulated and real data.
Three data sets were employed in the experiments.

1) The first data set was the Washington DC Mall HSI from
the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) airborne sensor, which consists of 200 lines
and 200 columns, as well as 191 bands. This data set was
used in the simulated experiments.

2) The second data set was the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) Indian Pines hyperspec-
tral data set with the size of 145 x 145 x 220, which
was used for the real-data experiments. A total of
206 bands was used in the experiments after removing
bands 150-163, which are disturbed by the atmosphere
and water.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

1 Group
— -

2 Group

. Hyperspectral Image

|
|
|
|
|
|
! Band Group
|
|
|
|
|
|
|

Joint Sparse Approximation a'"

Joint Sparse Approximation &

Dictionary Learning D"
Using (10)

)
Using (6)

Dictionary Learning D
Using (10)

Aggregation
D' and &

>

Using (6)

Dictionary Learning D‘”

N Sy L Using (10) Denoising Result
Joint Sparse Approximation a'“ i
Using (6)
e e e e e e e e e e e e . b
Fig. 3. Flowchart of the proposed joint spectral-spatial denoising method.
TABLE I
QUANTITATIVE EVALUATION OF THE DENOISING RESULTS OF THE SIMULATED EXPERIMENTS
Proposed Proposed
Noise level Evaluation  pyqqR MWF  SSAHTV  K-SVD  SRLR LRMR method method
index (one (multiple
iteration) iterations)
MPSNR 40.808 37414 33514 36.098 43.606 44.669 42.052 42.485
o,=5 MSSIM 0.986 0.977 0.939 0.963 0.994 0.994 0.991 0.992
MSA(degree) 2.040 2.150 4.162 3.258 1.420 1.267 1.679 1.505
MPSNR 32.000 30.617 29.727 29.636 36.400 36.904 33.688 37.428
o, =15 MSSIM 0912 0.904 0.844 0.858 0971 0974 0.941 0977
MSA(degree) 5.555 4329 6.055 5.933 3.023 2.955 3928 2.486
MPSNR 28.116 27.684 25.866 26977 31.058 34251 31411 34.731
op=25 MSSIM 0.813 0.826 0.704 0.754 0.893 0.953 0.901 0.960
MSA(degree) 8.577 5.924 7.990 7.534 6.222 3.990 4.746 3.211
MPSNR 35.510 30.539 30.019 32.039 35.321 38.869 37.488 38.618
o, = Gau(200,30) MSSIM 0.943 0.898 0.862 0.894 0.939 0.981 0.967 0.980
MSA (degree) 5.092 5.048 7.095 6.405 5.502 2.731 3.290 2.569

3) The third data set was acquired by the airborne Reflec-
tive Optics System Imaging Spectrometer (ROSIS) and
covers the University of Pavia, Italy. The image scene is
of 200 x 200 pixels. After removing 12 water absorption
bands, 103 spectral channels remained.

For the simulated experiments, we evaluated the performance
with the mean PSNR (MPSNR) index and the mean structural
similarity (MSSIM) index, as used in [25], which are denoted
as the average of the PSNR index and the SSIM index for all
the bands, respectively. To evaluate the spectral fidelity of the
results, the average of the spectral angle (MSA) was also intro-
duced in the simulated experiments. Moreover, in the real-data
analysis, as there was no reference image available to compute
PSNR and SSIM, the classification accuracy improvement after
denoising was employed to further assess the effectiveness of
the proposed method.

To verify the performance of the proposed denoising method,
it was compared with hybrid spatial-spectral noise reduction
(HSSNR) [11], MWF [16], spectral-spatial adaptive hyper-
spectral total variation (SSAHTV) [25], K-SVD [33], sparse
representation and low-rank constraint (SRLR) [30], and low-
rank matrix recovery (LRMR) [31]. The proposed method

was also used to verify the effectiveness of one iteration and
multiple iterations. In the simulated process, we simulated the
additional noise in the following two cases.

1) For different bands, the noise intensity is equal. For
example, o, = constant and is from 5 to 25.

2) For different bands, the noise intensity is different.
The noise variance 0% was added along the spectral axis and
was varied like a Gaussian curve centered at the middle band
(B/2) [44] as

exp {—(b - B/2)2/2n2}
Yiy exp {—(b— B/2)?/2n?}
where the power of the noise is controlled by 3, and 7 behaves
like the standard deviation for the Gaussian curve. In the

simulated experiments, § = 200, n = 30, and the noise was
defined as o, = Gau(g, ).

2 2
Ub:/B

12)

A. Simulated-Data Experiments

To allow a comprehensive comparison, quantitative evalu-
ation, visual comparison, and the spectral difference between
the original and denoised data were used to analyze the results
of the different methods. The contrasting results of the two
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Fig. 4. Results of the Washington DC Mall image with o, = 25 in Case 1.
(Top row) Noisy band (17,27, 57), HSSNR, and MWEF. (Middle row) SSAHTYV,
K-SVD, and SRLR. (Bottom row) LRMR, K-SVD, the proposed method with
one iteration, and the proposed method with multiple iterations.

(@

® (€3] () ® ()]

Fig. 5. x4 magnified results of the Washington DC Mall image with
op = 25 in Case 1. (a) Clean image (17, 27, 57). (b) Noisy image (17, 27, 57).
(c) HSSNR. (d) MWF. () SSAHTV. (f) K-SVD. (g) SRLR. (h) LRMR.
(i) Proposed method with one iteration. (j) Proposed method with multiple
iterations.

cases with various noise levels are given in Table 1. To give
detailed contrasting results, o, = 25 and o, = Gau(200, 30)
are selected to show the visual effect. Because of the large
number of bands in the HSI, only a few bands are presented to
give the visual results in each case. Fig. 4 shows the denoising
results of the different methods in simulated Case 1 with the
pseudocolor view of bands 17, 27, and 57 (see enlarged detail
in Fig. 5), whereas Figs. 6—10 show the denoising results of the
different methods in simulated Case 2. Figs. 7, 9, and 10 are
enlarged details from Figs. 6 and 8. Each patch size from the
noisy image in the proposed method was 8 x 8 with n = 64,
and the bandwidth T" was 8. For the one-iteration denoising, the
parameters in the joint OMP were chosen manually as Const =
0.9 and 7, = Const - g, = 0.9 - 0. For the multiple-iteration
denoising, Const = 0.5, and 7, = Const- o, = 0.5 7. The
choice of parameter A was dependent on the noise level [33],
and we set it to 30/0p.

Fig. 6. Results of the Washington DC Mall image in Case 2. (Top row) Noisy
band 35 with o35 = 8.3498, HSSNR, and MWEFE. (Middle row) SSAHTY,
K-SVD, and SRLR. (Bottom row) LRMR, K-SVD, the proposed method with
one iteration, and the proposed method with multiple iterations.

» ‘.- = : o
- . . 2
(a) (b) (© (d) (e)
® (€9) () @ @
Fig. 7. x4 magnified results of the various approaches in the red block
in Fig. 6. (a) Clean image. (b) Noisy image 35. (c) HSSNR. (d) MWE

(e) SSAHTV. (f) K-SVD. (g) SRLR. (h) LRMR. (i) Proposed method with one
iteration. (j) Proposed method with multiple iterations.

Compared with the other methods in Table I, the proposed
method achieves the highest MPSNR and MSSIM values and
the lowest MSA values in most cases and shows a better visual
quality in Figs. 4-10. Although the HSSNR method produces
a lower spectral angle, as shown in Table I, which reflects that
it suppresses the spectral noise better than the MWF, SSAHTY,
and K-SVD methods, Figs. 4-10 show that it cannot effectively
remove the noise in the spatial dimension. MWF applies the
tensor decomposition technique to successfully remove the
spectral noise, but it fails to preserve the structural information
in Figs. 4-10. In the results of MWF, the vertical and horizontal
directions import obvious fake stripes in the texture, and the
edges are blurred. The fake stripes are more obvious when
the standard variance of the noise increases. With the high
noise intensity condition in Figs. 4 and 8, the SSAHTV method
generates some fake artifacts and causes a disturbing sawtooth
pattern in the edges.
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Fig. 8. Results of the Washington DC Mall image in Case 2. (Top row) Noisy
band 97 with o97 = 23.0659, HSSNR, and MWF. (Middle row) SSAHTYV,
K-SVD, and SRLR. (Bottom row) LRMR, K-SVD, the proposed method with
one iteration, and the proposed method with multiple iterations.
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Fig. 9. x4 magnified results of the various approaches in the red block in Fig. 8.
(a) Clean image. (b) Noisy image 97. (¢) HSSNR. (d) MWE. (e) SSAHTV.
(f) K-SVD. (g) SRLR. (h) LRMR. (i) Proposed method with one iteration.
(j) Proposed method with multiple iterations.

The proposed method shows an obvious superiority when the
noise intensity increases, which is shown in Table I and the
visual results. From the magnified results, it can be seen that
the proposed algorithm not only suppresses noise but also
preserves more image details. Even when the noise intensity
increases, the tiny objectives on the ground are still preserved
well in the proposed method. In contrast, the K-SVD method
removes some details such as small features, and its results are
blurred in Figs. 8—10. The yellow block of the K-SVD results in
Figs. 6 and 8 also shows obvious noise residuals in Case 2. By
exploring the spatial-spectral information, SRLR and LRMR
also provide better denoising results. However, there are still
some noise residuals in the magnified regions, particularly in
the high noise intensity condition.

The spectral reflectance is significant for HSI applications,
and spectral distortion should be avoided in the denoising
process. To verify the effectiveness of denoising in the spectral

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 10. x4 magnified results of the various approaches in the cyan block
in Fig. 8. (a) Clean image. (b) Noisy image 97. (c) HSSNR. (d) MWE.
(e) SSAHTV. (f) K-SVD. (g) SRLR. (h) LRMR. (i) Proposed method with one
iteration. (j) Proposed method with multiple iterations.

dimension, Fig. 11 shows the spectra before and after denois-
ing. The horizontal axis of the figures represents the value of
all the pixels in each band, and the vertical axis shows the
band number. Each row represents the spectral reflectance of an
object. Each column shows the spatial information of a band.
It is shown in Fig. 11 that the proposed method suppresses
the spectral dimension noise better than HSSNR, SSAHTYV,
K-SVD, SRLR, and LRMR. SRLR produces a serious bound-
ary effect. In the red region, the LRMR results retain more
residual spectral noise than the results of the proposed method
with multiple iterations. In the MWF denoising results, the
noise along the spectral signatures is also effectively re-
moved. However, referring to the original spectral signatures in
Fig. 11(a), the proposed method obtains more abundant detailed
spatial information than MWF as the spatial feature of the pro-
posed method along each column is closer to the clean image.

To show the changes in the spectral reflectance after denois-
ing, the spectral distortion of the different denoising methods
on the Washington DC Mall data is also given in Fig. 12. The
differences in the spectral signatures of pixel (111, 122) from
the grass class, the pixel (180, 52) from the road class, and the
pixel (67, 97) from the roof class are presented in Fig. 12(a)—(c),
respectively. In Fig. 12, the vertical axis of the figures represents
the digital number values, and the horizontal axis shows the
spectral band number. Here, it can be observed that the curve
of the proposed method is smoother than for the other methods,
and the spectral residual is closer to zero, indicating that the
proposed method is more effective at preserving the useful
spectral information of the original HSI.

B. Real-Data Experiments

Two real-data experiments were also undertaken to further
verify the proposed method in a real case. To adaptively
suppress the noise for the different bands in the real-data
experiments, the thresholding for the residual error 7, was
set in the different bands according to the noise level oy.
Therefore, in a real-data case, the standard variance of the noise
before the denoising processing needs to be estimated; thus, a
patch-based noise level estimation algorithm [45] was used to
estimate the noise standard variance. For a real-data case, there
is no reference image to compute MPSNR, MSSIM, and MSA.
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Fig. 11. Denoising results of the spectral dimension with o, = 25 in Case 1. (a) Clean image. (b) Noisy image. (c) HSSNR. (d) MWE. (Bottom row) (e) SSAHTV.
(f) K-SVD. (g) SRLR. (h) LRMR. (i) Proposed method with one iteration. (j) Proposed method with multiple iterations.
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Fig. 12. Difference between the noise-free spectrum and the restoration results of (a) pixel (111, 122), which belongs to the grass class, (b) pixel (180, 52), which
belongs to the road class, and (c) pixel (67, 97), which belongs to the roof class. Curves (1)-(9) in the different classes denote the results of the noisy image,
HSSNR, MWEF, SSAHTYV, K-SVD, the proposed method with one iteration, SRLR, LRMR, and the proposed method with multiple iterations, respectively.
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Fig. 13. AVIRIS Indian Pines data set used in real-data experiment 1. (a) False-color hyperspectral 3-D cube. (b) Reference map containing 16 mutually exclusive
land cover classes.

Hence, the classification accuracy improvement after denoising ~ Support vector machine (SVM) [25], [46] was utilized as the

was used to evaluate the performance. The reference maps of
the two real data sets are shown in Figs. 13(b) and 18(b).

classifier. The overall accuracy (OA) and the kappa coefficient
were used as evaluation indices.
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Fig. 15. Results of the Indian Pines image. (a) Noisy band 103. (b) HSSNR. (¢) MWE. (d) SSAHTV. (e) K-SVD. (f) SRLR. (g) LRMR. (h) Proposed method.

Fig. 16. Results of the Indian Pines image. (a) Noisy band (3, 110, 204). (b) HSSNR. (c) MWE. (d) SSAHTV. (e) K-SVD. (f) SRLR. (g) LRMR. (h) Proposed method.

In the first real-data experiment with the Indian Pines data,
the results of the one iteration mode with a patch size of 8§ x 8
and a bandwidth of 8 were given. The thresholds were cho-
sen manually as Const = 1.15 and 7, = Const - g, = 1.15 - gy,
Parameter A was set to 30/0;. The visual results of bands 2 and
103 with a high noise intensity are presented in Figs. 14 and 15,
respectively, and the pseudocolor views of bands 3, 110, and
204 are shown in Fig. 16. It can be clearly observed that HSSNR
and MWF produce heavy residual noise in the results, such
as the red particles in the smooth region in Fig. 16. This is

because the hard thresholding method cannot reduce the noise
completely in HSSNR, whereas MWF cannot distinguish the
signal and noise subspaces well. Although SSAHTV can get
rid of the noise and sharpen the edges, the results show a
disturbing sawtooth pattern and lose some textures. The K-SVD
method produces some artifacts in Fig. 14, and the results
appear oversmoothed in Fig. 15. SRLR can preserve more
textures but leave the obvious noise. Although LRMR can
remove stripe noise well in Fig. 14, it has a poor performance
for the Poisson—Gaussian mixed noise in Fig. 15 and causes the
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TABLE 11
CLASSIFICATION ACCURACY RESULTS OF THE INDIAN PINES DATA SET
The HSSNR MWF SSAHTV  K-SVD SRLR LRMR The proposed
original method
OA 71.73% 72.22% 74 .54% 83.48% 77.93% 74.55% 73.32% 83.97%
Kappa 0.6738 0.6798 0.7069 0.8107 0.7468 0.7074 0.6924 0.8171

Fig. 17. Classification results of the Indian Pines image using SVM before and after denoising. (a) Noisy band. (b) HSSNR. (¢) MWF. (d) SSAHTV. (e) K-SVD.

(f) SRLR. (g) LRMR. (h) Proposed method.
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Fig. 18. ROSIS Pavia University data set used in real-data experiment 2. (a) False-color hyperspectral 3-D cube. (b) Reference map containing nine mutually

exclusive land cover classes.

heavy spectral distortion, which comes with low classification
accuracy in Table II. The visual results show that the proposed
method can suppress the noise well and effectively preserve the
edge and detail information.

In the classification experiment, 16 ground-truth classes,
with a total of 10 366 samples, were considered in the ex-
periment. The training sets consisted of 10% of the number
of test samples randomly drawn from each class. The clas-
sification results of the Indian Pines image before and after
denoising are given in Fig. 17. In the classification result before
denoising, the visual results appear fragmentary, and the OA
and the kappa coefficient are only 71.73% and 0.6738. After
denoising, the OA and the kappa coefficient show different
levels of improvement. However, the classification results from
HSSNR, MWE, K-SVD, SRLR, and LRMR still show a serious
fragmentary effect. SSAHTV and the proposed method reduce
the fragmentary effect in most regions of the image, but the

proposed method provides a better classification result in the
upper left corner of the image, including the Oats, Corn, and
Soybeans-no till classes. From Table II, the proposed method
obtains the highest OA and kappa coefficient values of 83.97%
and 0.8171.

The second real HSI data set was of an urban area of Pavia,
Italy, which is centered at the University of Pavia. The results
with three iterations were selected to show the superiority of the
proposed method. The patch size was 8 x 8, and the bandwidth
was 8 in this experiment. The thresholds were chosen manually
as Const = 0.5 and 7, = 0.5 - 0}, Parameter A was set to 30/ 0.
To assess the results, nine ground-truth classes, with a total of
9310 samples, were used to compute the OA and the kappa
coefficient. The training sets consisted of 10% of the number
of each class in the ground truth randomly drawn from the test
sets. The false-color composite and the ground-truth map are
shown in Fig. 18(b).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 19. Results of the Pavia University image. (a) Noisy band 1. (b) HSSNR. (¢) MWF. (d) SSAHTV. (e) K-SVD. (f) SRLR. (g) LRMR. (h) Proposed method.

Fig. 20. x4 magnified results of the various approaches in the red block of the Pavia University image. (Left to right) Noisy band 1, HSSNR, MWF, SSAHTY,
K-SVD, SRLR, LRMR, and the proposed method.

Fig. 21. %3 magnified results of the various approaches in the cyan block of the Pavia University image. (Left to right) Noisy band 3, HSSNR, MWF, SSAHTY,
K-SVD, SRLR, LRMR, and the proposed method.

TABLE 111
CLASSIFICATION ACCURACY RESULTS OF THE PAVIA UNIVERSITY IMAGE
The HSSNR MWF SSAHTV ~ K-SVD SRLR LRMR  Iheproposed
Original method
OA 75.40% 75.44% 76.92% 83.90% 77.11% 89.98% 90.44% 90.57%
Kappa 0.6819 0.6825 0.7016 0.7927 0.7044 0.8727 0.8785 0.8802

In the Pavia University image, as the noise is mainly concen-
trated in the front bands of the image, the first 30 bands with
a high noise intensity are selected to show the classification
improvement. Fig. 19 shows the results of denoising using
the different methods in band 1. In order to show the visual
superiority of the proposed method, we also present some
detailed regions cropped from the denoised images. The red
block and the cyan block in Fig. 19 label the position of the
enlarged regions. Figs. 20 and 21 show the enlarged details for
bands 1 and 3, respectively. From these enlarged regions, it can
be observed that the MWF and K-SVD methods smooth the
detailed information. Some noise is retained, and fake artifacts
are generated in the results of the methods HSSNR, MWE,
SSAHTYV, K-SVD, SRLR, and LRMR. In the result of the

SSAHTYV method, although the main edges are preserved, the
detail and the texture information are oversmoothed. As shown
in Figs. 20 and 21, tiny points and thin edges are removed in
the SSAHTV result. However, the proposed method not only
suppresses the noise but also preserves the image details and
texture information.

The classification results in Table III also reflect the effective-
ness of the proposed approach, which produces the highest OA
and kappa coefficient values of 90.57% and 0.8802. In Fig. 22,
it is shown that SSAHTV, SRLR, LRMR, and the proposed
method can both suppress the fragmentary effect better than the
other methods. However, the proposed method not only obtains
the most reasonable classification result but also gives a better
visual performance for edges and textures in Figs. 19-21.
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Fig. 22. Classification results of the Pavia University image using SVM before and after denoising. (a) Noisy band. (b) HSSNR. (c) MWF. (d) SSAHTV.

(e) K-SVD. (f) SRLR. (g) LRMR. (h) Proposed method.
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Fig. 23. Restoration results under different values of the threshold Const - o, and the patch size v/n X \/n.

C. Discussion

In all the simulated and real-data experiments, the number
of atoms in the dictionary K was manually set to 2nT’, where
n is the size of one patch, and 7' is the number of correlated
patches, such as = [z1,...,x7]T € R"*T. The parameters
A and p were adaptively obtained based on the noise intensity:
A was set to 30/0p, and p was dependent on the threshold of
the representation error ¢ < each(Const-o3) (b=1,...,T),
which was explained in Section II-C. The restoration results are
mainly influenced by the threshold Const - o3 and the size of
patch v/n x y/n. In the simulated experiments, Fig. 23 presents
the quantitative evaluation results of different thresholds and
patch sizes under the multiple-iteration mode. It can be clearly
seen that the results of the proposed method are quite robust
with regard to the values of the threshold when the patch size
has been already determined. When the size of patch is between
6 and 8 and the value of the threshold is between 0.4 and 0.5,
the MPSNR and MSSIM values of the results produced by

the proposed method show much improvement after multiple
iterations.

Finally, the computational complexity of the proposed
method is discussed. From the optimization algorithm of joint
OMP, it can be observed that the computational complexity
of each iteration per pixel in a vector = [z1,..., )T is
O(nTK), where nT is the dimension of vector &, and K is the
number of atoms in the dictionary. As shown in [33], with § =
S. + Zthl S; number of nonzero elements in each coefficient
vector, the computational complexity of OMP for a vector is
O(nTKS) when these stages are iterated S times. However,
it should be noted that joint OMP needs only S, iterations
to find the sparse approximations for 7' signals. Hence, the
computation of joint OMP with O(nT K S,) is less than the
computation of OMP, and the aforementioned experiments also
confirm that joint OMP can obtain better results than OMP.
Finally, the dictionary update with J iterations then requires
O(nTKS.J) operations per pixel from image X .
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IV. CONCLUSION

In this paper, we have proposed an HSI denoising method by
jointly utilizing spatial and spectral redundancy and correlation.
A joint sparse representation framework is established to effec-
tively use the spatial structure similarity and the spectral cor-
relation. The sparse coding consists of a common component
reflecting the interband correlation and a specific component
depicting the intraband structure. The sparse coefficients of the
common component are obtained from the common dictionary
and represent the similar information of all the bands and the
continuity of the spectra. The specific components are coded
from the specific atoms of the dictionary and record the unique
structural features for each band. By setting different threshold
values for the representation errors of different noise intensity
bands, the proposed method can effectively achieve spectrally
adaptive image denoising.

The experimental results demonstrate that the proposed de-
noising method can achieve a better performance than the
traditional HSI denoising methods. The joint spectral-spatial
HSI denoising method with distributed sparse representation
can recover a clean structure and preserve the spectral consis-
tency in the original image. In the future, we will concentrate
on removing noise for HSIs along the spectral dimension. In
addition, accelerating the speed of the algorithm will be another
interesting research direction.
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