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ABSTRACT ARTICLE HISTORY
The brightness non-uniformity caused by vignetting effects, view- Received 21 October 2014
ing, and illumination angels in remote sensing images reduces the Accepted 16 January 2016
interpretation precision. A multi-resolution variational Retinex

scheme is proposed in this paper to efficiently correct the non-

uniform brightness in airborne remote sensing images. This varia-

tional Retinex model is non-linear, constrained by the grey-world

assumption and the total variation regularization. A Gaussian

image pyramid is used to construct the multi-resolution scheme.

The multi-resolution scheme reduces the calculation burden and

raises the calculation efficiency. The fast split Bregman (SB) itera-

tion method is employed to optimize the proposed non-linear

model in each level of the multi-resolution scheme. This decom-

poses the complicated model into several simple sub-problems

and greatly improves the calculation efficiency. The multi-resolu-

tion scheme embedded with the SB iteration method was applied

to both synthetic and real remote sensing images. The experimen-

tal results show that the brightness non-uniformity can be cor-

rected, and the spectral information can be effectively restored.

Moreover, the calculation efficiency is raised by about 60-110

times, compared to the traditional single-resolution solving

method.

1. Introduction

In the acquisition process of remote sensing images, due to the sensor and environ-
mental factors, the observed images are often degraded. Non-uniform brightness is one
of the most significant degrading phenomena, which is mainly caused by the vignetting
effects of lenses and some other factors, such as viewing and illumination angles
(Franklin and Giles 1995; Lan et al. 2014; Li, Zhang, and Shen 2012; Shen, Peng, et al.
2015). Vignetting appears in an image as a reduction in brightness towards the image
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corners and edges (Brandtberg et al. 2003). According to Airborne Data Acquisition and
Registration System 5500 data, the digital number (DN) range between the maximum
near the image centre and the minimum at the image corners can vary from 15 to 45
depending on the illumination levels (Stow et al. 1996). On the other hand, the non-
uniform brightness can also be caused by the viewing and illumination angles. Overall,
the non-uniform brightness in a scene is recorded by DN data in aerial imagery.

The DN non-uniformity over a scene degrades the visual quality and also disturbs
further applications of aerial images, such as mosaicking, feature extraction, target
recognition, classification, and so on (Chen et al. 2014; Shen, Li, et al. 2015). Noted
that this paper aims to correct the non-uniform brightness in a single image, though the
non-uniformity also exists among different images, which is very important but using
different correction schemes. It is, therefore, necessary to implement brightness correc-
tion before further application of non-uniform imagery.

Since the brightness non-uniformity is caused by multiple factors, the distribution of
DN variation over the scene is anomalous. Thus, image-based correction methods are
considered in this paper. Moreover, assuming only the brightness non-uniformity shall
be removed without any further atmospheric correction, the methods are applied to
radiance (DN) data. The non-uniformity correction is taken as a preprocessing step,
aiming to normalize the distorted radiance caused by vignetting effects, viewing, and
illumination angles. The correction methods mentioned in this paper can be sorted into
the relative radiometric normalization, which is more suitable for qualitative analysis
rather than quantitative analysis.

Several image-based methods have been introduced to correct the non-uniform
brightness, including the Gaussian filter—-based normalization (Elad et al. 2003; Jobson
et al. 1997a, 1997b), homomorphic filtering (HF) (Nnolim and Lee 2008; Seow and Asari
2004), the perceptually inspired correction methods (Bertalmio et al. 2007; Palma-
Amestoy et al. 2009), and so on. In the current methods, the non-uniformity is usually
considered as additive or multiplicative noise for the signal. It varies gradually in the
spatial domain, occupying the low frequency of the frequency domain. Thus, the low-
pass Gaussian filter and appropriately designed homomorphic filter have both been
used to estimate the global noise. However, it is hard to delineate the anomalously non-
uniform brightness by the fixed filters. The perceptually inspired correction methods,
which are local and image-adaptive, can optimize the results by iterations.

The perceptually inspired methods are derived from the simulation of the colour
constancy of the human visual system, which refers to the colour recognition ability of
human eyes under chromatic or non-uniform illumination (Jobson et al. 1997a; Ma and
Osher 2010; Ng and Wang 2011; Provenzi et al. 2008). Retinex methods are a typical type
of the perceptually inspired correction methods, which have been used to correct the
colour distortion or brightness variation in natural images. Retinex theory supposes that
the observed image is the product of the illumination component and the reflectance
component (Land 1983), and the colour distortion or brightness variation is caused by
the illumination component, while the information of the land surface is reflected by the
reflectance component. The correction can be achieved by removing the distorted
illumination component. Different models have been proposed to calculate the reflec-
tance component directly or by estimating the optimal illumination, among which the
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variational model has the advantages of integratability, extendability, and strictness
(Elad et al. 2003; Kimmel et al. 2003).

The basic assumptions of Retinex theory are also adapted to optical aerial images,
which usually contain more spectral bands than natural images. As the correction is
carried out band by band, the band amount has no impact on the implementation. The
colour of a multi-spectral data is the composition of its arbitrary three bands. The aerial
data used in our experiments contain three visible bands (red, green, and blue) like
natural images. Thus, colour refers to the visual effect of the images obtained in the red,
green, and blue channels. We have verified the suitability of the variational correction
models for remote sensing images in the previous study (Li, Zhang, and Shen 2012). The
brightness variation caused by vignetting effects, lens, and illumination can be effec-
tively corrected, and the results with uniform global brightness and enhanced local
contrast can be obtained.

However, there are still two problems that need solving for the variational Retinex
models. The first one is the calculation efficiency, for the costs of iterations are very high
for large remote sensing images. The second one is the loss of spectral information. As
the constraint for the global brightness normalization is strict, the resulting image in
each band is very grey. It leads to the colour of arbitrary three band composition is not
very rich. In a number of previous studies, part of the non-uniform illumination was
retained in the result to keep the natural colour of the natural image (He, Sun, and Tang
2011; Kimmel et al. 2003).

Therefore, we intend to propose a simple and efficient correction method to remove
the non-uniform brightness and restore the spectral information of remote sensing
images. A multi-resolution variational Retinex (MVR) scheme is proposed for the non-
uniformity correction, and the split Bregman (SB) iteration is introduced to improve the
calculation efficiency (Goldstein and Osher 2009). A number of popular multi-resolution
schemes have been proposed, including the Gaussian pyramid, the Laplacian pyramid
(Burt and Adelson 1983), the wavelet pyramid (Mallat 1989), and so on. Among these
multi-resolution schemes, the Gaussian pyramid is convenient and efficient, and can be
used to accelerate the calculation (Kimmel et al. 2003; Ng and Wang 2011), for only a
few iterations will be sufficient at the coarse layers. Thus, the Gaussian pyramid is
employed in the proposed model to construct the multi-resolution correction scheme.

2. Variational Retinex model

Retinex theory supposes that a given image / is composed of the product of two
different components, the reflectance component R and the illumination component
L, which can be expressed as I(x) = R(x)L(x), where x represents the location of a pixel.
The reflectance component R describes the radiometric and spatial properties of the
observing scene, which is an illumination-invariant variable. The illumination component
L contributes to the global brightness variation caused by vignetting effects or other
factors, which needs to be removed in the final corrected results.

To obtain the uniform image without the influence of the non-uniform illumination,
we can solve the reflectance directly or by estimating the illumination first. No matter in
what manner, the unknown variables are more than the functions if only /(x) = R(x)L(x)
is built. So, some constraints are needed to ensure the stable solutions. Moreover, to
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simplify the calculation, the logarithm is usually used first to transform the multiplication
to the addition, that is, i =In(/), r =In(R), I =In(L), and then i=r+ /. The spatial
properties of the variables after the logarithm transformation are consistent with
those before that transformation. Considering the physical properties of the reflectance
and illumination components, four assumptions can be made.

(1) The illumination component is spatially smooth, as it is a global and surface-
invariant variable, whose gradient can be constrained by the L2 norm (Kimmel
et al. 2003), that is, min " |VI|2, where Q refers to the image domain.

Q

(2) The reflectance component R reflects the physical properties of the observed
surface, containing edges, textures, and spatial structures, which should be
reserved in the results. For the total variation (TV) has the ability to reserve details
while removing noises (Rudin, Osher, and Fatemi. 1992), it is used to constrain R,
that is, min}_ |Vr|.

(3) The data range of the reflectance component R is [0, 1], which means that / > i or
r <o.

(4) For visible imagery, the reflectance component R meets the Gray World (GW) rule,
which assumes that the spatial average of a scene is neutral grey (Finlayson,
Hordley, and Hubel 2001). Then the approximation of R to 0.5 can be used to
realize the GW constraint, that is, S (exp(r) — 0.5)%, which controls the global
brightness variation of the scene. @

In order to facilitate the construction of the multi-resolution scheme, the illumination
is taken as an intermediate variable to solve the reflectance component in the proposed
method. Details of the multi-resolution scheme are provided in the next section.

Four constraints have been constructed, among which the spatial smoothness con-
straint on the illumination is the strictest. This spatial property of illumination will also be
utilized in the construction of the multi-resolution scheme, so we determine to estimate
illumination first in our model. Based on the observation model i = r + /, the constraints
on the reflectance can be converted to the constraints on the illumination. Thus, the
second constraint can be written as min > [V(i — /)|, and the fourth constraint can be

written as Y (exp(i—1) — 0.5)2. Integratin% the above assumptions, an energy function
Q

about the illumination can be expressed as

I = argmin F(I) = arg min D (VIP + V(i = 1] + Aa(exp(i — 1) — 0.5)%)
0 (M
subject to i(x) < I(x),

where Q is the support of the image, i is the observed image, / is the illumination image,
x represents a pixel in the image domain, and A; and A, are free non-negative real
parameters to control the contribution of the second and third items. It is noted that in
the following equations of this paper, same symbols represent the same variables with
Equation (1). The illumination / can be obtained by minimizing F(/), and then the
reflectance R can be obtained by the transformation R = exp(i — /).
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3. Multi-resolution variational Retinex method

As mentioned before, the current variational correction methods have two shortcom-
ings: (1) the calculation burden is high and (2) the chromatic information is lost. For the
variational model, the multi-resolution scheme is an effective acceleration strategy, and
the layer-by-layer calculation is also effective at preserving the chromatic information. In
order to further improve the calculation efficiency, the new numeric optimization solver,
the fast SB method, is used to replace the traditionalsteepest descent (SD) method. The
proposed multi-resolution variational Retinex method based on split Bregman (MVRSB)
aims to quickly remove the non-uniform brightness while preserving the chromatic
information in the image.

3.1. Multi-resolution scheme

A Gaussian pyramid is used to construct the multi-resolution scheme of the variational
correction model, because it is suitable to solve a variable with spatial smoothness. This
is also why the correction model is a penalty function related to the illumination
component.

In the Gaussian pyramid, the original image / is decomposed into a sequence of
images I, k € {0,1,2,3,...,N — 1}, each of which can be regarded as an approximation
of the illumination component at the corresponding scale k. The original image |/ is
labelled as lp. The image at scale k + 1 is obtained by

lk+1 = g(’k)7 (2)
where g(-) can be expressed as

gU(x)) = [w(x) * k()] 5, 3

111

6 8 16
w=|{g¢ 3 5| @)

1 1 1

6 8 16

where w is a Gaussian kernel, * represents the convolution operator, and [~]12 denotes
the down-sampling operation by a 2:1 ratio.

In addition, another function is defined to obtain the finer-resolution image from a
coarser-resolution image by

Ik = h(lk+1)7 (5)
where h(-) can be expressed as

h(lk-H) = [lk-tha (6)

where [-]T2 denotes an up-sampling operation by a 1:2 ratio.

The multi-resolution brightness correction model includes three steps, as shown in
Figure 1. First, the Gaussian pyramid of image i is generated. Assuming that the Gaussian
pyramid of image i has N levels, each layer of the pyramid is represented as iy,
ke {0,1,2,3,...,N—1}. We then start from the top layer of the pyramid iy_; and
obtain the coarsest illumination /y_; by optimizing the penalty function. After that, the
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Multi-resolution
scheme

The reflectance The illumination
image R image /

Figure 1. The overall procedure of the proposed method.

progressive circulation begins. When N > 1, deal Iy_; with the function h(-), and then
obtain the image I(()N—Z)’ which is of the same size as iy_,. The image /?N—Z) is regarded as
an initialization image for the next level N — 2. At the level N — 2, the same optimization
as level N — 1 is carried out. The above procedure is repeated until the top image iy, to
obtain the final illumination result fy. Finally, the reflectance component R with uniform
brightness can be obtained by the exponential transformation.

Summarizing the above descriptions, the procedure of the MVR model for radio-
metric correction is shown in Figure 1, and the details are shown in the Algorithm.

Algorithm. MVR model for radiometric correction.

Input: the observed image /.

Logarithm: / =L xRLi:I—i—r.

Gaussian pyramid generation: j — iy, k € {0,1,2,3,...,N—1}.

Optimize from the bottom of the pyramid (k = N — 1), as shown in the procedure in

Figure 2:
ifk=N-1,
then initialize the illumination ISH = in_1
In_1 = arg rmn F(In=1)-

elseif 0 < k< N-1,
then [ = h(l1).
Ik = arg r’r}in F(lk).
End *
Output: reflectance component in the spatial domain R = exp(ip — o).
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Data Operations

A mage i, I 4
A nitial illumination /,, A h
[ Optimizedillumination/, _, Optimization

Figure 2. The multi-resolution scheme for the variational Retinex model.

Overall, the fast convergence in each layer is the key to the high efficiency of the
multi-resolution scheme.

In the image pyramid, the bottom image, with the coarsest spatial resolution, con-
tains the fewest pixels. Thus, the iterations needed for solving the coarsest illumination
component are very few in the multi-resolution scheme. Moreover, since the illumina-
tion component is spatially smooth, the interpolation of the coarse illumination compo-
nent can be considered as an approximation of the illumination in the finer layer. That
approximation makes the iteration converge quickly in the finer layers. These are the key
reasons for the high calculation efficiency of the proposed multi-resolution method.
However, it should be noted that the calculation efficiency will reach a limitation with
the increase of layers. First, the iterations of the optimization procedure increase when
the image pyramid is high. Second, the bottom layer is too coarse to supply a good
illumination initialization for next layers. Thus, more rigid iteration termination condi-
tions have to be satisfied to get the optimal illumination component, which costs much
more time.

Besides raising the calculation efficiency, the Gaussian pyramid-based multi-resolu-
tion method also performs well in colour restoration. The solution for an optimization
problem is actually an approximate solution, which is related to the initialization and the
numerical iteration process. The spatially smooth images are taken as the initial illumi-
nation components in the multi-resolution method, which is consistent with the physical
characteristics of the illumination. Therefore, the layer-by-layer optimization results in a
smoother and greyer illumination than the single-resolution optimization, and more
spatial and chromatic information is preserved in the results.

3.2. Multi-resolution variational Retinex model based on split Bregman iteration

In order to improve the calculation efficiency further and ensure the algorithm stability,
SB iteration is selected to solve the optimization problem in each layer, and is referred to
as the MVRSB iteration.

In each level of the multi-resolution scheme, the minimization of F(/) is a non-linear
variational optimization problem, which is difficult to solve (Chen, Donoho, and
Saunders 2001; Getreuer 2012; Rudin, Osher, and Fatemi. 1992). Certain iterative numer-
ical methods can be used to obtain the approximate solution. The traditional SD method
is a line search method, which is time-consuming and unstable for solving the non-linear
problem. The SB iteration has been demonstrated to be an effective solver for a very
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broad class of L1-regularized problems (Goldstein and Osher 2009; Yin et al. 2008). It has
several advantages: (1) SB iteration converges very quickly, (2) the regularization para-
meter is constant, and (3) the numerical solution is stable (Cai, Osher, and Shen 2009;
Goldstein and Osher 2009; Li, Zhang, and Shen 2012; Zhu and Chan 2008). The TV-
regularized problem is a common example of an L1-norm problem. Therefore, the SB
iteration is employed to solve the optimization problem in each layer of the multi-
resolution scheme.

Due to the coupling between TV and L2 norms, solving the energy function (Equation
1) directly is hard. We wish to split the model into general problems including only L1 or
L2 terms by using SB. Thus, a new variable d is introduced, d = V(i — /), so that we need
to solve this following constrained problem:

min D (IVIP + Mld| + A (exp(i — 1) = 1/2)%) , subject to d = V(i — 1), (7)
’ Q

where i is the observed image, / is the illumination image, and d is an auxiliary variable
to linearize the problem. To transform Equation (7) to an unconstrained optimization
problem, the above problem can be expressed as

)

{““,a"‘“) = min S (VI + M ld] + hy(exp(i — 1) = 1/2)* +5|d = V(i — ) — ]
d Q
b= b 4 V(i — ) — it

(8)

where variable b is an auxiliary variable to accelerate the iteration (Goldstein and Osher
2009), j represents the iteration number, and A3 is a non-negative parameter to control
the contribution of the last term.

Since the TV and L2 terms in the model have been split, the minimization can be
performed efficiently by iteratively minimizing with respect to / and d. The two separate
steps are the following:

Step 1: /1 = min 3 (VI + Ay(exp(i — F) = 1/2)? + % |d — V(i — 1) — bI[)
Q
Step 2: ! =min (M |d| +%|d - V(i— ) - b
Q
)

Thus, to solve Step 1, the fast iterative Gauss-Seidel method is used (Boyd and
Vandenberghe 2004; Nocedal and Wright 2006). In Step 2, because there is no coupling
between the elements of d, then the variable d can be explicitly computed by the
shrinkage operator s(-).

{av+1 = s(V(i— ") + b, A /23) (10)

S(X7 Y) = ‘XT‘* max(\x| -V 0)

S p-af

When the termination condition “ZT«S is met, the iteration stops, where " |-|?
Q

Q
refers to the L2 norm of a variable, and § is the stopping tolerance and set 107 in the
experiments.
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In the solving process, the original non-linear problem is split into two sub-problems,
which are very easy to optimize. Both the Gauss-Seidel iteration and the shrinkage
operator are very fast. Therefore, compared with the traditional gradient methods, the
SB iteration is very efficient in solving the proposed variational model for radiometric
correction.

4. Experiments

To verify the performance of the proposed method, experiments with both synthetic
and real data were performed. The performances and running time of the multi- and
single-resolution schemes were compared. Moreover, the traditional SD method and the
SB iteration method were also compared. The method was developed by C++, and the
trials were undertaken on a Pentium(R) Dual-Core 2 Duo desktop PC (E5200, 3.00 GHz)
with 2 GB memory.

4.1. Synthetic experiments

A remote sensing image with uniform illumination was chosen as the original standard
image for the synthetic experiments. The image contains a single band and 512 x 512
pixels, as shown in Figure 3. Two kinds of degraded images were generated: linear
brightness changing along the horizontal direction, the horizon illumination, and
degraded images are shown in Figures 4(a) and (b); and brightness changing along
the Gaussian kernel spreading direction, as shown in Figures 5(a) and (b).

The results obtained by the existing methods, HF and Gaussian filter-based normal-
ization, and the four methods described in this paper, single-resolution variational
Retinex model based on steepest descent (SVRSD) and split Bregman (SVRSB), MVRSD,
and MVRSB, are compared. The latter four methods outperform the former two methods
by both subjective and objective evaluations. The peak signal-to-noise ratios (PSNRs) for
the former two methods are around 21, lower than 30 obtained by the latter four

Figure 3. The original image for synthetic data.
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Figure 4. The horizontally degraded image and corrected results. (a) The horizon illumination. (b)
The synthetic horizontally degraded image. (c) SVRSD. (d) SVRSB. (e) MVRSD. (f) MVRSB.

()

@ ' @ "

Figure 5. Gaussian degraded image and results. (a) Gaussian kernel spreading illumination. (b)
Gaussian degraded image. (c) SVRSD. (d) SVRSB. (e) MVRSD. (f) MVRSB.

methods. However, the former two methods are very efficient, and the corresponding
running time for the synthetic data is around 2.595 s and 2.304 s. The single-resolution
method, SVRSD, is far slower than the former two. The efficiency of SVRSB and MVRSD is
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Table 1. Parameters, PSNRs, and running time of the different methods
for the horizontally degraded image.

Degraded SVRSD SVRSB MVRSD MVRSB
M - 0.001 0.001 0.001 0.007
A - 0.04 0.05 0.08 0.09
A - - 0.01 - 0.01
At - 0.075 - 0.075 -
PSNR 13.72 29.17 29.15 30.63 30.00
RMSE 52.55 8.87 8.89 7.50 8.06
SSIM 0.782 0.992 0.991 0.996 0.992
DGA 23.83 2.04 1.99 3.84 3.24
Time (s) - 250.28 33.11 16.45 3.27

- Means that the current cell value does not exist.

raised by the numerical optimization and the multi-resolution strategy, respectively. The
running time of MVRSB is close to the former two, and meanwhile MVRSB yields results
with higher PSNRs. The running time for the latter four methods is listed in Table 1.

Corrected images are presented and compared in Figures 4 and 5, and the parameter
settings for each result are listed in Table 1. The parameters were determined based on
the multiple tests on the synthetic data. One parameter varied when the others kept
constant, and it was set when the highest PSNR was obtained.

By visual evaluation, it can be seen from Figure 4 that the non-uniform brightness
caused by the linear illumination has been corrected in the results. Considering the
efficiency of the different methods, the running time of the single- and multi-resolution
methods is listed and analysed (see Table 1). To be fair, the running time was the
average over 10 runs and were recorded when the same or approximate PSNRs (near 30)
were obtained by the four methods. It can be seen that the running time of SVRSB is
almost one-seventh that of SVRSD, the running time of MVRSD is nearly one-fifteenth
that of SVRSD, and the running time of MVRSB is one-eightieth that of SVRSD. This
indicates that both multi-resolution scheme and SB iteration can greatly improve the
calculation efficiency of the proposed model, and the combination of these two mea-
sures is an efficient way to speed up the correction process. The Gaussian degraded
image, shown in Figure 5(b), has brighter centre than the surroundings. The corrected
results of the Gaussian degraded image are shown in Figures 5(c)-(f). It is very clear that
the non-uniform brightness in the four results is effective. Table 2 shows the parameters,
the PSNRs, and the running time. It can be seen that when the PSNRs of the four results
are near 29, the running time of MVRSD and SVRSB is much less than that of SVRSD.

Table 2. The parameter settings, PSNRs, and running time for the
Gaussian degraded synthetic data.

Degraded SVRSD SVRSB MVRSD MVRSB
M - 0.001 0.001 0.001 0.05
A - 0.04 0.05 0.12 0.09
A - - 0.01 - 0.01
At - 0.075 - 0.075 -
PSNR 12.47 29.19 29.17 29.14 29.10
RMSE 60.71 8.85 8.88 8.90 8.94
SSIM 0.717 0.992 0.991 0.993 0.991
DGA 16.10 2.10 2.04 3.57 4.04
Time (s) - 240.58 33.80 18.22 3.90

- Means that the current cell value does not exist.



Downloaded by [Wuhan University] at 07:11 03 June 2016

INTERNATIONAL JOURNAL OF REMOTE SENSING . 1165

Moreover, it is also very clear that the running time of the MVRSB method is much less
than those of the other three methods, and is almost one-sixtieth that of SVRSD.
Additionally, other three quantitative assessment indexes are also used to evaluate the
correction results, including root mean square error (RMSE), structural similarity (SSIM),
and distortion of gain adjustment (DGA), as listed in Tables 1 and 2 (Pal and Porwal 2015;
Wang et al. 2004). The results suggest that these four Retinex-based methods are
effective on the brightness correction, and the correction results are similar when the
running time is recorded and compared.

Through the synthetic experiments and quantitative assessments, it can be seen that
the proposed variational model is effective in correcting different types of non-uniform
brightness. The integration of the multi-resolution scheme and the SB iteration is very
efficient for obtaining the optimal uniform results. It advocates the usage of the
proposed method for the large-scale remote sensing data. However, the distribution
of the brightness may not follow any particular kind of formula in the real scenes. Thus,
more experiments on aerial data are carried out to test the proposed method.

4.2. Aerial data

Three aerial images with non-uniform brightness were employed. Figure 6(a) shows the
first real remote sensing image, with 600 x 400 pixels and three visible bands (red,
green, and blue), clipped from a large scene. It can be seen that the brightness in the
top left part is darker than that in the bottom right part, which can be mainly attributed
to the vignetting effects. The corrected results are shown in Figures 6(b)-(e), (f) is the
illumination calculated by MVRSB, and the parameter settings for the different results
are listed in Table 3. Note that the layer numbers for the multi-resolution methods are all
4 and the determination of the layer number will be explored in Section 4.3.

By visual evaluation, the brightness non-uniformity between the top left part and the
bottom right part has been removed in all four results. Moreover, it is clear that the colours
(combination of images from red, green, and blue channels) of the four results are different.
More chromatic information is preserved in the results from multi-resolution methods, as
shown in Figures 6(d) and (e), which are more visually natural than Figures 6(b) and (c). For
example, the vegetation (which is an important factor affecting human visual feeling) in the
multi-resolution results is much greener than that in the single-resolution results. With regard
to the calculation efficiency aspect, much time can be saved by the multi-resolution scheme
and the SB iteration, as listed in Table 3. The running time of MVRSB is about one-seventieth
that of SVRSD. The above results suggest that MVRSB is an effective and efficient brightness
correction method, with good colour preservation at the same time. In order to further verify
the effect of the proposed correction method, experiments on another two aerial images are
carried out. The second image contains 1000 x 1000 pixels and three bands, shown in
Figure 7(a), and the third image contains 950 x 600 pixels and three bands, shown in
Figure 8(a). Through the experimental testing, the parameter setting of the proposed method
was found to be robust with regard to the aerial data covering urban areas. Therefore, the
parameter settings for these two images were kept the same as with the first image.

The results for the second and the third aerial images are shown in Figures 7(b)-(f) and 8
(b)-(A, and the running time is listed in Table 4. By visual assessment, the same conclusion
can be reached as for the first image, that the multi-resolution methods yield better results,
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Figure 6. The first aerial image and the results. (a) The first aerial image. (b) SVRSD. (c) SVRSB. (d)
MVRSD. (e) MVRSB. (f) The illumination component calculated by MVRSB.

Table 3. Parameters and running time of the different solutions for the
first aerial image.

SVRSD SVRSB MVRSD MVRSB
M 0.001 0.001 0.001 0.001
A 0.01 0.01 0.01 0.01
A - 0.01 - 0.01
At 0.075 0.05

Time (s) 574.94 89.81 40.31 5.01
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Figure 7. The second aerial image and the results.

(d) MVRSD. (e) MVRSB. (f) The illumination component calculated by MVRSB.
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Figure 8. The third aerial image and the results. (a) The third aerial image. (b) SVRSD. (c) SVRSB. (d)

MVRSD. (e) MVRSB. (f) The illumination component calculated by MVRSB.

Table 4. The running time of the second and third aerial images.

Time (s) SVRSD SVRSB MVRSD MVRSB

Data set Il 3075.33 417.86 377.92 46.61
Data set Il 1649.59 216.95 145.86 19.73
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Table 5. The running time for different layer numbers with the three aerial images.

Layer number 2 3 4 5 6 7 8 9 10

Data set | 15.63 6.90 5.06 49.18 161.97 170.81 183.28 189.46 203.74
Data set |l 80.48 53.81 46.12 55.07 70.03 91.55 127.60 195.96 266.20
Data set Il 43.69 2291 20.43 21.46 23.15 25.02 38.02 122.23 146.37

The least running time is in bold.

with uniform brightness and more adequate chromatic information, than the single-resolu-
tion methods. Table 4 shows the running time of the two experiments on these two aerial
data. Compared with the traditional single-resolution SVRSD, MVRSB saves 80% more time.

Integrating the experiments on both synthetic and real aerial data, it can be con-
cluded that the multi-resolution method is efficient for not only raising the calculation
efficiency, but also improving the colour preservation.

4.3. Layer number determination

How many layers is the best is a problem for the multi-resolution-based methods. In order to
explore the influence of the layer number in the multi-resolution scheme, a series of experi-
ments on the three aerial data with different layer numbers was carried out. The correspond-
ing running time for the MVRSB method using different numbers of layers is listed in Table 5.

Here, we take the second aerial image and MVRSB method as an example to analyse the
influence of the layer number. The layer number was changed from 1 to 10, in which 1 is the
single-resolution result, as shown in Figure 7(c), and the results of 2-10 layers are shown in
Figure 9. The brightness variation has been corrected in all the different results. However, it
can be observed that the colour becomes more and more natural as the layer number
increases from 1 to 4. This can be attributed to the ability of the multi-resolution method to
produce smoother and greyer illumination components. When the layer number is greater
than 4, the visual effect of the results is constant. However, with the increase of the layer
number, the size of the bottom layer becomes very small. The more rigid iteration termination
conditions have to be satisfied to get the optimal illumination component, which means that
much more time is needed (as listed in Table 5). The running time is the shortest when the
layer number equals 4 for all the three images used in our experiments. Thus, integrating the
visual effects and running time, 4 is taken as the best layer number for our method.

5. Conclusions

The proposed MVR method is effective and efficient for correcting the non-uniform bright-
ness in remote sensing images. It has been validated that the multi-resolution scheme is not
only an acceleration strategy, but also an effective colour preservation measure, by experi-
menting on both synthetic and aerial data. The SB iteration is appropriate for optimizing the
sub-problems in each layer. The integration of the multi-resolution scheme and the SB
iteration yields satisfactory uniform results by costing less time than other methods.
Moreover, the best layer number has also been discussed and demonstrated to be stable
for different images. Based on the running time, the proposed MVRSB method can save 80%
more time than the traditional SVRSD method. Thus, the method should also be possible to
process larger data, which will be explored in our future study.
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Figure 9. Results of different layer numbers for the second aerial image. Results (a)-(i), respectively,
correspond to layer numbers of 2-10.
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