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With the rapid development of sensor manufacturing technology, high spatial resolution (HR) images are
becoming more easily acquired and more widely used. However, it is common that a region of interest
(ROI) cannot be completely acquired from a single image. Image mosaicking can resolve the problem
by creating a new large-area image from multiple images with overlapping areas. A typical mosaicking
procedure for HR remote sensing images includes three successive steps: tonal adjustment, seamline
detection, and image blending. In this paper, we propose a robust mosaicking procedure featuring novel
ideas in all three steps, which is aimed at processing HR remote sensing images of urban areas. Firstly, the
tonal adjustment is realized by a local moment matching (LMM) algorithm, which solves the nonlinear
photometric correlation problem between adjacent images. Secondly, an automatic piecewise dynamic
program (APDP) algorithm for seamline detection is proposed to detect the optimal seamline on the over-
lapped area. Last but not least, we propose a cosine distance weighted blending (CDWB) method to
ensure that the seamline is as invisible as possible. Compared to the state-of-the-art methods, the
proposed method was proved to be effective in experiments with high resolution aerial and satellite
images.
© 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction

In the last decades, high spatial resolution (HR) remote sensing
images have become widely used to embody abundant geographic
information. However, the narrow geographic range within a
single image is one of the main factors which limits the further
application of HR images. As we know, in terms of images with
the same size, the higher the spatial resolution, the narrower the
geographic range. As a result, the region of interest (ROI) often can-
not be included in a single image. How to acquire a complete ROI
from HR images has always been a hot topic. Accordingly, image
mosaicking has been developed to solve the problem. In a nutshell,
image mosaicking is the process of merging two or more images
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with overlapping areas into a single view with an indistinguishable
seamline (Burt and Adelson, 1983).

Briefly speaking, there are two main reasons for the difficulties
encountered in remote sensing image mosaicking. One is that the
images are often taken at different times, and the other is that they
are often taken from different angles. The former issue leads to dif-
ferent geographic features existing on the overlapped area, and a
big tonal difference. The latter issue causes shape differences in
the same geographic features on the overlapped area, especially
for HR images. In other words, when the camera takes images from
different angles, different objects will appear in the same position
according to the geographic reference. To this end, the current
mosaicking procedures for remote sensing images are structured
as follows. Firstly, in order to make the mosaicked image a natural
integrated image, tonal adjustment is necessary. A fusion process
should then be undertaken. In general, the images to be mosaicked
must have overlapping areas (shared areas). After the tonal adjust-
ment, averaging the pixels of the overlapped area is the simplest
way to mosaic the images. For low spatial resolution images, this
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method is very effective. However, when it comes to HR remote
sensing images, this approach may cause ghosting. Researchers
have therefore investigated how to find an appropriate seamline
to weaken the ghosting effect (Chon and Kim, 2006). When an opti-
mal seamline is detected, pixels of the mosaicked image approxi-
mately rely on only one image, based on which side of the
seamline they lie on (Pan et al., 2009). A blending algorithm is also
necessary to reduce the residual differences between the two
neighboring images in a buffer along the seamline (Chon and
Kim, 2006). To sum up, three successive steps are required to gen-
erate a satisfactory mosaicked image from HR images: tonal
adjustment, seamline detection, and image blending.

In this study, we propose a robust mosaicking procedure for HR
images, with the following improvements in tonal adjustment,
seamline detection, and image blending. Note that the HR images
to be mosaicked all have overlapping areas. In the first step, the
tonal differences are corrected by local moment matching
(LMM). An automatic piecewise dynamic program (APDP) seamline
detection method then determines the location of the optimal
seamline in the overlapped area. In the final step, the seamline is
eliminated by a new method of cosine distance weighted blending
(CDWB).

The rest of this paper is organized as follows. In Section 2, we
survey the current approaches to image mosaicking. The
algorithms we propose in this paper are discussed in Section 3,
which is followed by the mosaicking experiments in Section 4.
The conclusions and discussions are drawn in Section 5.

2. Related works

As was previously mentioned, there are three key aspects in
image mosaicking: tonal adjustment, seamline detection, and
image blending. In this section, we introduce some of the existing
methods for these three aspects.

2.1. Tonal adjustment

Tonal adjustment plays an important role in making a
mosaicked image appear to be a natural single image. The current
approaches to tonal adjustment are based on the premise that the
reflection conditions in the overlapped region remain constant.
The average luminance condition of the reference image in the
overlapped area is computed, and the other image is normalized
into uniformity (Du et al., 2001). The mean value denotes the aver-
age of the image intensity, and the variance or standard deviation
represents the volatility of the intensity. These are the most basic
indicators for image tone. Yi et al. (2003) detailed three common
tonal adjustment methods: (1) the approaches based on image
entropy; (2) the methods using mean variance; and (3) histogram
matching. The approaches based on entropy are based on the prin-
ciple that the overlapping areas of the adjacent images represent
the same area, so the entropy should also be the same. The color dif-
ference is then eliminated by entropy mapping. The methods based
on mean variance adjust the tone using the mapping relationship
between the image mean and variance (Zhang et al., 2003). His-
togram matching stretches the histogram of all the bands in one
image to be similar to the shape of the reference image, to adjust
the tone (Du et al., 2001; Gonzalez and Woods, 2007). Mills and
Dudek (2009) used a linear approximation model to adjust the tone
generally. These kinds of methods compute a pair of gain and bias
values based on the overlapped area, and build a linear correlation
of the image before and after adjustment (Zhang et al., 2003;
Gonzalez and Woods, 2007). This sort of adjustment has the com-
mon shortcoming that the image may appear dark or bright in the
overall view. In this case, some local features in the tone may be

ignored. To avoid the overall luminance difference and to allow bet-
ter consideration of the local features, we propose the LMM algo-
rithm in the step of tonal adjustment.

2.2. Seamline detection

As to the detection of the seamline, this has always been the
focus of HR image mosaicking (Zagroub et al., 2009). Seamline
detection aims at finding the optimal seamline where the images
share the most similarity. When detecting the seamline in an
urban area with clusters of buildings, if the seamline can go
through a flat area, or go along the natural edges of the buildings,
instead of crossing the buildings, it will be hidden among these
complex geographic entities (Duplaquet, 1998).

Based on the snake model (Kass et al., 1988), Wang et al. pro-
posed the improved snake model (Wang et al., 2010). In their work,
the sum of the mismatched values on the line is considered as the
energy. The line with the lowest energy is then the optimal seam-
line. This model solves the local optimum problem existing in the
snake model, to some extent, but not completely. Kerschner (2001,
2000) proposed the twin snake algorithm. In this approach, the two
lines of the twin snake start from opposite borders of the over-
lapped area, and are forced to be attracted to each other. The opti-
mal seamline is determined if the two lines are merged. However,
this algorithm cannot overcome the local minima problem com-
pletely, and it requires a high computational cost (Chon and Kim,
2006).

Dijkstra (1959) proposed Dijkstra’s algorithm to solve the prob-
lem of the shortest path, and Davis (1998) used this algorithm to
choose the optimal seamline for images with moving objects. In
this approach, the seamline is placed by creating a difference
image for the two neighboring images, with pixels given higher
values if they have greater intensity differences. The optimal
seamline is then the minimum cost path from one edge of the
overlapped area to the other. Unfortunately, the algorithm has
two shortcomings: it is only useful for carefully controlled source
images, and its traversal efficiency is a little low for remote sensing
images.

Pan et al. (2009) proposed large-area Voronoi diagrams to gen-
erate a seamline network for mosaicking over a large geographic
area. This algorithm, which can easily obtain a seamline network,
especially for multi-image mosaicking, is suitable for common
industrial production. However, for high-accuracy mosaicking, this
method cannot fulfill the requirements.

Duplaquet (1998) developed a dynamic program (DP) based
algorithm combining the color and gradient similarity to trace
the optimal seamline. The DP algorithm (Agrawal and Horgan,
1990) is also an algorithm that can obtain the shortest path. How-
ever, compared with Dijkstra’s algorithm, the time consumption is
much less. The most significant superiority of the DP algorithm is
the rapid operation, which is very important for HR remote sensing
image mosaicking. However, the accuracy of the seamline location
by the use of the DP algorithm still has room for improvement.
Xing et al. (2010) used an algorithm modified from the DP algo-
rithm, which showed a slight improvement over the original DP
algorithm. Nevertheless, the detected seamline still easily goes
through buildings, which causes obvious discontinuity. To avoid
such discontinuity, we propose the APDP algorithm in this paper.

2.3. Image blending

The third step—image blending, also called feathering (Levin
et al., 2004)—provides a smooth transition near the seamline. In
this field, hard correction (HC) (Zhu and Qian, 2002; Shmuel,
1981), weighted stacking on overlapped areas (Chon and Kim,
2006; Gonzalez and Woods, 2007; Uyttendaele et al., 2001), and
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wavelet transform (Zhu and Qian, 2002) are the most common
approaches. For HC, the intensity difference at both sides of the
seamline is calculated, and it is then reallocated to the statistical
area from one side to the other side so that the transition is natural.
If the path of the seamline is horizontal, it will be eliminated ver-
tically; whereas, if the seamline is vertical, it will be corrected hor-
izontally. When the exposure difference is quite obvious, HC
cannot effectively realize a smooth transition. The stacking
method, as is implied by the name, replaces the values along the
seamline with the sum of several original images with different
weights (Kang, 2006). For instance, for pixels on the left of the
seamline, the image on the left has a higher weight, and vice versa.
Sometimes the original images have only a small overlapped area,
or the images are not registered to a high degree of accuracy. In
this case, the stacking method may lead to ghosting. Wavelet
transform is a new approach developed in recent years. In its
framework, images are broken down into wavelet components
with different frequencies, which are mosaicked at different scales.
Finally, the mosaicked image is retrieved with an algorithm which
has a very strict theoretical basis. This approach is, however, com-
plex to compute. In order to realize a more natural transition, we
propose a simple CDWB method, which is also a kind of stacking
method.

3. Algorithms

The proposed algorithms for the mosaicking of HR images are
shown in Fig. 1. It should be explained that in this whole paper,

Input HR images
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we only consider the mosaicking of two images. One of the two
images is on the left, and the other is on the right. The procedure
is similar to mosaicking two images with other relative positions.
Firstly, based on the overlapped area, the tonal difference is cor-
rected with LMM. After that, APDP is used to find an optimal seam-
line on the overlapped area. The two images are then mosaicked
into a single image along the seamline. In this step, CDWB is uti-
lized on a buffer along the seamline to eliminate the seamline
and generate a smooth transition. In terms of the three steps of
HR image mosaicking—tonal adjustment, seamline detection, and
image blending—they are described in detail as follows.

3.1. Tonal adjustment using LMM

In this part, we present a tonal adjustment method, namely
LMM, to solve the nonlinear photometric correlation problem
between the adjacent images to be mosaicked. Based on the over-
lapped region, least squares matching (LSM) (Pham and Pringle,
1995), mean-variance matching (Yi et al., 2003; Zhang et al.,
2003), and moment matching (MM) (Zhong et al., 2006) are meth-
ods which adjust the tone using only a pair of gain and bias values
based on the whole image. The overall tonal adjustment for large-
area images with only one pair of gain and bias values ignores the
local tonal differences and can lead, on the whole, to darkness or
brightness. For a better consideration of the regional tonal differ-
ences, and to avoid overall luminance deviation, we propose to
adjust the tone of different successive regions with different pairs
of gain and bias values. Generally speaking, the proposed tonal
adjustment method performs better than the methods which use
only one pair of gain and bias values for the whole image. For brev-
ity, we take the improved method based on the traditional MM as
an example, i.e., the aforementioned LMM. It is introduced in detail
in the following.

Fig. 2 illustrates tonal adjustment using LMM. The overlapped
region in image g is the reference, and f is the image to be cor-

rected. Let f(i, ) andf(Lj) denote the pixel values in row i, column
j of the image f and the corrected image, respectively. A region is a
rectangular area composed of the rows fromi—Rtoi+R (R is a
constant parameter which influences the effect of the tonal adjust-
ment), moving with the change of i (e.g., Region a; and Region b;). A;
and B; are the gain and bias values calculated in Region a; and
Region b;, respectively. The pair of A; and B; is then used to adjust
the tone of row i in image f as follows:

f(i,j) = A - f(i.j) + B; 1
Fig. 1. Flowchart of the proposed method for the mosaicking of HR images. f( J) ! f( ’J) ! ( )
S S EETrr T e -|_l> ___ AT AT T AT
i Region a; — Region b, ! }r
I | — Illllllllllllﬂllllll Row i=R+1
1
SEERRNEERRARNE g AEEENNEEEREEE 3 Fr
Z, Slide row by row
v LTLTTIIPITTE -
r———————————l I |
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Fig. 2. Tonal adjustment using LMM.
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where on the overlapped area

)
o) (2)
B,‘:Mg(i)—Mf(i) ><A,' (R<l§ZU—R)

where d, and & are the standard deviations of Region a; and
Region b;, respectively, and Mg; and My, are the corresponding
averages. Additionally, Z, is the height of the overlapped area,
and row Z, — R is the middle row in the region nearest to the end
of the overlapped area, as shown in Fig. 2.

In other words, instead of adjusting the overall tone using MM,
LMM adjusts image f row by row. The coefficients calculated
between Region g; and Region b; are used to correct row i in image
f. With the joint moving of Region a; and Region b;, row by row, the
whole image f is gradually corrected. Note that the first few rows
(1 <i<R)inimage f are adjusted based on the regions centered at
row i on the overlapped area of the two images. The last rows
(i = Z, — R) in image f are adjusted based on the regions centered
at row Z, — R in the two images. This region-based adjustment
algorithm allows for the consideration of the local tonal character-
istics of a large-area image. It not only makes sure that the final
mosaicked image is a single-entity view, but also lays a solid foun-
dation for the subsequent blending process. Furthermore, it can be
applied to other traditional overall-adjustment methods, such as
LSM, mean-variance matching, and so on. The tonal adjustment
also contributes to the detection of an optimal seamline, which is
verified in the experiments.

3.2. Seamline detection using APDP

Generally speaking, seamline detection is the most important
step in the procedure. As described earlier, mosaicking two images
along a poor seamline will cause obvious artificial frontiers. A good
seamline should go through the most similar parts of the original
images, to result in the least discontinuity. There are two possible
circumstances for an invisible seamline: going through radiometri-
cally exactly equal areas, or following the natural edges of
geographic entities common to both images. Based on the current
research, we propose the APDP method to detect the optimal
seamline.

3.2.1. The process of APDP

In certain particular conditions, the seamline detected by non-
piecewise methods may go through buildings and result in ghost-
ing. To alleviate this phenomenon, we propose an auto piecewise
seamline detection method based on DP: APDP. The mode of piece-
wise detection is the first difference between APDP and the current
methods (DP and Dijkstra’s algorithm). Since piecewise detection
can control the deviation of the optimal seamline in each piece,
it can avoid ghosting, and the total deviation of the optimal seam-
line will be decreased. As shown in Fig. 3, the optimal seamline is
divided into many pieces to be detected (Piece I, Piece II, Piece III
...). The length of the seamline and the cost of detection are the
two controlling factors for piecewise detection. Inside each piece,
the longest seamline with the lowest average cost will be the
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Fig. 3. Piecewise seamline detection using APDP.
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optimal one. The end point of this piece of seamline will then
decide the new starting point of the next piece of seamline. In
Fig. 3, “sp” denotes the starting point of one piece of the seamline,
and “end” represents the end of this piece. Pixel “spx0” (x means 1,
2, 3, ...) is the starting point of the local optimal seamline in the
corresponding piece. We repeat this cycle until the seamline
reaches the end of the overlapped area. All these pieces of seamline
are then connected to become the optimal seamline.

3.2.2. The APDP algorithm
Duplaquet (1998) proposed the following requirements for an
optimal seamline:

(1) On the seamline, the intensity difference of pixels in the two
images is minimal.
(2) The geometric difference along the seamline is minimal.

These criteria are such that an ideal supposition in which a
seamline simultaneously meets the two cases may not exist. Our
objective is therefore to find the closest seamline to the ideal
one. In order to find the optimal seamline, a cost function is set
for each seamline. Among all the seamlines, the longest one with
the lowest average cost is the optimal seamline.

Let N be the average cost of each piece of piecewise seamline
starting from the overlapped area, and N,, and L,, denote the cost
and the length of the optimal seamline, respectively. Taking the
intensity difference, the geometric structure difference, and the
gradient similarity of the images into consideration, we propose
the following algorithm to detect the optimal piece of seamline:

Ls
N =Y min (N + Ni + No ) /Ls(m = 0,1,2,3,4
k=1
and S=1, 2, ...,Z)
Nop = min(N)
Lop = max(Ly) (3)

with

1

X Y
Nami(im,Jm) = 5wy o1 1 (im + X, Jm +¥)
mk\tmsJm (2X+1) 2Y+] szyz m m

Y
~ flim +X.jm + )|
Nani(im ) = Min (grad, (im. o) &rad; (in, ) )

Nemk lm Jm Z‘Gt lm ]m (4)
with
Gelimojm) = (&(im.jim) — F(im.jim)) X St (5)

where the notations are as follows: m denotes the search direction,
as shown in Fig. 4. As is shown in Fig. 4, point 5 is the current pixel
on the seamline, and points 0-4 are the next candidate pixels of
point 5 in the five search directions. Z, is the width of the over-
lapped area, as shown in Fig. 2. L; is the length (number of pixels)

of a piece of piecewise seamline. g(i,j) and f(i,j) are the intensities

of images g and f with the coordinates of (i,j), respectively. For each
pixel (i,j) on the seamline, it corresponds to a group of pixels (im,j,)
in the search directions. Ny, denotes the intensity difference in a
(2X+1) x (2Y +1) window around pixels 0-4. Ng,; represents
the gradient similarity between the current pixel and the five adja-
cent pixels in the search directions. Min(a, b) represents the smaller
one between a and b. N, is the geometric structure difference
around pixels 0-4. It is calculated by an eight-direction Sobel gradi-
ent operator (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) which can

HiNN NN
] L]
H NN
N
HiNNnnn.

Fig. 4. Five search directions for a seamline in APDP. Point 5 is the pixel on the
seamline.

Hinnin

detect the edge information. G (im,j,) is the Sobel gradient in one
direction. S; is the Sobel operator used in the eight directions
(Xing et al., 2010). a x b represents the convolution of a and b.
grad, and gradf are the first-order gradients between the current

pixel and the next candidate pixel in images g and f.

In addition to the piecewise mode, APDP has two other differ-
ences with the original DP: (1) APDP searches in five directions
instead of three directions (the directions of 2, 3, and 4 in Fig. 4)
in the DP method; (2) DP only uses Nymk + Ngmk, and does not
include the geometric structure N..,. The piecewise method is
realized by the control of the length of each partial seamline and
the cost threshold of Ngymk + Nemk + Ngmi (Fig. 3). The formula
Namk + Nemk + Ngmy restrains the trend of the optimal seamline with
regard to both geometric structure and intensity. The piecewise
detection method is effective in controlling the seamline along flat
areas, because once the seamline goes through a building,
Namk + Nemk + Ngmk Will go beyond the threshold. Accordingly, the
current piece of seamline will end and the next detection piece will
start. The final optimal seamline is made up of many piecewise
parts.

In fact, even if the final seamline is the optimal one, the top and
bottom borders of the original images will be the artificial borders
of the mosaicked image. To solve this problem, the final seamline is
the one which starts from one angular vertex (top) of the over-
lapped area to another angular vertex (bottom). It is made up of
three parts: the first part starts from the top vertex of the over-
lapped area; the second part is mostly in the longitudinal; and
the third part starts from the bottom vertex of the overlapped area.
The three parts are connected to be the final seamline with inter-
sections. In fact, the specific searching direction is affected by the
position relationship between the two neighboring images. Taking
the left-right position as an example, there are four cases in Fig. 5.
In this paper, our algorithms are presented as in Fig. 5(a).

APDP is detailed as follows (see Fig. 6):

(1) Set pixels (1,i) in the first row of the overlapped area as
the starting point of one seamline. Each point will start
a seamline, and we choose the optimal one.

(2) Detect the seamline from these starting points to their
corresponding five directions (as shown in Fig. 4) until
the end of the overlapped area. Choose the longest one
with the lowest average cost to be the initial selection
of the optimal seamline. Record this starting point (c, u)
and let it be the starting point in the piecewise detection.

(3) Choose 10 points (empirical number, it can be another
number) on the left and right sides of (c,u) as new start-
ing points and begin the piecewise detection. Each point
will start a new piece. Once the cost (the sum of Ny, N,
and N.) of pixel (in,j,) is beyond the threshold TL, or
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(a) (b)

(c) (d)

Fig. 5. The position relationships between two left-right relationship images. (a) Left-up and right-down. (b) Left-down and right-up. (c) Right-in-left. (d) Left-in-right.

-T—- Input images g and f

seamline with the least cost

Use each point (1, i) (i=1,2,...,Z;) as the
start point to detect seamline

Find the starting point (1, «) of the

!

Choose ten points on the left and right
side of (¢, u) as new starts

Set it as a piece of seamline
Set the end point as new (¢, u)

Fig. 6. The flowchart of optimal seamline detection using APDP.

left border of the buffer

iy

Fig. 7. Schematic diagram of the buffer in image blending.

the length of the present piece is beyond the threshold TL,
this piece of seamline will be ended. In general, TL has a
limited influence on the seamline detection. Although dif-
ferent values of TL obtain similar detection results, a
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Fig. 8. Diagram showing how the weight varies with the distance ratio in image
blending using CDWB.

Table 1
Experimental parameters setting of the three steps for the proposed method.
Steps Parameters
Tonal adjustment R=10
Seamline detection TC=250
TL=100
Image blending q=10

smaller value of TL may result in trivial pieces. We suggest
that TL = 100 is an appropriate setting. In contrast, TC has
a more obvious impact on the seamline detection, which
is discussed in the experimental section. We then choose
the longest seamline in the 21 seamlines with the lowest
average cost to be the optimal one. Following this, we set
the end point of the optimal piece as the new center point
to choose the starting points of a group of new pieces.

(4) Repeat step (3) until the end of the overlapped area. Con-
nect these optimal pieces of seamline to be one integrated
seamline (longitudinal seamline).

As was noted previously, to reduce the artificial borders of the
original image, the final seamline consists of three parts. The pre-
vious steps detected a longitudinal seamline. Following the above
steps, we detect seamlines towards the middle of the overlapped
area from the two vertexes (up and down) of the overlapped area
(according to Fig. 5). We let the two seamlines intersect with the
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(b)

Fig. 9. The original HR images (the overlapped area of the two images is of a size of 4700 x 8300). (a) The left image (with the size of 6700 x 8900). (b) The right image (with

the size of 6500 x 8800).

longitudinal seamline in step (4) and connect the three seamlines
to be the final optimal seamline.

3.3. Image blending using COWB

As the name implies, image blending is the process used to
make the seamline invisible. In the following content, we explain
the CDWB image blending method. Elimination of the seamline
plays an important role in making a smooth transition. In CDWB,
a buffer along the final seamline detected in Section 2 is set as a
transition zone, as shown in Fig. 7. Outside the buffer, the left area
of the mosaicked image comes from the left original image, and the
right area comes from the right image; inside the buffer, each pixel
value is a weighted combination of the corresponding overlapped
pixels from the two images. We believe that appropriate weights
are the guarantee of a smooth transition. To date, a number of dif-
ferent kinds of weighting methods have been used in the field of
image processing. Without any loss of generality, we choose a sim-
ple weighting standard: distance. In other words, the shorter the
distance, the greater the weight. For example, as shown in Fig. 7,
for any pixel P(i,j) in the buffer, the distance q — q; (where q is
the half width of the buffer) is from the pixel to the left border
of the buffer. The closer the pixel P(i,j) lies to the left border of
the buffer, the heavier the weight of the left image is, and the
lighter the weight of the right image is; and vice versa. Let d be
the distance ratio of P(i,j) to the seamline, i.e.

qa-—4q;
== —_g<a <
d 2q 0 Is@isd (6)
where g; denotes the distance of P(i,j) to the optimal seamline, as
shown in Fig. 7. If P(i,j) is on the left of the seamline, g; is negative;
if P(i,j) is on the right, g; is positive.

Concretely, suppose M is the final mosaicked image, i.e.

g(i.j), ) (ij)eg A
M(i,j) = m(i,j) «g(1,J) +wir(i,j)«f(i.J) (i.j) € gg nf) (7)
fa.J), ijef

where w(i,j) and w,(i,j) are the respective weights of images g and

f in the buffer. It is required that w(i,j)+w,(i,j)=1 and
0 < wi(i,j), wr(i,j) < 1. In the framework of the traditional distance
weighting method, because the transition of the weights close to
the edge of the buffer (0 and 1) is not smooth, the blending effect
may be poor in the border of the buffer. Here, the traditional
method means inverse distance weighting (IDW) Fisher et al.,
1987. Inspired by the way a cosine varies in the range [0,1] and
changes very slowly at the ends of 0 and 1 (see Fig. 8), we propose
a new weight calculation algorithm based on the cosine distance.
Firstly, we suppose w;(i,j) and w;(i,j) are both the functions of the
distance ratio d, and we let w;(d) substitute for w(i,j) and w;(d)
substitute for w,(i,j). To obtain reasonable weights, the following
assumptions are made:

(1) We consider constant weight functions outside the buffer,
and we want to have a differentiable mosaicking and conse-
quently weight functions for a smooth transition. Therefore,
at the borders of the buffer, the first derivatives need to be
zero, i.e, wj(1) =0, w,(0) = 0.

(2) At the borders of the buffer, the weight should be 0 or 1, i.e.,
w;(0) =1 and w;(0) =0 or wy(1) =0 and w,(1) = 1.

(3) Inside the buffer, wy(d) + w;(d) = 1.

According to these principles, the following cosine-based for-
mula is used to calculate w(d) and w,(d). At first, w(d) is calcu-
lated by:
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Fig. 10. Tonal adjustment results with the different methods. (a) The result of LSM. (b) The result of MM. (c) The result of the proposed LMM.

Table 2
The horizontal gradient at the color transition of the image to be mosaicked in Fig. 10.
Bands Methods
LSM MM LMM
Red 44.8754 27.0704 24.7488
Green 35.8470 22.2306 21.0377
Blue 42.8686 20.7714 18.8487
Bold values are the best values of the three methods.
wi(d) = wcos(ad + ) + 7 (8)

where o, f, 7, and  are the parameters to be solved. The above
assumptions can be converted to the equations below:
wcos(f)+7y=0
wcos(a+pf)+y=1
—awsin(Bf) =0
—owsin(e+ ) =0

9

Assuming w;(d) is not a constant function, so a0 and w#0. Then:

A=T
=0
b ) (10)
V=3
0=}
We substitute (10) for (8), then w;(d) is derived:
w(d) = —% cos(nd)—i-% (11)
According to assumption (3), w,(d) is obtained by:
w,(d) =1—-w(d) = % cos(md) +% (12)

To make an intuitive explanation of the weight variation, we
provide a diagram showing how the weight varies with the dis-
tance ratio in Fig. 8. As shown in this figure, the weights w; and
w, vary smoothly from 0 to 1, which meets our requirements in
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Fig. 11. Tonal adjustment results of LMM with different sizes of region [2R + 1 in Eq. (2)]. (a) The result of R = 1. (b) The result of R = 5. (c) The result of R = 10. (d) The result

of R=15.

this sense. In general, a small value of q corresponds to an unnat-
ural transition from one side to the other side of the detected
seamline. When q is larger than 10, the blending effect is satisfac-
tory. The larger the value of g, the smoother the transition.

4. Experiments and analysis

A number of experiments were conducted to validate the pro-
posed method. Briefly speaking, the experiments were divided into
three parts (the same as the previous content): tonal adjustment,
seamline detection, and image blending. For airborne image exam-
ples, it is assumed that two pieces of images are taken when the
focal plane is parallel. In the experiments, without any special
instructions, the parameters for the proposed method are set as
Table 1. More details follow.

4.1. Tonal adjustment

The two images in Fig. 9 are the original data. They are aerial
images from an urban area with a spatial resolution of 0.1 m. The
buildings in the images are concentrated, with some high buildings
being apparently oblique, and several main roads separate the
street area into blocks. We can see that the two images have an
obvious tonal difference, and the gray level of each band is in the
range [0,255]. In the tonal adjustment experiments, we set the

overlapped area of the left image to be the reference, and adjusted
the tone of the right image using three methods: LSM, MM, and
LMM, respectively.

Fig. 10 shows the tonal adjustment results, in which the two
images are mosaicked along the borders of the left image. On the
whole, as can be seen in Fig. 10, the result of LSM still has consid-
erable differences after the tonal adjustment, and is clearly worse
than the results of MM and LMM. This is because the aerial images
were shot from different angles, and the pixels on the same geo-
graphic location on the overlapped area do not match with each
other accurately. Furthermore, LSM, which is based on an inaccu-
rate difference between the pixels in the same location, cannot
adjust the tone effectively. From an overall perspective, the tones
of the results of MM and LMM are similar to each other. However,
on the borders of the overlapped area (red”> box and green box
zoomed-in areas, see Fig. 10(b) and (c)), the result of MM shows
some tonal difference. This is because of the fact that in the frame-
work of MM, only one pair of gain and bias values is shared by all
the pixels of the adjusted image, and the regional differences are
ignored. In contrast, for LMM, every row has an independent pair
of gain and bias values on a sliding region with a fixed number of
rows; as a result, the local features are made better use of at the

2 For interpretation of color in Fig. 10, the reader is referred to the web version of
this article.
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(e) ®

Fig. 12. Comparison of the seamline detection results by the use of the different methods. (a) The result of DP. (b) The result of APDP in the longitudinal direction. (c) The
result of Inpho OrthoVista (software). (d) The result of the APDP final seamline. (e) and (f) The zoomed-in red boxes in (c) and (d). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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(2

Fig. 13. Seamline detection results with different combinations of the different terms in expression (3) (without tonal adjustment). (a) The result of Ngpu. (b) The result of
Nemk. (c) The result of Ngpi. (d) The result of Ny + Nemk. (€) The result of Ny + Ngmk. (f) The result of Nepk -+ Ngm. () The result of Ngmi + Nemk + Ngmk.

regional level. This experiment demonstrates that LMM performs
effectively for the tonal adjustment.

In order to quantitatively evaluate the effect of the tonal adjust-
ment in Fig. 10, we consider the horizontal gradient at the color
transition line (the blue line in Fig. 10(a)) of the two images as
the indicator. For Fig. 10(a), suppose that the right edge (blue line)
of the left image is column J (for brevity, we assume that it is
strictly vertical), the left image is g, and the right image is f (the

same as before), then the horizontal gradient V, at the blue line
is calculated by:

V=D Vi) = If(i]+1) - g(i))| (13)

Alower V, means a smaller color difference, which corresponds
to a better tonal effect. Since the images have red, green, and blue
bands, we show the horizontal gradient at the color transition of
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(2

Fig. 14. Seamline detection results with different combinations of the different terms in expression (3) (with tonal adjustment by LMM). (a) The result of Ngy. (b) The result
Of Nemk. (¢) The result of Nggy. (d) The result of Nymi + Nemk. (€) The result of Ngmk + Ngmk. (f) The result of Nemk + Ngmi. (g) The result of Ngmk + Nemi + Nemi-

each band in Table 2. As can be seen in Table 2, LMM obtains a
lower horizontal gradient than LSM and MM, in keeping with the
visual effect in Fig. 10. This experiment confirms that LMM obtains
the best tonal adjustment among the three methods.

We then analyzed the influence of the region size of LMM on the
tonal adjustment result. Fig. 11 shows the corrected results when
the size of region changes in LMM. The original images are again

Fig. 9. The red vertical line in Fig. 11 is the border of the left image.
The section of the image on the left of the red line is inside the
overlapped area, and the rest is outside the overlapped area. As
shown in Fig. 11, when R = 1, the parts outside the overlapped area
have very obvious horizontal strips, as shown by the red arrows.
The strips are reduced when R = 5. Happily, when R is increased
to 10, the strips disappear. When R is further increased to 15, it
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Fig. 16. Seamline detection results with different values of TC. (a) TC = 200. (b) TC = 250. (c) TC = 300.

does not show an obvious advantage over R = 10. This illustrates
that, to a certain extent, a bigger region results in better tonal
adjustment. Beyond this extent, it will not improve the visual
appearance. The optimal size of region is also related to the
amount of original data, the intensity difference of the neighboring
images, and the degree of overlap. Generally and empirically, we
have found that R = 10 is a good size and is suitable for a number
of HR images.

4.2. Seamline detection

Mosaicking along the borders of the original images will gener-
ate great discontinuity. Similarly, a poor seamline will also cause
this phenomenon. This is the reason why detecting an optimal
seamline is important.

We undertook the following experiments: the first experiment
was a comparison between the proposed method and the other
existing methods; the second experiment analyzed how our algo-
rithm affects the result of the seamline detection. Note that in
the experiments, the cost threshold was set as TC = 250 and the
length threshold was set as TL = 100.

Fig. 12 shows a comparison of the seamline detection results by
the use of the different methods. Fig. 12(a) and (b) shows the dif-
ference between APDP and DP (Zagroub et al., 2009) in searching
for the optimal seamline longitudinally, without tonal adjustment.
Since DP does not adjust the tone, for a fair comparison, we did not
conduct tonal adjustment in APDP. Moreover, DP only operates
vertically; therefore, we did the same with APDP in this experi-
ment. In Fig. 12(a) the seamline detected by DP goes almost verti-
cally and crosses large areas of complex buildings, and can be
considered to be a poor seamline according to the standards in Sec-
tion 3.2. In other words, it cuts through buildings and causes dis-
continuities, which can be clearly observed when zooming in on
the mosaicked image. In contrast, the longitudinal seamline found
by APDP goes almost along the main road in Fig. 12(b). Along the
road, the two images share the greatest similarity. Even though
both images have different shooting angles, the areas on the road
have the least difference. The comparison between Fig. 12
(a) and (b) shows that the discontinuity is alleviated by APDP to
the greatest degree. This experiment indicates that APDP is an
effective seamline detection method which gives rise to minimal
discontinuity and dislocation.
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(b)

(d)

Fig. 17. Image blending using the different methods (without tonal adjustment). (a) The original. (b) The result of HC. (c) The result of IDW. (d) The result of the proposed

CDWB.

Additionally, Fig. 12(c) and (d) compare the final integrated
seamlines found by APDP and Inpho OrthoVista 4.5.0 (software,
http://www.supermap.com.cn/inpho/download.asp).  OrthoVista
detects the seamline from the two vertexes of the overlapped area,
and detects it not only vertically, which is very different from DP,
so we did not compare them. On the whole, OrthoVista and APDP
have similar visual results in Fig. 12(c) and (d). The careful reader
will notice that the seamline detected by the proposed method
goes roughly along the middle of the road, and the seamline
detected by OrthoVista goes roughly along the edge of road
(Fig. 12(e) and (f)). The optimal seamline benefits from two
improvements: a piecewise detection method, and strict control
of the optimal seamline. Therefore, APDP avoids the features on
both sides of the road, and the discontinuities are reduced. Addi-
tionally, the seamline detected by OrthoVista often shows large
fluctuations inside a small region. It is not as smooth, so that it
increases the possibility of crossing into buildings. For example,
in Fig. 12(e), the seamline gradually goes into the grassland beside
the road. This experiment verifies that APDP detects a stable and
pleasing seamline.

As shown previously, APDP is able to effectively detect the opti-
mal seamline. We also undertook experiments to investigate how
the algorithm (Ngmk, Nemk, Ngmk, and their different combinations)
affects the location of the optimal seamline. To investigate the
direct influence of APDP on the seamline, tonal adjustment was

not applied to the images to be mosaicked. Fig. 13 shows the cor-
responding results of different combinations of Nguk, Nemr, and
Ngmk. A single Ngmk, Nemk, O Ngmi cannot obtain a good result, as
shown in Fig. 13(a)-(c). Since the two images in this experiment
have a large exposure difference, using Ny only, the seamline
goes through the areas of similar exposure in Fig. 13(a). Fortu-
nately the right-down part is a large area of flat ground, although
without considering the geometric structure, the seamline tends
to go through the area with the least tonal difference. Nepm
(Fig. 13(b)) has a much better result than Ny (Fig. 13(a)) and
Ngmk (Fig. 13(c)). However, in the first part, the seamline crosses
through buildings. Using Ngmk + Nemi (Fig. 13(d)) and Nemk + Ngmk
(Fig. 13(f)) obtains relatively better seamlines than Ngmk + Ngmk
(Fig. 13(e)), and the two seamlines mainly go along the road. Con-
cretely, in Fig. 13(f), the start of the seamline lies in the middle of
the road, and in Fig. 13(d), the seamline keeps going along the road,
which is a pleasing result. Fig. 13(g) with Ngmk + Nemk + Ngmk, which
combines the advantages of the methods used in Fig. 13(d) and (f),
shows the best result. This experiment demonstrates that even if
there are apparent tonal differences in the images, APDP is effec-
tive in detecting the optimal seamline in images of urban areas.
We also investigated how Ngpi, Nemk, and Ngmi and their differ-
ent combinations affect the seamline detection after tonal adjust-
ment. Fig. 14 shows the seamline detection results after tonal
adjustment by LMM. Images after tonal adjustment have a similar
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(b)

(©)

(d)

Fig. 18. Image blending using the different methods (without tonal adjustment) for QuickBird images. (a) The original. (b) The result of HC. (c) The result of IDW. (d) The

result of the proposed CDWB.

intensity, especially in the flat areas, and the two original images
are more similar. Thus, Ngm (Fig. 14(a)) can obtain pleasing results.
The seamlines in the other images fail to go along the main road.
Ngmy (Fig. 14(c)) in particular detects a seamline that is almost ver-
tical, similar to Fig. 13(c). Using Ngmk + Nemk + Ngmk, the seamline
can correctly go along the road. Comparing Figs. 13(g) and 14(g),
we see that after tonal adjustment, the detected seamline changes
from going along the edge of the buildings, or going through the
buildings, to going along the center of the road. This indicates that
the tonal adjustment is very useful for the seamline detection.
From the results of the two experiments depicted in Figs. 13 and
14, we can see that no matter whether the images have a similar
tone or not, Ngmk + Nemk + Ngmk detects the optimal seamline in
urban areas. Comparing Fig. 13(g) and 14(g), although the two
seamlines both go along the road (which can be considered as sat-
isfactory detection), when we zoom in on the neighborhood area of
the seamline, it can be seen that the seamline in Fig. 13(g) partly

goes into the buildings. When tonal adjustment is adopted, this
phenomenon is avoided. As a result, we can conclude that the tonal
adjustment is beneficial to the seamline detection. Additionally, it
also demonstrates that the proposed procedure is reasonable.

Here, we reiterate that the seamline detection is the key step in
the proposed procedure. For the HR images of an urban area, the
same building on two images acquired from different times will
have an obvious inclination difference. This kind of difference can
result in a mismatch. We show an example of poor seamline detec-
tion in Fig. 15, in which the seamline goes through the building. In
this situation, no matter how effective the tonal adjustment and
blending, the discontinuity along the seamline will be kept in the
final mosaicking result.

We now discuss how different values of TC affect the seamline
detection. Fig. 16 shows the detection results. As shown in Fig. 16,
when TC = 200, the seamline goes through the buildings, which is
considered as a poor seamline in HR images. Similarly, when
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(a)

(b)

Fig. 19. Image blending using CDWB with/without LMM. (a) The result without LMM. (b) The result with LMM.

TC =300, the seamline also partly goes into the buildings.
However, when TC = 250, the seamline goes along the road. This
experiment demonstrates that a moderate value of TC obtains a
satisfactory effect. As stated in the algorithm section, TC is a
threshold added by Ny, Ng, and N, which controls the selection
of the optimal seamline. However, TC is correlated with the
geographical features. A mechanism for the adaptive selection of
TC will be determined in the future.

4.3. Image blending

We also tested three different approaches to eliminating the
seamline (for comparison): HC, IDW, and the proposed CDWB.

(b)

Fig. 20. Mosaicked results of 0.1-m resolution aerial images. (a) Original images along the borders (original). (b) The mosaicked result of the proposed method.

Note that in the complete process of our mosaicking method, the
image blending is the final step (after tonal adjustment and seam-
line detection). In the experiments, the half width of the buffer
q = 10. To evaluate the direct effects of the image blending by
the use of the three methods, we first show the results generated
without tonal adjustment (Fig. 17). The original image without
tonal adjustment has an obvious seamline in Fig. 17(a). HC does
not eliminate the seamline very well in Fig. 17(b); it corrects the
intensity difference by calculating the intensity on the two sides
of the seamline, respectively, and then averages the difference
between the two sides based on the distance weight. The result,
however, is no better than the overlapping methods (Fig. 17
(¢) and (d)). IDW (Fig. 17(c)) and CDWB (Fig. 17(d)) successfully
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eliminate the seamline. In this case, CDWB does not show any
advantage over IDW, because the tones of the original images are
very similar.

We also undertook another mosaicking experiment with
QuickBird (HR) images to further show the differences between
these elimination methods. Fig. 18(a) is the original result without
blending. After HC processing, there is still an obvious seamline in
Fig. 18(b). In Fig. 18(c) and (d), the intensity gradually changes
from the left image to the right one. However, without tonal
adjustment, the seamline can be eliminated to a certain degree.
As shown in the red circled areas, the transition by CDWB near
the borders of the buffer is smoother than for IDW. This
experiment verifies that CDWB is better than IDW when the tonal
difference is obvious.

In the complete mosaicking process (with tonal adjustment by
LMM), we tested how effectively the seamline was eliminated by
the three methods. The images in Fig. 19, zoomed in from Fig. 18,
show the CDWB results with and without tonal adjustment.
Fig. 19(a) shows the result of directly eliminating the seamline
without tonal adjustment. Fig. 19(b) shows the result after using
LMM to adjust the tone. After tonal adjustment, the mosaicked
images have a quite close intensity. Using CDWB with LMM, the
seamline is eliminated and the mosaicked image is a seamless
mosaic.

4.4. Final mosaicked results

Fig. 20 is the final mosaicked image generated from two aerial
images, with tonal adjustment (LMM), seamline detection (APDP),
and image blending (CDWB). The results show a stable brightness,
and there is no apparent trace of a seamline. Fig. 21 is the
mosaicked image of the QuickBird satellite images (the images in
Figs. 18 and 19 are cropped from them). As shown in these figures,
the proposed method successfully generates a seamless mosaic.
Furthermore, aerial images are shot close to the ground, which
means that the images have more obvious deformations than
satellite images. In other words, continuous satellite images will
have more similarities in the overlapped area, and the mosaicked

(b)

Fig. 21. Mosaicked results of 2.6-m resolution QuickBird images. (a) Original images along the borders (original). (b) The mosaicked result of the proposed method.

results will be more pleasing. Overall, the experiments proved that
the proposed mosaicking procedure and algorithms are effective.

5. Conclusions and discussions

This paper has proposed three improvements in the procedure
of HR image mosaicking. In the first step—tonal adjustment—we
use LMM to correct the tonal difference. LMM successfully takes
the local tonal characteristics into account and makes the images
uniform in tone. Then, in the second step—seamline detection—a
piecewise detection method, APDP, is proposed to determine the
location of the optimal seamline, which avoids the seamline pass-
ing through buildings by ending the current detection once beyond
the threshold. That is, APDP finds the optimal seamline in the flat-
test area or along the natural edges of buildings. After that, in the
final step—image blending—CDWB is used to blend the buffer
along the optimal seamline, and realizes a perfect cosine curve
smoothly from one image to the other. All these operations
together result in an invisible seamline. The three improvements
all result in a good visual effect and are appropriate for large
amounts of data. According to the experiments, it was found that
the seamline detection is the key step in the proposed procedure.
The tonal adjustment is also conducive to the subsequent seamline
detection.

The proposed mosaicking procedure is applicable for both aerial
photographs and HR satellite images. However, there is still room
for improvement. LMM is not very effective for images with a very
small overlapped area. In addition, a mechanism for the adaptive
selection of the TC threshold of APDP will be investigated in the
future. The proposed method is, however, suitable for the mosaick-
ing of multiple HR images one after another. For the convenience of
description, we just used the mosaicking of two HR images as an
example in the experiments. The simultaneous mosaicking of
multiple HR images will be in our future research focus. Another
point should be noted that for the airborne image experiments,
we assumed the images to be mosaicked are acquired with the
parallel focal plane. In this condition, the geometric distortion is
not notable. However, once the aerial platform randomly moves,
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the geometric distortion is usually so huge that our method doesn’t
directly work. If the images are effectively exerted on geometric
correction, maybe our method is back to life. When remote sensing
images are covered by clouds, the clouds should be removed before
mosaicking (Shen et al., 2015). Additionally, maybe the variational
method (Shen et al.) can be applied in this field in the future.
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