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a b s t r a c t

Model parameters are a source of uncertainty that can easily cause systematic deviation and significantly

affect the accuracy of soil moisture generation in assimilation systems. This study addresses the issue of re-

trieving model parameters related to soil moisture via the simultaneous estimation of states and parameters

based on the Common Land Model (CoLM). The state-parameter estimation algorithms AEnKF (Augmented

Ensemble Kalman Filter), DEnKF (Dual Ensemble Kalman Filter) and SODA (Simultaneous optimization and

data assimilation) are entirely implemented within an EnKF framework to investigate how the three algo-

rithms can correct model parameters and improve the accuracy of soil moisture estimation. The analysis is

illustrated by assimilating the surface soil moisture levels from varying observation intervals using data from

Mongolian plateau sites. Furthermore, a radiation transfer model is introduced as an observation operator

to analyze the influence of brightness temperature assimilation on states and parameters that are estimated

at different microwave signal frequencies. Three cases were analyzed for both soil moisture and brightness

temperature assimilation, focusing on the progressive incorporation of parameter uncertainty, forcing data

uncertainty and model uncertainty. It has been demonstrated that EnKF is outperformed by all other meth-

ods, as it consistently maintains a bias. State-parameter estimation algorithms can provide a more accurate

estimation of soil moisture than EnKF. AEnKF is the most robust method, with the lowest RMSE values for

retrieving states and parameters dealing only with parameter uncertainty, but it possesses disadvantages

related to increasing sources of uncertainty and decreasing numbers of observations. SODA performs well

under the complex situations in which DEnKF shows slight disadvantages in terms of statistical indicators;

however, the former consumes far more memory and time than the latter.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Soil moisture is a key variable in understanding land surface hy-

rological processes that partition precipitation into runoff and in-

ltration and that control water storage and drainage [20]. As a vi-

al element in the water and energy cycle, soil moisture forms the

oundation of meteorological research, water resource regulation and

gricultural management [9,13,37,54]. Modeling provides temporally

nd spatially continuous simulations and predictions of soil mois-

ure but lacks precision. Meanwhile, many types of observations have

ncertain accuracy and poor resolution, which is due to limited fi-
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ances and the capabilities of the utilized instruments themselves.

any studies have noted that data assimilation has the potential to

roduce continuous and accurate soil moisture data sets that are rec-

nciled in temporal and spatial resolution [6,18,22,27,28,41,52].

The assimilation of data originating from atmospheric and

ceanographic sciences [15,21] takes full advantage of imperfect

odels and finite data in an optimal way by merging the information

mbodied in remote-sensing or ground-based networks into a dy-

amic model to improve forecast trajectory. Many experiments have

een conducted to improve soil moisture estimation using in situ ob-

ervations at the beginning of the development of land or hydrol-

gy data assimilation [5,19,26,55]. However, remote-sensing tech-

iques dominate over in situ measurements in terms of the scope

f an observed area. Low-frequency microwave brightness temper-

ture is highly related to near-surface soil moisture and is only

eakly affected by the atmosphere and clouds. Recently, many soil
d state and parameter estimation methods for soil moisture data
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moisture products have been applied to enhance model simulations

on a regional scale because of the successful launch of a series of

satellites with microwave sensors, such as AMSR-E (Advanced Mi-

crowave Scanning Radiometer for Earth Observing System), ASCAT

(Advanced Scatterometer), and SMOS (Soil Moisture and Ocean Salin-

ity) [3,4,12,39]. However, the large uncertainties that exist in retrieval

algorithms may contaminate the quality of soil moisture products,

which are expected to be used during assimilation. An alternative

method is to directly assimilate brightness temperature into land sur-

face or hydrological models to yield optimal soil moisture estimation

[8,22,24,29,40].

As a fusion method, data assimilation improves model simulation

by effectively handling background error, which is not the sole factor

that influences the capability of data assimilation. Most applications

of state assimilation focus on managing the errors that are embodied

in the background, on observations and on forcing data, as opposed to

employing model structure or parameters [1,25,48,53]. However, the

outcome of data assimilation relies on an unbiased prediction of a

model state, which is largely dependent on the effectiveness and rep-

resentativeness of the model. Discrepancies between model parame-

terization and actual land surface processes account for model errors,

but many studies are conducted under the assumption of a state-of-

the-art model. Considering that parameter uncertainty affects state

estimation to a large extent, the proper specification of model param-

eters as functions of variables when characterizing a state has become

a crucial aspect of recent studies.

It is generally recognized that parameter calibration can dimin-

ish long-term bias, while state updating can weaken stochastic error.

Thus, a calibration period is usually necessary to optimize the param-

eters of a hydrological model. Recently, many scientists have focused

their attention on minimizing parameter errors in land data assimi-

lation by performing simultaneous estimations of states and param-

eters [31,32,34,38,46,47,56]. This joint method expands the data as-

similation framework from only updating model states to updating

both model states and parameters.

Within the framework of EnKF-based assimilation, three types of

algorithms are typically used for simultaneous state and parameter

estimation. EnKF, which was originally proposed by Evensen [14],

is a commonly used sequential algorithm for data assimilation and

has shown strength in dealing with non-linear models because of

its reliance on the propagation of a random ensemble of retrieved

variables. EnKF is also an advantageous approach for highly dimen-

sional applications, mainly because it captures the relevant parts of

an error structure by means of a comparatively small ensemble of

model trajectories, including (1) The state augmentation approach

[2,17,33]. Monsivais-Huertero et al. [33] employed both synthetic and

field observations to understand the effects of simultaneous state-

parameter estimation using an augmented state vector, spatial and

temporal update frequency and forcing data uncertainty in root-zone

soil moisture. (2) The dual filter approach ([30,35,44]; Lü et al., 2008).

Moradkhani et al. [35] presented a dual state-parameter estimation

approach for the sequential estimation of parameters and states in a

conceptual rainfall-runoff model (HyMOD) using observed stream-

flow. The algorithm is recursive, updating parameters and states

in turn, and is mutually affective. (3) The parameter optimization

and state assimilation approach [45,50]. Vrugt et al. [50] proposed

the combined usage of parameter optimization and sequential data

assimilation to facilitate valid treatment of input, output, parame-

ter, and model structural errors in a Sacramento model, which was

designated as the simultaneous optimization and data assimilation

method (SODA).

Given the abundance of studies on joint state and parameter es-

timation and the paucity of investigations about algorithm applica-

bility, the main objective of this study was to evaluate the perfor-

mance abilities of all three of the above-discussed algorithms in a

series of comparative experiments. We developed a data assimila-
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
ion framework based on the common land model (CoLM), with soil

oisture as the state variable of concern. First, we utilized in situ soil

oisture to diagnose the performance of state assimilation at differ-

nt observation intervals; at the same time, we examined the appli-

ability of retrieving information regarding three soil property pa-

ameters (volume percentage of sand, volume percentage of clay and

orosity). Second, we coupled the land surface model to a radiative

ransfer model (RTM), which acted as an observation operator, and

dded the standard deviation of the surface height into the param-

ter space. Brightness temperature was assimilated at different fre-

uency combinations to judge the validity of each method. All of the

oil moisture and brightness temperature experiments were imple-

ented for three different cases: parameter uncertainty, atmospheric

orcing data uncertainty and model uncertainty.

This paper is structurally organized as follows: models and meth-

ds are introduced in Section 2, in which the study area and experi-

ental design are also described. The results of and discussion about

he experiments are explained in Section 3. Section 4 presents other

elated discussions and the final conclusions.

. Data assimilation scheme

.1. Land surface model

The CoLM [10] is an improved version of the Community Land

odel, with one vegetation layer, 10 unevenly spaced vertical soil lay-

rs, and up to 5 snow layers (depending on the total snow depth). We

mployed the CoLM as a dynamic model (model operator) to main-

ain its prognostic variables, which represent soil moisture in this

ork. The soil water equation is:

�z j

�t
�θ j = [qj−1 − qj] − froot, j∗Etr (1)

here �θ j is the change in water content as a result of the last time

tep in layer j, and �zj is the thickness of layer j. froot, j∗ and Etr rep-

esent effective root fraction and transpiration, respectively. qj is the

ater flow at the depth of the zh, j interface between layer j and layer

+1, as calculated by Darcy’s law:

= −K

(
∂ψ

∂z
− 1

)
(2)

and ψ are the hydraulic conductivity and matric potential of soil,

espectively, which vary with soil water content, θ , and soil texture

ased on the scheme proposed by Clapp and Hornberger [7].

a) The hydraulic conductivity of soil, K, is:

K = Ksat s2B+3 (3)

where the wetness (liquid water degree of saturation) is defined

as:

s =
[

θ1

1 − θd − θi

]
(4)

where1 − θdrepresents porosity, and the exponent B is defined as

B = 2.91 + 0.159(%clay). For numerical reasons, when the effec-

tive porosity, (1 − θd − θi), is less than 0.05 in any of two neigh-

boring layers, or when the liquid content is less than 0.001, then

K = 0.

b) The matric potential of soil is ψ , and the matric potential of un-

frozen soil is:

ψ = ψsat s−B (5)

CoLM establishes the relationship between soil texture and soil

thermal and hydraulic parameters as follows.
d state and parameter estimation methods for soil moisture data
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The specific heat capacity of a soil solid is:

ρdcc = (2.128%sand + 2.385%clay)

× 106/(%sand + %clay), (Jm−3 K−1) (6)

The thermal conductivity of a soil solid is:

λd = (8.80%sand + 2.92%clay)/(%sand + %clay), (Wm−1 K−1)

(7)

The saturated matrix potential is:

ψsat = −10 × 101.88−0.013(%sand), (mm) (8)

The saturated hydraulic conductivity is:

Ksat = 0.0070556 × 10−0.884+0.0153(%sand), (mm s−1) (9)

.2. Microwave radiative transfer model

To consider the influence of a canopy on the emitted brightness

emperature from soil, the Q-h model, which is an empirical model,

as revised and selected as an observation operator to link the soil

oisture output from the CoLM with the brightness temperature:

B,H(V) = Tg(1 − �H(V)) exp ( − τc)+Tc(1 − ω)

[1 − exp ( − τc)][1 + �H(V) × exp ( − τc)] (10)

n which TB is brightness temperature, Tg is ground temperature, and

he subscript H(V) denotes vertical (horizontal) polarization. τ c rep-

esents vegetation optical thickness relative to vegetation water con-

ent, as proposed by Jackson and Schmugge [23]:

c = b(100λ)χ wc/ cos γ (11)

n which ω is the single-scattering albedo of the vegetation calculated

y the following empirical formula obtained by Fujii [16]

= 0.00083/λ (12)

n which γ is the incident angle, and λ[m] is the wavelength. b and

are empirical coefficients, which are set to 3.98 and −1.41, respec-

ively, and are identical to the results of the sensitivity case published

y Yang et al. [56]. wc is vegetation water content estimated accord-

ng to Paloscia and Pampaloni [36].

c = exp (LAI/3.3) − 1 (13)

here LAI (in meters squared per meters squared) is the leaf area in-

ex.

� is soil reflectivity written as:

H(V) = [(1 − Q) · RH(V) + Q · RV(H)] exp ( − h) (14)

here Q and h are empirically determined surface roughness param-

ters, defined ash = (2ks cos γ )2, Q = 0.35[1 − exp ( − 0.6s2λ)]. k is

he wave number defined as 2π /λ, and s is the standard deviation of

he surface height. R is the rough reflectivity calculated by:

H =
∣∣∣∣∣cos γ −

√
εr − sin

2γ

cos γ +
√

εr − sin
2γ

∣∣∣∣∣
2

(15)

V =
∣∣∣∣∣εr cos γ −

√
εr − sin

2γ

εr cos γ +
√

εr − sin
2γ

∣∣∣∣∣
2

(16)

r is an angle soil dielectric constant that depends on the soil moisture

and is calculated according to Dobson et al. [11]:

r = [1 + (1 − ρ)(εα
s − 1) + θβεα

f w − θ ]1/α (17)

s = 4.7 + 0.0 j denotes the dielectric constant for a mineral soil in

hich j represents the imaginary part of plural, ρ is the soil porosity,

fw is the dielectric constant of free water, α = 0.65, and β is a soil

exture-dependent coefficient [49]. S and C indicate the percentages

f sand and clay, respectively.

= (127.48 − 0.519 × S − 0.152 × C)/100

+ (1.33797 − 0.603 × S − 0.166 × C)/100 j (18)
 c

Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
.3. Ensemble-based state-parameter estimation methods

.3.1. Ensemble kalman filter

In this study, EnKF is the foundation of all three of the included

imultaneous state and parameter estimation algorithms and is di-

ided into two steps: forecast and analysis. An overview of the EnKF

rocedure follows.

The initial state can be defined as Xa
0

. Then, the ith member, Xa
i,0

,

f the initial state ensemble is obtained by adding the random noise

o Xa
0

.

a
i,0 = Xa

0 + ui ui ∼ N(0, P0) (19)

here ui is the background error vector, which conforms to a

aussian distribution with a zero mean and the covariance matrix P0.

Forecast: In the forecast step, each member of the state realiza-

ions is propagated according to:

f

i,k+1
= M(Xa

i,k, αk+1, βk+1) + wi wi ∼ N(0, Q) (20)

Here, M(•) is a model operator and represents the CoLM in this

ase. The superscripts a and f refer to the states of analysis and fore-

ast, respectively. α and β are atmospheric forcing data and model

arameters, which are used to run the CoLM. The model error is in-

icated by wi, with a zero mean and the covariance matrix Q, and

epresents all of the uncertainties related to the forcing data and the

odel structure.

Analysis: When an observation is available, an observation vector

s assimilated into the model.

∧
Y

,k+1
= H(X f

i,k+1
) (21)

Here, H(•) is the observation operator, which establishes a rela-

ionship between model states and observations and is linear, con-

tituting 0 and 1 in soil moisture assimilation experiments, but is

ubstituted by a non-linear Radiative Transfer Model when directly

ssimilating brightness temperature observations.
∧
Y

i,k+1
is the so-

alled projection of the model state within the observational space.

A linear correction equation is used according to a standard

alman filter to update the forecasted state ensemble members:

a
i,k+1 = X f

i,k+1
+ Kk+1(Yi,K+1 − ∧

Y
i,k+1

) (22)

Yi,k+1 is generated by adding the stochastic perturbation into the

ctual observation Yk+1 at the time k+1, with a zero mean and the

ovariance matrix R, according to:

i,k+1 = Y k+1 + vi vi ∼ N(0, R) (23)

Kk+1 is the Kalman gain matrix at the time k+1, which is calculated

s:

k+1 = P f

k+1
HT (HP f

k+1
HT + R)−1 (24)

P
f

k+1
is the forecast error covariance matrix at the time k+1.

f

k+1
HT is the cross covariance between the model state forecasts X

f

k+1

nd their projections H(X
f

k+1
) within the observation space, while

P
f

k+1
HT is the covariance of H(X

f

k+1
).

Finally, the analysis state variable estimated at the time k+1 is

iven by the averaged value of the ensemble members. The analyzed

nsemble is then integrated forward until the next observation ap-

ears and the process is repeated.

.3.2. Augmented ensemble Kalman filter

AEnKF treats parameter as a type of special state variable by

ugmenting the state vector to transform the parameter estimation

roblem into a state estimation problem. States and parameters are

oncatenated into a single higher-dimensional joint state vector from
d state and parameter estimation methods for soil moisture data
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X = [x1, x2 . . . xm] to X = [x1, x2 . . . xm, β1, β2 . . . βn], where m and n

are the dimensions of x and β , which represent the state and the

parameter, respectively. Thus, parameters are updated with state

updates via EnKF, and the new analysis values of parameters act as

forecast values until the next update process. A detailed description

is in Monsivais-Huertero et al. [33].

2.3.3. Dual ensemble Kalman filter

The DEnKF process is designed to recursively estimate both states

and parameters using two parallel filters. Furthermore, the update

processes between states and parameters are mutually interactive

each time new observations appear. Because this method has been

completely described by Moradkhani et al. [35], only several key steps

are given in this paper.

Parameters are sampled at each time step by Kernel Smoothing to

avoid over-dispersion of the parameter ensemble and a loss of infor-

mation between time points, leading to an inherent gradual change

of the parameters.

β i−
t+1 ∼ N(aβ i+

t + (1 − a)β+
t , h2V +

t ) V +
t = var(β+

t ) (25)

where a = 3δ−1
2δ

and h =
√

1 − a2; δ is a factor between 0 and 1.

The sampled parameter ensemble from above is used to force the

model to generate forecast values of states, which are applied to an

observation operator to produce the forecast observation values re-

quired in the Kalman gain equation for parameters.

K
β
t+1

=
∑

βy
t+1

[∑
yy
t+1

+
∑

y
t+1

]−1

(26)

Then, a brand new parameter ensemble that is acquired from the

first filter is imported to backroll the model to obtain new model state

forecasts. Correspondingly, the state ensemble is similarly updated

using the Kalman gain to correct the state trajectories.

Kx
t+1 =

∑
xy
t+1

[∑
yy
t+1

+
∑

y
t+1

]−1

(27)

� is the operation used to calculate the covariance or cross

covariance.

2.3.4. Simultaneous optimization and data assimilation

SODA is a combination of a parameter optimization algorithm and

a data assimilation algorithm. An inner EnKF loop is set up for state

estimation, while an outer stochastic global optimization loop pro-

duces an assumed parameter set under EnKF conditions by using the

batch calibration strategy SCEM-UA. A detailed description of this

method has been presented by Vrugt et al. [50] and mainly includes

the following steps.

1) Sample according to the prior probability distribution of a param-

eter.

2) Run the model with parameter sets from step (1) in succession,

while concurrently implementing EnKF for state updating.

3) Sort all of the parameter sets according to a predefined cost

function that reflects the discrepancy between the simulation

and observation of a given parameter set. Subsequently, partition

them into a specific number of complexes and shuffle the com-

plexes with new candidates generated by SEM (Sequence Evolu-

tion Metropolis).

4) Check the convergence criteria. If satisfied, terminate the itera-

tion; if unsatisfied, return to step (2).

Theoretically, SODA uses calibration to correct long-term system-

atic biases due to parameter uncertainties and ensemble data assim-

ilation to correct short-term or instantaneous system biases associ-

ated with model structure, input data, and other sources of errors.
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
.4. Description of study area and data

CEOP (Coordinated Energy and water cycle Observations Project)

rovides consistent research-quality data sets with error descriptions

f the Earth’s energy budget and water cycle and their variability

nd trends on interannual to decadal time scales, with the aim

f understanding and predicting continental to local-scale hydro-

limates for hydrologic applications. In this study, we chose to

valuate the CEOP reference sites located in Mandal Govi, Mongo-

ia, which are covered by a flat area of semiarid grassland. There

re five automatic weather stations (AWS) and twelve automatic

tations for soil hydrology (ASSH) in this area. The CEOP website

http://data.eol.ucar.edu/master_list/?project=CEOP/EOP-3/4) pro-

ides additional details about the corresponding instrumentation

nd data collection methodology.

Meteorological data (wind speed, air temperature, specific humid-

ty, precipitation, and atmospheric pressure) that were measured di-

ectly at ground sites (BTS, DRS, DGS, and MGS) from October 1, 2002

Julian day 274), to September 30, 2003 (Julian day 273), were used

o drive the CoLM. Missed in situ observations and downward short-

ave and longwave radiation were obtained from hourly intermedi-

te gridded model output data produced by the JMA (Japanese Mete-

rological Agency) global data assimilation system. JMA-MOLTS is a

hortened product from the six-hour model forecast in the data as-

imilation cycle that has responded to the CEOP model output re-

uest since Oct 1st, 2002. Soil temperature and soil moisture mea-

urements are available for BTS at depths of 3, 10, 20, and 40 cm and

or the other three stations at depths of 3, 10, 40, and 100 cm.

To take atmospheric forcing data uncertainty into consideration,

nother series of meteorological data that were extracted from GLDAS

Global Land Data Assimilation System) were employed, with sup-

lementary precipitation from the TRMM (Tropical Rainfall Measure-

ent Mission) because the precipitation data from GLDAS are miss-

ng. All of the meteorological data sets are consolidated into hourly

ata; thus, the CoLM runs and outputs hourly.

.5. Experimental design

.5.1. Assimilation experiments

Given the limited comprehensive annual atmospheric data due to

ata gaps caused by the failure of instruments, one year of repeated

orcing data are required to spin-up the CoLM in a 20-year period.

his study did not consider the frozen soil process; thus, the assim-

lation experiments were conducted over 120 days, commencing on

ay 31, 2003 (Julian day 151). The solum of the model was restrat-

fied to conform to the observation depths at the four ground sites

efore the assimilation experiments and all ten layers of soil mois-

ure compose the state vector to be estimated. For the purpose of

valuating the feasibility of AEnKF, DEnKF and SODA, soil moisture

nd brightness temperature assimilation experiments were designed,

nd three cases were performed according to the different sources of

ncertainty in both experiments.

ase 1. We hypothesized that the discrepancy that existed between

he simulation and the actual situation originated only from param-

ter uncertainty. Synthetic experiments provided a controlled envi-

onment to mimic reality but focused on the parameter uncertainty.

herefore, the initial conditions for the reference run and the exper-

mental run were derived from the spin-up period that was imple-

ented with ‘true’ parameters (determined through an experiment

erformed by Yang et al. [56]) and parameter sets that were uniformly

ampled in the specific ranges (defined according to the model de-

ault and the physical range). The ‘true’ observations were generated

y the reference run and were imported into RTM to export ‘true’

rightness temperatures. All of the experiments were forced by the
d state and parameter estimation methods for soil moisture data
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Table 1

Summary of perturbation parameters for atmospheric forcing data and the cross cor-

relation coefficients used to generate random perturbations for the different variables.

Variables Noise type Standard deviation Cross correlation

Precipitation Multiplicative 0.5 [1.0 −0.8 0.5 0.0,

Shortwave radiation Multiplicative 0.3 −0.8 1.0 −0.5 0.4,

Longwave radiation Additive 30 W/m2 0.5 −0.5 1.0 0.4,

Air temperature Additive 2 K 0.0 0.4 0.4 1.0]
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ame forcing data set that was observed in situ to disregard the un-

ertainties in the forcing data.

ase 2. We hypothesized that a discrepancy existing between the

imulation and the actual situation originated from both parame-

er and atmospheric forcing data uncertainties. The “true” states and

rightness temperature were produced in the same manner as those

n Case 1. The only difference between Case 1 and Case 2 is that

he meteorological data that were used in the experimental runs in

ase 2 were produced from GLDAS and TRMM to include atmospheric

orcing data uncertainty. Apart from that, the postulates were the

ame as those for Case 1.

ase 3. We hypothesized that parameter, atmospheric forcing data

nd model uncertainties together contributed to the discrepancy ex-

sting between the simulation and the actual situation. Due to these

ncertainties, the measured soil moisture will be inconsistent with

he simulated soil moisture. Therefore, the measured soil moisture at

ach site was taken as the “truth” in this case, and the other condi-

ions are the same as those in Case 1. Furthermore, synthetic bright-

ess temperature was generated by replacing soil moisture and soil

emperature (the input variables of RTM) with the corresponding in

itu values.

In the soil moisture assimilation experiment, the first layer soil

olumetric water content from the reference run (Case 1 and Case 2)

r the in situ observation (Case 3) served as the “truth” observation,

ith the observation ensemble being acquired by disturbing the

truth” with a 10% multiplicative error, and the assimilation frequen-

ies being fixed to 0.5 day, 1 day, 3 days and 8 days to investigate the

ffect of the quantity of observations. In this part of the experiment,

oil texture (volume percentage of sand, volume percentage of

lay) and porosity from the CoLM are estimated using observed soil

oisture. To guarantee the physical meaning of the parameters in the

pdate process, the sand and clay content were re-checked to ensure

hat their sum was less than 100%. If the sum exceeded 100% after

pdating, the sand and clay content were adjusted by subtracting

he quantity((sand + clay) − 100)/2.0. In addition, “Sim” represents

he ensemble average of the model simulations without assimilation

sing the initial state and parameter condition stemmed from the

pin-up for the experimental run (assimilation experiments).

In the brightness temperature assimilation experiment, the syn-

hetic brightness temperature observation was assumed to have

hite Gaussian noise with a standard deviation of 2 K. Because of the

igh sensitivity of horizontal polarization to vegetation and the low

ensitivity of higher frequencies to soil moisture, 6.9 and 10.7 GHz

requencies with vertical polarization (hereafter referred as 6.9 V and

0.7 V) were merged via assimilation to retrieve states and param-

ters. In this paper, the experimental results were compared among

ifferent frequency combinations (6.9 V, 10.7 V, 6.9 V + 10.7 V). To

mitate authentic conditions, synthetic brightness temperatures were

reated as AMSR-E data and were assimilated at 1:00 a.m. (descend-

ng orbit) every day. The parameters to be estimated in this part of the

xperiment include volume percentage of sand, volume percentage

f clay and porosity, as well as the standard deviation of the surface

eight from the RTM.

The initial state ensemble is selected for up to 50 realizations for

ll cases in the spin-up period before the assimilation experiment.

he outputs from the CoLM in the experimental run were postulated

o be mostly influenced by the parameters and forcing data in our

tudy. To account for errors associated with forcing data, normally

istributed additive perturbations or log-normally distributed multi-

licative perturbations were applied, depending on the variable. Un-

er that assumption, a positive perturbation of the downward short-

ave radiation tends to be associated with negative perturbations of

he longwave radiation and the precipitation, and vice versa. Table 1

isplays the standard deviations and cross-correlations for the per-
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
urbations of precipitation, shortwave radiation, longwave radiation

nd air temperature. Table 2 lists the specified ‘true’ parameters and

ampling range used in the three cases. As a result, each of the mean

alues of the perturbed factors was equal to zero for the additive case

nd to one for the multiplicative case.

.5.2. Evaluation metrics

To assess the performance levels of the different algorithms (the

esults of soil moisture and other essential states in water and en-

rgy balance), we defined several evaluation factors, including the

oot mean square error (RMSE), the mean bias error (MBE) and the

orrelation coefficient (R), which are described as follows:

MSE =
√

1

T

T∑
t=1

(Xt − Xtrue,t)
2

(28)

BE= 1

T

T∑
t=1

(Xt − Xtrue,t) (28)

=

T∑
t=1

(Xt − X)(Xtrue,t − Xtrue)√
(Xt − X)

2
(Xtrue,t − Xtrue)

2
(29)

n which T is the total number of steps, and Xt and Xtrue, t represent

he simulation or assimilation values of states in different cases and

he true values at step t, respectively. The horizontal line above the

xpression indicates mean value.

To deploy the widespread application of simultaneous state and

arameter estimation into fields involving tremendous data, such as

n regional data assimilation, experiments spanning long spans of

ime and coupling with other models, the computational time (CT)

as also used to compare computational efficiencies. The algorithms

hat were run with a 2.80-GHz Intel 860 CPU and CT are basically

ounted in seconds, except that the time-consuming SODA is calcu-

ated in minutes.

. Results and discussion

To evaluate the validity of each of the three above-discussed

ethods of resolving the parameter problem, we conducted three

ases of both soil moisture and brightness temperature assimilation,

nd the results of these experiments were subsequently analyzed and

ompared. The four sites showed similar results in most cases; there-

ore, the results for BTS are considered to be representative in the

ollowing discussion.

.1. Assimilation of surface soil moisture

Table 3 displays the statistical indicators RMSE and MBE of the

oil moisture predictions in the first layer derived from Case 1. It is

pparent that all three methods perform well in state estimation,

hile the RMSEs of AEnKF, DEnKF and SODA change from 0.0047,

.0048 and 0.0036 to 0.0109, 0.0120 and 0.0065, respectively, with

he observation interval varying from 0.5 to 8 days. It is well known

hat a cutback in observation quantity can degenerate assimilation
d state and parameter estimation methods for soil moisture data
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Table 2

List of the specified ‘true’ parameters and sampling range used in the three cases.

Sites Parameters Longitude Latitude

Sand Clay Porosity RMS(cm)

BTS 47 28 0.456 0.06 107°08′32.2′′ 46°46′35.4′′
DGS 47 28 0.377 0.06 106°22′06.8′′ 46°07′38.3′′
DRS 47 28 0.4105 0.06 106°42′53.0′′ 46°12′31.2′′
MGS 47 28 0.361 0.06 106°15′52.2′′ 45°44′34.9′′
Sampling range [0,60] [20,80] [0.1,0.5] [0.01,0.2] / /

Table 3

The RMSEs and MBEs of soil moisture varying with observation intervals between the results of simula-

tion/assimilation and the ‘truth’ during May 31, 2003 to September 27, 2003 in Case 1. Note: soil moisture

serves as observation.

BTS RMSE MBE

0.5D 1D 3D 8D 0.5D 1D 3D 8D

Sim 0.0161 0.0108

AEnKF 0.0047 0.0043 0.0076 0.0109 −1.3e−04 5.5e−04 6.0e−04 −0.0025

DEnKF 0.0048 0.0053 0.0067 0.0120 1.6e−05 3.8e−04 0.0011 −0.0018

SODA 0.0036 0.0038 0.0055 0.0065 0.0019 0.0013 0.0026 0.0031
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Table 4

Statistic indicators of soil moisture between the re-

sults of simulation/assimilation and the measure-

ments in situ during May 31, 2003 to September 27,

2003 in Case 3. Note: soil moisture serves as observa-

tion one per day.

RMSE MBE R CT

Sim 0.0578 0.0508 0.6291 14.0 s

AEnKF 0.0276 0.0108 0.7449 15.4 s

DEnKF 0.0230 0.0049 0.7678 31.5 s

SODA 0.0211 0.0053 0.7968 126 m
results. All three methods showed similar performance for the dens-

est observations, but SODA outperformed the other two in cases with

less observations, mainly because the optimization process that is

embedded in SODA uses information regarding entire time series.

The extremely small values of MBEs from AEnKF and DEnKF do not

contradict the above conclusions, but the continuous adjustment of

parameters with AEnKF and DEnKF causes an offset of model param-

eters. In addition, SODA provides a unique set of optimum parame-

ters during the assimilation period, causing a deviation in the same

direction, and only RMSE acts as an objective function. The superior-

ity of AEnKF and DEnKF has been discussed since the two methods

first appeared. In principle, AEnKF should provide better estimates of

states and parameters than DEnKF because it explicitly accounts for

their cross-covariance. However, the estimation process can lead to

unstable results because of complex interactions between states and

parameters in nonlinear dynamic systems. In Case 1, AEnKF produces

more accurate soil moisture estimations than DEnKF, which can be

ascribed to the simple hypothesis of sole uncertainty from model pa-

rameters. The SODA-optimized values for sand content, clay content

and porosity generated by one observation per day are 46.98, 27.54

and 0.45, respectively. Correspondingly, the parameters of AEnKF and

DEnKF gradually stabilized to 37.77, 30.30, 0.40 and 39.24, 31.76, 0.38.

SODA produces the best parameter estimation because of its more

extensive usage of information, but AEnKF and DEnKF progressively

converge more closely to the ‘true’ values.

For Case 2, forcing data uncertainty is introduced into the exper-

iments, and the characteristics of the results agree with the conclu-

sions drawn from Case 1. Compared with the ‘true’ soil moisture from

layer one, AEnKF (DEnKF, SODA) reduces the RMSE from 0.0478 (Sim)

to 0.0364 (0.0349, 0.0351) when the observation interval is one day.

AEnKF suffers from uncertainties arising from multiple aspects, but

the three methods still produce superior soil moisture estimates rela-

tive to those produced by the simulation. Parameter estimation leads

to excellent results from SODA for sand content, clay content and

porosity, which were 47.72, 27.77, and 0.46, respectively, while the

corresponding values from AEnKF (DEnKF) are approximately 38.24,

32.37 and 0.39 (50.29, 29.80 and 0.46).

The soil moisture assimilation results from four layers (3, 10, 20,

and 40 cm) compared with the CoLM simulations, and in situ mea-

surements from Case 3 are shown in Fig. 2. AEnKF, DEnKF and SODA

improve open loop estimations of surface-layer soil moisture to a

large extent, the curves of which draw near to the true values. In

the deeper layers (Fig. 2(b)–(d)), all of the assimilation algorithms
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
erformed fairly well compared with the simulations, except that

EnKF produced very little improvement. This is illustrated by the

arameter estimations. Table 4 shows quantitative analyses of the re-

ults shown in Fig. 2(a). All three of the methods considerably reduce

he RMSEs by more than 50% (52% for AEnKF, 60% for DEnKF and

3% for SODA). The MBEs show great improvement in assimilation,

hich confirms the RMSE evaluation. The correlation coefficient (R)

btained with SODA (AEnKF and DEnKF) increased to 0.7968 (0.7449

nd 0.7678) from 0.6291. Taking computational time into account,

hich is also displayed in Table 4, AEnKF and DEnKF are highly ef-

cient, but DEnKF has a higher CT value because of its two separate

pdate procedures for states and parameters. The optimization pro-

edure with repeated resampling of SODA cuts down its computa-

ional efficiency. The positive influence of observation quantity on as-

imilation was verified in Case 1, and the consistent results in Cases 2

nd 3 using different observation intervals are omitted.

Figs. 3 and 4 describe the parameter estimations and evolution

rocesses for the parameter ensembles corresponding to the above

esults for the states. It can be observed from Fig. 3 that DEnKF and

ODA produce similar parameter estimations, while AEnKF shows a

it of discrepancy. As previously observed, overestimated porosity

eads to overestimated soil moisture in the deeper layers because soil

orosity determines saturated water content. The larger the poros-

ty, the more water the soil is able to store. Considering model struc-

ure error, the optimum parameters obtained by the three methods

pparently differ from in situ measurements. The reliability of each

f the three parameter sets is discussed in the final part of this sec-

ion. The 50th and 100th percentile confidence intervals are indicated

n Fig. 4 by varying grayscales. The convergence for AEnKF is worse

han for DEnKF, especially when observational information is defi-

ient (not shown). DEnKF can avoid the static evolution of parameter
d state and parameter estimation methods for soil moisture data
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Table 5

The RMSEs and MBEs of soil moisture varying with observation frequencies between the

results of simulation/assimilation and the ‘truth’ during May 31, 2003 to September 27, 2003

in Case 1. Note: brightness temperatures serve as observation.

BTS RMSE MBE

6.9 V 10.7 V 6.9V + 10.7 V 6.9 V 10.7 V 6.9V + 10.7 V

Sim 0.0161 0.0108

AEnKF 0.0064 0.0079 0.0063 −0.0029 0.0043 −0.0016

DEnKF 0.0083 0.0187 0.0082 0.0061 0.0171 0.0038

SODA 0.0072 0.0070 0.0068 0.0033 0.0043 0.0022
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Table 6

Statistic indicators of soil moisture between the re-

sults of simulation/assimilation and the measurements

in situ during May 31, 2003 to September 27, 2003 in

Case 3. Note: brightness temperatures of 6.9 GHz serve

as observation.

RMSE MBE R CT

Sim 0.0578 0.0508 0.6291 14.6 s

AEnKF 0.0319 −0.0071 0.3990 16.0 s

DEnKF 0.0312 −0.0120 0.4811 33.2 s

SODA 0.0281 0.0030 0.5436 158 m
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Fig. 1. Daily precipitations of AWS (In-Situ observation) and TRMM in BTS site.
nsembles in a few observations because of the inherent convergence

f the Kernel Smoothing Sampling that is implemented within it.

The Taylor diagrams pictured in Fig. 5 show the results for all four

tudy sites in Case 3 when assimilating soil moisture once per day.

aylor diagrams [43] provide a way of graphically summarizing how

losely a pattern (or a set of patterns) matches a set of observations.

he position of each letter on the plot summarizes the performance

f the corresponding experimental result. The similarity between two

roups of soil moisture is quantified in terms of the correlation (R),

he centered root-mean-square difference (RMSD) and the amplitude

f their variations, represented by their standard deviations (SD).

OBS’ indicates the in situ measurement values, and the letters ‘A’,

B’, ‘C’ and ‘D’ refer to the results from Sim, AEnKF, DEnKF and SODA,

espectively. The green contours indicate the RMSD values, which are

roportional to the distance to a point on the x-axis that is identified

s ‘OBS’. For BTS, it can be observed that SODA has the best agreement

ith the observations, as assessed by the most approximate SD value

0.0322) (SD of the observations indicated by dashed arc), with the

argest R value and smallest RMSD value (0.0204). AEnKF and DEnKF

how similar R values; however, DEnKF produces better agreement

ith the observations (with a slightly lower RMSD of 0.0225 and

n SD of 0.0340). For the other sites, each of the three methods has

pproximately the same correlation with the observations (0.9),

hich is distinctly better than that produced by Sim. Although there

s not much difference between the RMSD values for AEnKF, DEnKF

nd SODA in DGS and DRS, DEnKF has less variability (0.0318 in

GS, 0.0308 in DRS) compared to the observed values (0.0359 in

GS, 0.0358 in DRS) than the others. AEnKF performed poorly for

GS, with an RMSD of 0.0280 and an R of 0.8676, both of which

re inferior to DEnKF and SODA. The latter two methods both have

bservation correlations of more than 0.88 and RMSD values less

han 0.02.

.2. Assimilation of AMSR-E brightness temperature

Table 5 displays the RMSE and MBE values in the first layer of

ase 1, in which the observations are set as 6.9 V, 10.7 V, and both

.9 V and 10.7 V. SODA settles the RMSE in the proximity of 0.007

nd shows a slight advantage when two frequencies are used si-

ultaneously (0.0068). The RMSEs of AEnKF (DEnKF) range from

.0064 (0.0083) to 0.0079 (0.0187), reaching minimums of 0.0063

nd 0.0082 when assimilating both 6.9 V and 10.7 V. This clearly indi-

ates that AEnKF is always better than the other two methods, which

ave finite uncertainties. Assimilating brightness temperatures at

.9 V achieves better performance than doing so at 10.7 V without

xception because low frequency is more sensitive to changes in soil

ater content and standard deviation of surface height. The improve-

ent of statistical indicators from Sim demonstrates that more accu-

ate soil moisture estimation is achieved when parameter estimation

s taken into consideration. MBE confirms the analysis of RMSE, and

he SODA parameters (47.05 for sand, 27.83 for clay, 0.46 for porosity

nd 0.066 for RMS) were closest to the ‘true values’ in the 6.9 V as-

imilation experiment. The same parameters for AEnKF (DEnKF) con-

erged at 39.57 (38.50), 27.91 (30.24), 0.43 (0.43) and 0.080 (0.085).
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
In Case 2, in which brightness temperature was assimilated at

.9 V, the soil moisture RMSE values of AEnKF and DEnKF drop from

.0535 of Sim to 0.0407 and 0.0375. SODA reaches the lowest RMSE of

.0332 and produces a precise estimation of soil parameters (47.20 for

and, 33.96 for clay, 0.46 for porosity and 0.059 for RMS). Moreover,

he porosity obtained from AEnKF (DEnKF) still produces a satisfying

alue of 0.47 (0.49), but sand, clay and RMS steadily reach unrealistic

alues of 37.65, 54.87 and 0.030 (58.05, 38.58 and 0.100), respectively.

In Fig. 6 (a)–(d), the in situ measurements and soil moisture curves

rom Case 3 at four different depths (3, 10, 20, and 40 cm) are plotted,

here the brightness temperature was assimilated at 6.9 V. AEnKF,

EnKF and SODA each enhance soil moisture estimation not only

t the surface layer but also at deeper layers on the basis of state-

arameter estimation. The reliable estimations of the three algo-

ithms for the deeper layers mostly depend on the settlement of bi-

sed parameters. Table 6 provides further insights into the statisti-

al results in Fig. 6. AEnKF, DEnKF and SODA successively reduce the

MSE values from 0.0578 to 0.0319, 0.0312 and 0.0281, and both RM-

Es and MBEs demonstrate remarkable improvement in soil mois-

ure estimation. Nevertheless, the correlation coefficients for all three

lgorithms are far from satisfactory, showing no enhancement over

im. As can be observed in Fig. 6, the lag of the truth curve results in

oor R values. Compared with the precipitation shown in Fig. 1, we

re of the opinion that the new sets of parameters estimated by the

hree algorithms quickly respond to the forcing data, while in real-

ty the delivery of soil water happens at specific times after rainfall.
d state and parameter estimation methods for soil moisture data
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Fig. 2. Comparisons of day-average soil moisture of simulation (Sim), both states and parameters update (AEnKF, DEnKF and SODA) with the measurements in situ corresponding

to Table 4. (a) 5 cm, (b) 10 cm, (c) 20 cm, (d) 40 cm.

Fig. 3. The results of parameters with assimilating soil moisture one per day of BTS in

Case 3.
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imilar to the soil moisture assimilation experiment, the computa-

ion time of AEnKF, DEnKF and SODA in this case increases progres-

ively, as shown in Table 6.

The parameters displayed in Fig. 7 correspond to the aforemen-

ioned experimental results shown in Fig. 6. It is clear that the sand

ontent, clay content and porosity of AEnKF and DEnKF present sig-

ificant coincidence and that SODA strongly improves the estima-

ion values, except the extreme RMS. Parameterization contributing

o model error determines the nonconformity between the calculated

arameters and the true parameters. The reliability of the three sets

f parameter values will also be discussed in the final part of this sec-

ion. Fig. 8 illustrates the 50th and 100th percentiles of the parame-

er ensembles and shows that the evolution speed of AEnKF is similar

o that of DEnKF. It is apparent that parameter variability appears to

onverge when assimilating brightness temperatures.

The Taylor diagrams (Fig. 9) show the RMSD, SD and R values for

oil moisture at the four sites assessed in Case 3 when the bright-

ess temperature was assimilated at 6.9 V. ‘OBS’ indicates the true

n situ values, and the letters ’A’, ‘B’, ‘C’ and ‘D’ refer to Sim, AEnKF,

EnKF and SODA, respectively. The correlation coefficient for SODA

mproved from 0.7773 to 0.8250 for DRS, while the R values of the

ther algorithms or at the other sites demonstrate a failure in en-

ancing the matching of the assimilated and measured values. Based

n the values included in Table 6, this consequence does not dete-

iorate the other statistical indicators, as in BTS. Actually, discussion

egarding the other sites has been omitted because of the striking

imilarity with BTS in terms of RMSE. Considering the overall perfor-

ance levels of the three algorithms, SODA stands out for its distinc-

ive parameter optimization, and DEnKF is superior to AEnKF when

ssessing complicated conditions.

Six sets of parameter estimation values (three algorithms mul-

iplied by two types of observation assimilations) from Case 3 were

mported into the CoLM to replacing the original values that were

sed to simulate soil moisture. These soil moisture results were

ompared with the in situ measurements that are displayed in

ig. 10. A rapid decrease in soil moisture occurs in the first layer

t the beginning of assimilation period, as shown in Fig. 10(a) and

b), revealing a rapid modification from the overestimation of open

oop values. In Fig. 10(a), the curves produced by DEnKF and SODA

re well-matched, and their tight connection with the black curve

representing the in situ measurements) demonstrates that the pa-

ameters are trustworthy. The overestimation of porosity by AEnKF
d state and parameter estimation methods for soil moisture data
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Fig. 4. The parameters ensemble evolutions of AEnKF (left) and DEnKF (right) corresponding to Fig. 3.

Fig 5. Taylor diagrams of soil moisture of BTS, DGS, DRS and MGS in Case 3 with assimilating soil moisture once a day (‘A’ to ‘D’ refer to the results from Sim, AEnKF, DEnKF and

SODA, respectively).
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Fig. 6. Comparisons of daily mean soil moisture of simulation (Sim), both states and parameters update (AEnKF, DEnKF and SODA) with the measurements in situ corresponding

to Table 6. (a) 5 cm, (b) 10 cm, (c) 20 cm, (d) 40 cm.

Fig. 7. The results of parameters assimilating 6.9 GHz brightness temperature of BTS in Case 3.
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is attributed to an overestimation of soil moisture. In Fig. 10(b), the

curve generated by SODA is close to the truth and to the other two

curves and is also similar to the curve in Fig. 10(a) due to the similar

parameter estimations that were used. Careful inspection of the

behavior patterns of the states and parameters confirms the opinion

that it is rare for either to simultaneously reach interconsistency

with the truth due to the model structure error.

Another possible reason for such results is that in situ measure-

ments of soil water dynamics in arid areas contain insufficient in-

formation to warrant a successful estimation of parameters [42]. As

shown in Figs. 3 and 7, the maximum surface soil water content is

less than 0.2, leading to an absence of soil water saturation at the in-

dicated porosity estimation. The factors that contribute toward con-

fining the porosity to approximately 0.2 may also in many occasions

affect other parameters. A wide range of soil moisture states is re-

quired to reliably constrain soil hydraulic function. Moreover, the use
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
f a single metric also conspires against achieving the desired identi-

ability, as noted by Vrugt et al. [51].

.3. Issues related to state-parameter estimation

A remarkable systematic deviation in soil moisture exists in the

riginal simulation used in this study, as shown in Figs. 2 and 6.

t is clear that EnKF alone is outperformed by all other methods

not shown), as it consistently maintains a bias. Only state update

hereafter referred as EnKF) is inappropriate under the framework

f EnKF, which has a basic assumption that both prediction and ob-

ervation are unbiased. Although the state results (soil moisture) of

nKF appear to be reasonable and more valid than open loop values

not shown), they violate the basic assumption of Kalman filter ap-

roaches, which is also reflected in the inferiority of the results pro-

uced by AEnKF, DEnKF and SODA in most cases. Therefore, a joint
d state and parameter estimation methods for soil moisture data

16/j.advwatres.2015.08.003
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Fig. 8. The parameters ensemble evolution of AEnKF (left) and DEnKF (right) corresponding to Fig. 7.

Fig 9. Taylor diagrams of soil moisture of BTS, DGS, DRS and MGS in Case 3 with assimilating 6.9 GHz brightness temperature (‘A’ to ‘D’ refer to the results from Sim, AEnKF, DEnKF

and SODA, respectively).
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Fig 10. Comparisons of the simulations calculated by the parameters set derived from

AEnKF, DEnKF and SODA with assimilating (a) soil moisture and (b) brightness temper-

ature in Case 3 to the measurements in situ.
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states-parameter estimation is essential to correct the long-term bias

produced by parameter estimation and to correct the random error

produced by state assimilation when a model simulation is subjected

to a large bias. Unlike hydrologic models that use historical discharge

data to calibrate parameters before assimilation, a calibration pro-

cess is rarely carried out with land-data assimilation. The intention

of parameter estimation in this study was to correct parameters in a

land-surface model. This serves the same purpose as calibration in

hydrologic models, with the only difference being that this process

is carried out during assimilation instead of preceding it. In addition,

this is the exact signification of using joint states-parameters estima-

tion methods in land-data assimilation, as it does not require sub-

stantial historical data.

A noticeable issue of Dual-EnKF is that the same observation is

used twice during one assimilation process (first updating parame-

ters, then updating model states), and the updated parameters in-

deed impact the model states to be updated. This may result in an

over-correction issue. However, in our experiments, although the im-

pact of overusing observational information may occur at the be-

ginning of an experimental window, when the parameters progres-

sively converge to stable values, the observations have little effect on

the parameters and therefore this type of impact gradually vanishes.

Moreover, DEnKF still shows good performances in both soil moisture

and brightness temperature assimilation experiments, which con-

firms the feasibility of DEnKF. The main problem that exists in DEnKF

is that model states may not represent an unbiased estimation be-

cause of the excessive usage of observation in this method.

Computational efficiency is also a remarkable issue, especially for

an operational data assimilation system. SODA generally achieved

the best performance in estimating model parameters and states in

all of the experiments, which is because in principle SODA under-

goes calibration and thus removes bias due to parameter errors by

using the information contained within an entire time series, while

AEnKF and DEnKF only employ observational information that was

collected at the time of an available observation. It seems that AEnKF
Please cite this article as: W. Chen et al., Comparison of ensemble-base

assimilation, Advances in Water Resources (2015), http://dx.doi.org/10.10
nd DEnKF are not comparable to SODA. However, AEnKF and DEnKF

lso achieved acceptable levels of accuracy in these experiments and

ave their own advantages, including flexibility, implementation sim-

licity, and reduced inner storage and operational time requirements.

hese benefits make AEnKF and DEnKF more suitable for operational

ata assimilation systems on regional and global scales.

. Conclusions

In this paper, three simultaneous state-parameter estimation al-

orithms were applied to both soil moisture and brightness temper-

ture assimilation to compare their performance levels. Each has its

wn pros and cons. First, AEnKF is highly efficient at producing accu-

ate results of both states and parameters under situations in which

n explicit relationship exists between them. However, when a high

onlinearity exists between states and observations (brightness tem-

erature assimilation) or multiple uncertainties make the relation-

hip between states and parameters ambiguous (Cases 2 and 3), the

uperiority of AEnKF vanishes. In addition, AEnKF shows no improve-

ent in cases with sparse observations. Second, SODA requires a lot

f time, although it produces the most accurate states and parameters

n complicated cases (especially in Case 3), and shows a slight change

hen the quantity and sensitivity of observations declines (the 8-day

oil moisture and the vertical brightness temperature of 10.7 GHz as-

imilation), both on account of its optimization process. Third, DEnKF

ossesses similar characteristics to the other two. In short, DEnKF

ossesses adaptability to conditions in which AEnKF loses effective-

ess, but it never transcends SODA in terms of accuracy. However,

onsidering the computational time requirement of SODA, DEnKF still

as relative merit. Thus, under the condition that a numerical model

r simple physical model is used for data assimilation or when an

bvious relationship exists between states and parameters, AEnKF is

he optimal choice. However, on a large-scale or under a long-term

ssimilation timeframe, DEnKF should be chosen because of its high

fficiency and excellent error handling in intricate situations. SODA

hould be selected when pursuing accuracy in the case of scarce ob-

ervations, regardless of its computational time requirements.

We chose soil texture as a parameter in this study and adopted

nternal parameterization to calculate soil thermal and hydraulic pa-

ameters. However, whether such parameterization should be inher-

nt in a model remains questionable; thus, direct estimations of soil

hermal and hydraulic parameters or alterations in parameterization

ill be addressed in future work. As discussed above, the limited vari-

bility in the observations that were assimilated can definitely affect

roper parameter identification. Therefore, using more than a single

tate variable may warrant a reliable estimation of parameters.

In terms of brightness temperature assimilation, there is still

uch work to be performed in the future. Soil temperature as an im-

orted variable of a radiation transfer model is also a significant factor

hat determines brightness temperature. Moreover, the details of the

adiative Transfer Model used here should be adjusted for different

egions; for example, microwaves have deeper penetration depths

n arid areas. To eventually assimilate brightness temperatures ob-

erved from satellites, such issues should be explored in our ongoing

esearch.
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